Abstract

We present direct laser writing of channels in chalcogenide glass under light filamentation conditions. Because of the intrinsic properties of the filament, the positive refractive index profile of the channels exhibits a cylindrical symmetry of high quality. The role of the repetition rate is also investigated. It is shown that if the time separation between pulses is shorter than the lifetime of the plasma, the free carriers accumulate and induce a larger variation of the refractive index.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
    [CrossRef]
  2. G. D. Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11, 013001 (2009).
    [CrossRef]
  3. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A: Mater. Sci. Process. 77, 109–111 (2003).
    [CrossRef]
  4. Y. Li, K. Yamada, T. Ishizuka, W. Watanabe, K. Itoh, and Z. Zhou, “Single femtosecond pulse holography using polymethyl methacrylate,” Opt. Express 10, 1173–1178 (2002).
    [PubMed]
  5. S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, “Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses,” Opt. Express 14, 291–297 (2006).
    [CrossRef] [PubMed]
  6. J. Burghoff, C. Grebing, S. Nolte, and A. Tunnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89, 081108 (2006).
    [CrossRef]
  7. T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B: Lasers Opt. 100, 131–135 (2010).
    [CrossRef]
  8. A. Benayas, W. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. Thomsom, N. Psaila, D. Reid, G. Torchia, A. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys. A: Mater. Sci. Process. 104, 301–309 (2011).
    [CrossRef]
  9. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
    [CrossRef] [PubMed]
  10. R. Osellame, N. Chiodo, V. Maselli, A. Yin, M. Zavelani-Rossi, G. Cerullo, P. Laporta, L. Aiello, S. D. Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Optical properties of waveguides written by a 26 MHz stretched cavity ti:sapphire femtosecond oscillator,” Opt. Express 13, 612–620 (2005).
    [CrossRef] [PubMed]
  11. M. Ams, G. D. Marshall, and M. J. Withford, “Study of the influence of femtosecond laser polarisation on direct writing of waveguides,” Opt. Express 14, 13158–13163 (2006).
    [CrossRef] [PubMed]
  12. A. Zakery and S. R. Elliott, Optical Nonlinearities in Chalcogenide Glasses and Their Applications, Springer Series in Optical Sciences (Springer, 2007).
  13. V. F. Kokorina, Glasses for Infrared Optics (CRC Press, 1996).
  14. D. L. Coq, K. Michel, J. Keirsse, C. Boussard-Plédel, G. Fonteneau, B. Bureau, J.-M. L. Quéré, O. Sire, and J. Lucas, “Infrared glass fibers for in-situ sensing, chemical and biochemical reactions,” C. R. Chim. 5, 907–913 (2002).
    [CrossRef]
  15. L. Labadie, C. Vigreux-Bercovici, A. Pradel, P. Kern, B. Arezki, and J.-E. Broquin, “M-lines characterization of selenide and telluride thick films for mid-infrared interferometry,” Opt. Express 14, 8459–8469 (2006).
    [CrossRef] [PubMed]
  16. O. M. Efimov, L. B. Glebov, K. A. Richardson, E. V. Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
    [CrossRef]
  17. L. Petit, N. Carlie, T. Anderson, M. Couzi, J. Choi, M. Richardson, and K. Richardson, “Effect of ir femtosecond laser irradiation on the structure of new sulfo-selenide glasses,” Opt. Mater. 29, 1075–1083 (2007).
    [CrossRef]
  18. M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass.” Appl. Phys. Lett. 90, 131113 (2007).
    [CrossRef]
  19. N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007).
    [CrossRef]
  20. P. Masselin, D. L. Coq, and E. Bychkov, “Refractive index variations induced by femtosecond laser direct writing in the bulk of As2S3 glass at high repetition rate,” Opt. Mater. 33, 872–876 (2011).
    [CrossRef]
  21. S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13, 4708–4716 (2005).
    [CrossRef] [PubMed]
  22. R. R. Gattass, L. R. Cerami, and E. Mazur, “Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates,” Opt. Express 14, 5279–5284 (2006).
    [CrossRef] [PubMed]
  23. L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
  24. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
    [CrossRef]
  25. S. L. Chin, Femtosecond Laser Filamentation (Springer, New York, 2010).
    [CrossRef]
  26. G. Méchain, A. Couairon, Y.-B. André, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B: Lasers Opt. 79, 379–382 (2004).
    [CrossRef]
  27. S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87, 213902 (2001).
    [CrossRef] [PubMed]
  28. P. Masselin, D. L. Coq, E. Bychkov, E. Lepine, C. Lin, and L. Calvez, “Laser filamentation in chalcogenide glass,” (SPIE, 2010), Vol. 7993, p. 79931B.
  29. I. Blonskyi, V. Kadan, O. Shpotyuk, M. Iovu, and I. Pavlov, “Femtosecond filamentation in chalcogenide glasses limited by two-photon absorption,” Opt. Mater. 32, 1553–1557 (2010).
    [CrossRef]
  30. P. Masselin, D. L. Coq, L. Calvez, E. Petracovschi, E. Lépine, E. Bychkov, and X. Zhang, “CsCl effect on the optical properties of the 80 GeS2 - 20 Ga2S3 base glass,” submitted to Appl. Phys. A: Mater. Sci. Process.
  31. A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
    [CrossRef] [PubMed]
  32. N. F. Mott and E. A. Davis, Electronic Processes in Non-crystalline Materials, 2nd ed. (Clarendon Press, 1979).
  33. G. Pfister and H. Scher, “Time-dependent electrical transport in amorphous solids: As2Se3,” Phys. Rev. B 15, 2062–2083 (1977).
    [CrossRef]
  34. D. Gibbons and W. Spear, “Electron hopping transport and trapping phenomena in orthorhombic sulphur crystals,” J. Phys. Chem. Solids 27, 1917–1925 (1966).
    [CrossRef]
  35. M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nature Mater. 6, 824–832 (2007).
    [CrossRef]
  36. S. Hudgens and B. Johnson, “Overview of phase-change chalcogenide nonvolatile memory technology,” MRS Bull. 29, 829–832 (2004).
    [CrossRef]
  37. T. Matsunaga, J. Akola, S. Kohara, T. Honma, K. Kobayashi, E. Ikenaga, R. O. Jones, N. Yamada, M. Takata, and R. Kojima, “From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials,” Nature Mater. 10, 129–134 (2011).
    [CrossRef]
  38. R. Osellame, N. Chiodo, G. Valle, S. Taccheo, R. Ramponi, G. Cerullo, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Optical waveguide writing with a diode-pumped femtosecond oscillator,” Opt. Lett. 29, 1900–1902 (2004).
    [CrossRef] [PubMed]
  39. V. R. Bhardwaj, P. B. Corkum, D. M. Rayner, C. Hnatovsky, E. Simova, and R. S. Taylor, “Stress in femtosecond-laser-written waveguides in fused silica,” Opt. Lett. 29, 1312–1314 (2004).
    [CrossRef] [PubMed]
  40. V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett. 97, 237403 (2006).
    [CrossRef]
  41. E. Ampem-Lassen, S. T. Huntington, N. M. Dragomir, K. A. Nugent, and A. Roberts, “Refractive index profiling of axially symmetric optical fibers: a new technique,” Opt. Express 13, 3277–3282 (2005).
    [CrossRef] [PubMed]
  42. E. Yablonovitch and N. Bloembergen, “Avalanche ionization and the limiting diameter of filaments induced by light pulses in transparent media,” Phys. Rev. Lett. 29, 907–910 (1972).
    [CrossRef]
  43. J. Marburger, “Self-focusing: theory,” Prog. Quantum Electron. 4, 35–110 (1975).
    [CrossRef]
  44. G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Organizing multiple femtosecond filaments in air,” Phys. Rev. Lett. 93, 035003 (2004).
    [CrossRef] [PubMed]
  45. H. Schroeder and S. L. Chin, “Visualization of the evolution of multiple filaments in methanol,” Opt. Commun. 234, 399–406 (2004).
    [CrossRef]

2011 (4)

A. Benayas, W. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. Thomsom, N. Psaila, D. Reid, G. Torchia, A. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys. A: Mater. Sci. Process. 104, 301–309 (2011).
[CrossRef]

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
[CrossRef] [PubMed]

T. Matsunaga, J. Akola, S. Kohara, T. Honma, K. Kobayashi, E. Ikenaga, R. O. Jones, N. Yamada, M. Takata, and R. Kojima, “From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials,” Nature Mater. 10, 129–134 (2011).
[CrossRef]

P. Masselin, D. L. Coq, and E. Bychkov, “Refractive index variations induced by femtosecond laser direct writing in the bulk of As2S3 glass at high repetition rate,” Opt. Mater. 33, 872–876 (2011).
[CrossRef]

2010 (2)

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B: Lasers Opt. 100, 131–135 (2010).
[CrossRef]

I. Blonskyi, V. Kadan, O. Shpotyuk, M. Iovu, and I. Pavlov, “Femtosecond filamentation in chalcogenide glasses limited by two-photon absorption,” Opt. Mater. 32, 1553–1557 (2010).
[CrossRef]

2009 (1)

G. D. Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11, 013001 (2009).
[CrossRef]

2008 (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[CrossRef]

2007 (5)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[CrossRef]

M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nature Mater. 6, 824–832 (2007).
[CrossRef]

L. Petit, N. Carlie, T. Anderson, M. Couzi, J. Choi, M. Richardson, and K. Richardson, “Effect of ir femtosecond laser irradiation on the structure of new sulfo-selenide glasses,” Opt. Mater. 29, 1075–1083 (2007).
[CrossRef]

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass.” Appl. Phys. Lett. 90, 131113 (2007).
[CrossRef]

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007).
[CrossRef]

2006 (6)

2005 (3)

2004 (6)

G. Méchain, A. Couairon, Y.-B. André, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B: Lasers Opt. 79, 379–382 (2004).
[CrossRef]

S. Hudgens and B. Johnson, “Overview of phase-change chalcogenide nonvolatile memory technology,” MRS Bull. 29, 829–832 (2004).
[CrossRef]

V. R. Bhardwaj, P. B. Corkum, D. M. Rayner, C. Hnatovsky, E. Simova, and R. S. Taylor, “Stress in femtosecond-laser-written waveguides in fused silica,” Opt. Lett. 29, 1312–1314 (2004).
[CrossRef] [PubMed]

R. Osellame, N. Chiodo, G. Valle, S. Taccheo, R. Ramponi, G. Cerullo, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Optical waveguide writing with a diode-pumped femtosecond oscillator,” Opt. Lett. 29, 1900–1902 (2004).
[CrossRef] [PubMed]

G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Organizing multiple femtosecond filaments in air,” Phys. Rev. Lett. 93, 035003 (2004).
[CrossRef] [PubMed]

H. Schroeder and S. L. Chin, “Visualization of the evolution of multiple filaments in methanol,” Opt. Commun. 234, 399–406 (2004).
[CrossRef]

2003 (1)

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A: Mater. Sci. Process. 77, 109–111 (2003).
[CrossRef]

2002 (2)

D. L. Coq, K. Michel, J. Keirsse, C. Boussard-Plédel, G. Fonteneau, B. Bureau, J.-M. L. Quéré, O. Sire, and J. Lucas, “Infrared glass fibers for in-situ sensing, chemical and biochemical reactions,” C. R. Chim. 5, 907–913 (2002).
[CrossRef]

Y. Li, K. Yamada, T. Ishizuka, W. Watanabe, K. Itoh, and Z. Zhou, “Single femtosecond pulse holography using polymethyl methacrylate,” Opt. Express 10, 1173–1178 (2002).
[PubMed]

2001 (2)

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87, 213902 (2001).
[CrossRef] [PubMed]

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. V. Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[CrossRef]

1996 (1)

1977 (1)

G. Pfister and H. Scher, “Time-dependent electrical transport in amorphous solids: As2Se3,” Phys. Rev. B 15, 2062–2083 (1977).
[CrossRef]

1975 (1)

J. Marburger, “Self-focusing: theory,” Prog. Quantum Electron. 4, 35–110 (1975).
[CrossRef]

1972 (1)

E. Yablonovitch and N. Bloembergen, “Avalanche ionization and the limiting diameter of filaments induced by light pulses in transparent media,” Phys. Rev. Lett. 29, 907–910 (1972).
[CrossRef]

1966 (1)

D. Gibbons and W. Spear, “Electron hopping transport and trapping phenomena in orthorhombic sulphur crystals,” J. Phys. Chem. Solids 27, 1917–1925 (1966).
[CrossRef]

Aiello, L.

Akola, J.

T. Matsunaga, J. Akola, S. Kohara, T. Honma, K. Kobayashi, E. Ikenaga, R. O. Jones, N. Yamada, M. Takata, and R. Kojima, “From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials,” Nature Mater. 10, 129–134 (2011).
[CrossRef]

Ampem-Lassen, E.

Ams, M.

Anderson, T.

L. Petit, N. Carlie, T. Anderson, M. Couzi, J. Choi, M. Richardson, and K. Richardson, “Effect of ir femtosecond laser irradiation on the structure of new sulfo-selenide glasses,” Opt. Mater. 29, 1075–1083 (2007).
[CrossRef]

André, Y.-B.

G. Méchain, A. Couairon, Y.-B. André, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B: Lasers Opt. 79, 379–382 (2004).
[CrossRef]

Arai, A.

Arezki, B.

Audouard, E.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
[CrossRef] [PubMed]

Benayas, A.

A. Benayas, W. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. Thomsom, N. Psaila, D. Reid, G. Torchia, A. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys. A: Mater. Sci. Process. 104, 301–309 (2011).
[CrossRef]

Bergé, L.

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87, 213902 (2001).
[CrossRef] [PubMed]

Bhardwaj, V. R.

Bloembergen, N.

E. Yablonovitch and N. Bloembergen, “Avalanche ionization and the limiting diameter of filaments induced by light pulses in transparent media,” Phys. Rev. Lett. 29, 907–910 (1972).
[CrossRef]

Blonskyi, I.

I. Blonskyi, V. Kadan, O. Shpotyuk, M. Iovu, and I. Pavlov, “Femtosecond filamentation in chalcogenide glasses limited by two-photon absorption,” Opt. Mater. 32, 1553–1557 (2010).
[CrossRef]

Bonse, J.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
[CrossRef] [PubMed]

Bookey, H. T.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007).
[CrossRef]

Boussard-Plédel, C.

D. L. Coq, K. Michel, J. Keirsse, C. Boussard-Plédel, G. Fonteneau, B. Bureau, J.-M. L. Quéré, O. Sire, and J. Lucas, “Infrared glass fibers for in-situ sensing, chemical and biochemical reactions,” C. R. Chim. 5, 907–913 (2002).
[CrossRef]

Bovatsek, J.

Broquin, J.-E.

Brunéel, J. L.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. V. Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[CrossRef]

Bureau, B.

D. L. Coq, K. Michel, J. Keirsse, C. Boussard-Plédel, G. Fonteneau, B. Bureau, J.-M. L. Quéré, O. Sire, and J. Lucas, “Infrared glass fibers for in-situ sensing, chemical and biochemical reactions,” C. R. Chim. 5, 907–913 (2002).
[CrossRef]

Burghoff, J.

J. Burghoff, C. Grebing, S. Nolte, and A. Tunnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89, 081108 (2006).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A: Mater. Sci. Process. 77, 109–111 (2003).
[CrossRef]

Bychkov, E.

P. Masselin, D. L. Coq, and E. Bychkov, “Refractive index variations induced by femtosecond laser direct writing in the bulk of As2S3 glass at high repetition rate,” Opt. Mater. 33, 872–876 (2011).
[CrossRef]

P. Masselin, D. L. Coq, L. Calvez, E. Petracovschi, E. Lépine, E. Bychkov, and X. Zhang, “CsCl effect on the optical properties of the 80 GeS2 - 20 Ga2S3 base glass,” submitted to Appl. Phys. A: Mater. Sci. Process.

P. Masselin, D. L. Coq, E. Bychkov, E. Lepine, C. Lin, and L. Calvez, “Laser filamentation in chalcogenide glass,” (SPIE, 2010), Vol. 7993, p. 79931B.

Calmano, T.

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B: Lasers Opt. 100, 131–135 (2010).
[CrossRef]

Calvez, L.

P. Masselin, D. L. Coq, E. Bychkov, E. Lepine, C. Lin, and L. Calvez, “Laser filamentation in chalcogenide glass,” (SPIE, 2010), Vol. 7993, p. 79931B.

P. Masselin, D. L. Coq, L. Calvez, E. Petracovschi, E. Lépine, E. Bychkov, and X. Zhang, “CsCl effect on the optical properties of the 80 GeS2 - 20 Ga2S3 base glass,” submitted to Appl. Phys. A: Mater. Sci. Process.

Cardinal, T.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. V. Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[CrossRef]

Carlie, N.

L. Petit, N. Carlie, T. Anderson, M. Couzi, J. Choi, M. Richardson, and K. Richardson, “Effect of ir femtosecond laser irradiation on the structure of new sulfo-selenide glasses,” Opt. Mater. 29, 1075–1083 (2007).
[CrossRef]

Cerami, L. R.

Cerullo, G.

Chen, F.

A. Benayas, W. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. Thomsom, N. Psaila, D. Reid, G. Torchia, A. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys. A: Mater. Sci. Process. 104, 301–309 (2011).
[CrossRef]

Chin, S. L.

H. Schroeder and S. L. Chin, “Visualization of the evolution of multiple filaments in methanol,” Opt. Commun. 234, 399–406 (2004).
[CrossRef]

S. L. Chin, Femtosecond Laser Filamentation (Springer, New York, 2010).
[CrossRef]

Chiodo, N.

Choi, J.

L. Petit, N. Carlie, T. Anderson, M. Couzi, J. Choi, M. Richardson, and K. Richardson, “Effect of ir femtosecond laser irradiation on the structure of new sulfo-selenide glasses,” Opt. Mater. 29, 1075–1083 (2007).
[CrossRef]

Coq, D. L.

P. Masselin, D. L. Coq, and E. Bychkov, “Refractive index variations induced by femtosecond laser direct writing in the bulk of As2S3 glass at high repetition rate,” Opt. Mater. 33, 872–876 (2011).
[CrossRef]

D. L. Coq, K. Michel, J. Keirsse, C. Boussard-Plédel, G. Fonteneau, B. Bureau, J.-M. L. Quéré, O. Sire, and J. Lucas, “Infrared glass fibers for in-situ sensing, chemical and biochemical reactions,” C. R. Chim. 5, 907–913 (2002).
[CrossRef]

P. Masselin, D. L. Coq, E. Bychkov, E. Lepine, C. Lin, and L. Calvez, “Laser filamentation in chalcogenide glass,” (SPIE, 2010), Vol. 7993, p. 79931B.

P. Masselin, D. L. Coq, L. Calvez, E. Petracovschi, E. Lépine, E. Bychkov, and X. Zhang, “CsCl effect on the optical properties of the 80 GeS2 - 20 Ga2S3 base glass,” submitted to Appl. Phys. A: Mater. Sci. Process.

Corkum, P. B.

Couairon, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[CrossRef]

G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Organizing multiple femtosecond filaments in air,” Phys. Rev. Lett. 93, 035003 (2004).
[CrossRef] [PubMed]

G. Méchain, A. Couairon, Y.-B. André, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B: Lasers Opt. 79, 379–382 (2004).
[CrossRef]

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87, 213902 (2001).
[CrossRef] [PubMed]

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).

Couzi, M.

L. Petit, N. Carlie, T. Anderson, M. Couzi, J. Choi, M. Richardson, and K. Richardson, “Effect of ir femtosecond laser irradiation on the structure of new sulfo-selenide glasses,” Opt. Mater. 29, 1075–1083 (2007).
[CrossRef]

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. V. Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[CrossRef]

D’Amico, C.

G. Méchain, A. Couairon, Y.-B. André, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B: Lasers Opt. 79, 379–382 (2004).
[CrossRef]

Davis, E. A.

N. F. Mott and E. A. Davis, Electronic Processes in Non-crystalline Materials, 2nd ed. (Clarendon Press, 1979).

Davis, K. M.

Dragomir, N. M.

Eaton, S.

Efimov, O. M.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. V. Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[CrossRef]

El-Khamhawy, A.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett. 97, 237403 (2006).
[CrossRef]

Elliott, S. R.

A. Zakery and S. R. Elliott, Optical Nonlinearities in Chalcogenide Glasses and Their Applications, Springer Series in Optical Sciences (Springer, 2007).

Ferraro, P.

Finizio, A.

Fonteneau, G.

D. L. Coq, K. Michel, J. Keirsse, C. Boussard-Plédel, G. Fonteneau, B. Bureau, J.-M. L. Quéré, O. Sire, and J. Lucas, “Infrared glass fibers for in-situ sensing, chemical and biochemical reactions,” C. R. Chim. 5, 907–913 (2002).
[CrossRef]

Franco, M.

G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Organizing multiple femtosecond filaments in air,” Phys. Rev. Lett. 93, 035003 (2004).
[CrossRef] [PubMed]

G. Méchain, A. Couairon, Y.-B. André, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B: Lasers Opt. 79, 379–382 (2004).
[CrossRef]

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87, 213902 (2001).
[CrossRef] [PubMed]

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).

Gattass, R. R.

Gibbons, D.

D. Gibbons and W. Spear, “Electron hopping transport and trapping phenomena in orthorhombic sulphur crystals,” J. Phys. Chem. Solids 27, 1917–1925 (1966).
[CrossRef]

Glebov, L. B.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. V. Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[CrossRef]

Grebing, C.

J. Burghoff, C. Grebing, S. Nolte, and A. Tunnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89, 081108 (2006).
[CrossRef]

Hellmig, O.

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B: Lasers Opt. 100, 131–135 (2010).
[CrossRef]

Herman, P.

Hertel, I. V.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
[CrossRef] [PubMed]

Hewak, D.

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass.” Appl. Phys. Lett. 90, 131113 (2007).
[CrossRef]

Hirao, K.

Hnatovsky, C.

Honma, T.

T. Matsunaga, J. Akola, S. Kohara, T. Honma, K. Kobayashi, E. Ikenaga, R. O. Jones, N. Yamada, M. Takata, and R. Kojima, “From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials,” Nature Mater. 10, 129–134 (2011).
[CrossRef]

Huber, G.

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B: Lasers Opt. 100, 131–135 (2010).
[CrossRef]

Hudgens, S.

S. Hudgens and B. Johnson, “Overview of phase-change chalcogenide nonvolatile memory technology,” MRS Bull. 29, 829–832 (2004).
[CrossRef]

Hughes, M.

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass.” Appl. Phys. Lett. 90, 131113 (2007).
[CrossRef]

Huntington, S. T.

Ikenaga, E.

T. Matsunaga, J. Akola, S. Kohara, T. Honma, K. Kobayashi, E. Ikenaga, R. O. Jones, N. Yamada, M. Takata, and R. Kojima, “From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials,” Nature Mater. 10, 129–134 (2011).
[CrossRef]

Iovu, M.

I. Blonskyi, V. Kadan, O. Shpotyuk, M. Iovu, and I. Pavlov, “Femtosecond filamentation in chalcogenide glasses limited by two-photon absorption,” Opt. Mater. 32, 1553–1557 (2010).
[CrossRef]

Ishizuka, T.

Itoh, K.

Jacinto, C.

A. Benayas, W. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. Thomsom, N. Psaila, D. Reid, G. Torchia, A. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys. A: Mater. Sci. Process. 104, 301–309 (2011).
[CrossRef]

Jaque, D.

A. Benayas, W. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. Thomsom, N. Psaila, D. Reid, G. Torchia, A. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys. A: Mater. Sci. Process. 104, 301–309 (2011).
[CrossRef]

Jha, A.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007).
[CrossRef]

Johnson, B.

S. Hudgens and B. Johnson, “Overview of phase-change chalcogenide nonvolatile memory technology,” MRS Bull. 29, 829–832 (2004).
[CrossRef]

Jones, R. O.

T. Matsunaga, J. Akola, S. Kohara, T. Honma, K. Kobayashi, E. Ikenaga, R. O. Jones, N. Yamada, M. Takata, and R. Kojima, “From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials,” Nature Mater. 10, 129–134 (2011).
[CrossRef]

Kadan, V.

I. Blonskyi, V. Kadan, O. Shpotyuk, M. Iovu, and I. Pavlov, “Femtosecond filamentation in chalcogenide glasses limited by two-photon absorption,” Opt. Mater. 32, 1553–1557 (2010).
[CrossRef]

Kar, A.

A. Benayas, W. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. Thomsom, N. Psaila, D. Reid, G. Torchia, A. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys. A: Mater. Sci. Process. 104, 301–309 (2011).
[CrossRef]

Kar, A. K.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007).
[CrossRef]

Keirsse, J.

D. L. Coq, K. Michel, J. Keirsse, C. Boussard-Plédel, G. Fonteneau, B. Bureau, J.-M. L. Quéré, O. Sire, and J. Lucas, “Infrared glass fibers for in-situ sensing, chemical and biochemical reactions,” C. R. Chim. 5, 907–913 (2002).
[CrossRef]

Kern, P.

Killi, A.

Kobayashi, K.

T. Matsunaga, J. Akola, S. Kohara, T. Honma, K. Kobayashi, E. Ikenaga, R. O. Jones, N. Yamada, M. Takata, and R. Kojima, “From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials,” Nature Mater. 10, 129–134 (2011).
[CrossRef]

Kohara, S.

T. Matsunaga, J. Akola, S. Kohara, T. Honma, K. Kobayashi, E. Ikenaga, R. O. Jones, N. Yamada, M. Takata, and R. Kojima, “From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials,” Nature Mater. 10, 129–134 (2011).
[CrossRef]

Kojima, R.

T. Matsunaga, J. Akola, S. Kohara, T. Honma, K. Kobayashi, E. Ikenaga, R. O. Jones, N. Yamada, M. Takata, and R. Kojima, “From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials,” Nature Mater. 10, 129–134 (2011).
[CrossRef]

Kokorina, V. F.

V. F. Kokorina, Glasses for Infrared Optics (CRC Press, 1996).

Kopf, D.

Labadie, L.

Lamouroux, B.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).

Laporta, P.

Lederer, M.

Lepine, E.

P. Masselin, D. L. Coq, E. Bychkov, E. Lepine, C. Lin, and L. Calvez, “Laser filamentation in chalcogenide glass,” (SPIE, 2010), Vol. 7993, p. 79931B.

Lépine, E.

P. Masselin, D. L. Coq, L. Calvez, E. Petracovschi, E. Lépine, E. Bychkov, and X. Zhang, “CsCl effect on the optical properties of the 80 GeS2 - 20 Ga2S3 base glass,” submitted to Appl. Phys. A: Mater. Sci. Process.

Li, Y.

Lin, C.

P. Masselin, D. L. Coq, E. Bychkov, E. Lepine, C. Lin, and L. Calvez, “Laser filamentation in chalcogenide glass,” (SPIE, 2010), Vol. 7993, p. 79931B.

Lucas, J.

D. L. Coq, K. Michel, J. Keirsse, C. Boussard-Plédel, G. Fonteneau, B. Bureau, J.-M. L. Quéré, O. Sire, and J. Lucas, “Infrared glass fibers for in-situ sensing, chemical and biochemical reactions,” C. R. Chim. 5, 907–913 (2002).
[CrossRef]

Marburger, J.

J. Marburger, “Self-focusing: theory,” Prog. Quantum Electron. 4, 35–110 (1975).
[CrossRef]

Marshall, G. D.

Maselli, V.

Masselin, P.

P. Masselin, D. L. Coq, and E. Bychkov, “Refractive index variations induced by femtosecond laser direct writing in the bulk of As2S3 glass at high repetition rate,” Opt. Mater. 33, 872–876 (2011).
[CrossRef]

P. Masselin, D. L. Coq, L. Calvez, E. Petracovschi, E. Lépine, E. Bychkov, and X. Zhang, “CsCl effect on the optical properties of the 80 GeS2 - 20 Ga2S3 base glass,” submitted to Appl. Phys. A: Mater. Sci. Process.

P. Masselin, D. L. Coq, E. Bychkov, E. Lepine, C. Lin, and L. Calvez, “Laser filamentation in chalcogenide glass,” (SPIE, 2010), Vol. 7993, p. 79931B.

Matsunaga, T.

T. Matsunaga, J. Akola, S. Kohara, T. Honma, K. Kobayashi, E. Ikenaga, R. O. Jones, N. Yamada, M. Takata, and R. Kojima, “From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials,” Nature Mater. 10, 129–134 (2011).
[CrossRef]

Mauclair, C.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
[CrossRef] [PubMed]

Mazur, E.

Méchain, G.

G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Organizing multiple femtosecond filaments in air,” Phys. Rev. Lett. 93, 035003 (2004).
[CrossRef] [PubMed]

G. Méchain, A. Couairon, Y.-B. André, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B: Lasers Opt. 79, 379–382 (2004).
[CrossRef]

Mermillod-Blondin, A.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
[CrossRef] [PubMed]

Michel, K.

D. L. Coq, K. Michel, J. Keirsse, C. Boussard-Plédel, G. Fonteneau, B. Bureau, J.-M. L. Quéré, O. Sire, and J. Lucas, “Infrared glass fibers for in-situ sensing, chemical and biochemical reactions,” C. R. Chim. 5, 907–913 (2002).
[CrossRef]

Miura, K.

Morgner, U.

Mott, N. F.

N. F. Mott and E. A. Davis, Electronic Processes in Non-crystalline Materials, 2nd ed. (Clarendon Press, 1979).

Mysyrowicz, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[CrossRef]

G. Méchain, A. Couairon, Y.-B. André, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B: Lasers Opt. 79, 379–382 (2004).
[CrossRef]

G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Organizing multiple femtosecond filaments in air,” Phys. Rev. Lett. 93, 035003 (2004).
[CrossRef] [PubMed]

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87, 213902 (2001).
[CrossRef] [PubMed]

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).

Nicola, S. D.

Nishii, J.

Nolte, S.

J. Burghoff, C. Grebing, S. Nolte, and A. Tunnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89, 081108 (2006).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A: Mater. Sci. Process. 77, 109–111 (2003).
[CrossRef]

Nugent, K. A.

Osellame, R.

G. D. Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11, 013001 (2009).
[CrossRef]

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007).
[CrossRef]

R. Osellame, N. Chiodo, V. Maselli, A. Yin, M. Zavelani-Rossi, G. Cerullo, P. Laporta, L. Aiello, S. D. Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Optical properties of waveguides written by a 26 MHz stretched cavity ti:sapphire femtosecond oscillator,” Opt. Express 13, 612–620 (2005).
[CrossRef] [PubMed]

R. Osellame, N. Chiodo, G. Valle, S. Taccheo, R. Ramponi, G. Cerullo, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Optical waveguide writing with a diode-pumped femtosecond oscillator,” Opt. Lett. 29, 1900–1902 (2004).
[CrossRef] [PubMed]

Park, S. H.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. V. Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[CrossRef]

Pavlov, I.

I. Blonskyi, V. Kadan, O. Shpotyuk, M. Iovu, and I. Pavlov, “Femtosecond filamentation in chalcogenide glasses limited by two-photon absorption,” Opt. Mater. 32, 1553–1557 (2010).
[CrossRef]

Petermann, K.

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B: Lasers Opt. 100, 131–135 (2010).
[CrossRef]

Petit, L.

L. Petit, N. Carlie, T. Anderson, M. Couzi, J. Choi, M. Richardson, and K. Richardson, “Effect of ir femtosecond laser irradiation on the structure of new sulfo-selenide glasses,” Opt. Mater. 29, 1075–1083 (2007).
[CrossRef]

Petracovschi, E.

P. Masselin, D. L. Coq, L. Calvez, E. Petracovschi, E. Lépine, E. Bychkov, and X. Zhang, “CsCl effect on the optical properties of the 80 GeS2 - 20 Ga2S3 base glass,” submitted to Appl. Phys. A: Mater. Sci. Process.

Pfister, G.

G. Pfister and H. Scher, “Time-dependent electrical transport in amorphous solids: As2Se3,” Phys. Rev. B 15, 2062–2083 (1977).
[CrossRef]

Pierattini, G.

Prade, B.

G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Organizing multiple femtosecond filaments in air,” Phys. Rev. Lett. 93, 035003 (2004).
[CrossRef] [PubMed]

G. Méchain, A. Couairon, Y.-B. André, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B: Lasers Opt. 79, 379–382 (2004).
[CrossRef]

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87, 213902 (2001).
[CrossRef] [PubMed]

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).

Pradel, A.

Psaila, N.

A. Benayas, W. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. Thomsom, N. Psaila, D. Reid, G. Torchia, A. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys. A: Mater. Sci. Process. 104, 301–309 (2011).
[CrossRef]

Psaila, N. D.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007).
[CrossRef]

Quéré, J.-M. L.

D. L. Coq, K. Michel, J. Keirsse, C. Boussard-Plédel, G. Fonteneau, B. Bureau, J.-M. L. Quéré, O. Sire, and J. Lucas, “Infrared glass fibers for in-situ sensing, chemical and biochemical reactions,” C. R. Chim. 5, 907–913 (2002).
[CrossRef]

Ramponi, R.

Rayner, D. M.

Reid, D.

A. Benayas, W. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. Thomsom, N. Psaila, D. Reid, G. Torchia, A. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys. A: Mater. Sci. Process. 104, 301–309 (2011).
[CrossRef]

Richardson, K.

L. Petit, N. Carlie, T. Anderson, M. Couzi, J. Choi, M. Richardson, and K. Richardson, “Effect of ir femtosecond laser irradiation on the structure of new sulfo-selenide glasses,” Opt. Mater. 29, 1075–1083 (2007).
[CrossRef]

Richardson, K. A.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. V. Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[CrossRef]

Richardson, M.

L. Petit, N. Carlie, T. Anderson, M. Couzi, J. Choi, M. Richardson, and K. Richardson, “Effect of ir femtosecond laser irradiation on the structure of new sulfo-selenide glasses,” Opt. Mater. 29, 1075–1083 (2007).
[CrossRef]

Roberts, A.

Ródenas, A.

A. Benayas, W. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. Thomsom, N. Psaila, D. Reid, G. Torchia, A. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys. A: Mater. Sci. Process. 104, 301–309 (2011).
[CrossRef]

Rosenfeld, A.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
[CrossRef] [PubMed]

Sauerbrey, R.

G. Méchain, A. Couairon, Y.-B. André, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B: Lasers Opt. 79, 379–382 (2004).
[CrossRef]

Scher, H.

G. Pfister and H. Scher, “Time-dependent electrical transport in amorphous solids: As2Se3,” Phys. Rev. B 15, 2062–2083 (1977).
[CrossRef]

Schroeder, H.

H. Schroeder and S. L. Chin, “Visualization of the evolution of multiple filaments in methanol,” Opt. Commun. 234, 399–406 (2004).
[CrossRef]

Shah, L.

Shen, S.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007).
[CrossRef]

Shpotyuk, O.

I. Blonskyi, V. Kadan, O. Shpotyuk, M. Iovu, and I. Pavlov, “Femtosecond filamentation in chalcogenide glasses limited by two-photon absorption,” Opt. Mater. 32, 1553–1557 (2010).
[CrossRef]

Siebenmorgen, J.

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B: Lasers Opt. 100, 131–135 (2010).
[CrossRef]

Silva, W.

A. Benayas, W. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. Thomsom, N. Psaila, D. Reid, G. Torchia, A. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys. A: Mater. Sci. Process. 104, 301–309 (2011).
[CrossRef]

Simova, E.

Sire, O.

D. L. Coq, K. Michel, J. Keirsse, C. Boussard-Plédel, G. Fonteneau, B. Bureau, J.-M. L. Quéré, O. Sire, and J. Lucas, “Infrared glass fibers for in-situ sensing, chemical and biochemical reactions,” C. R. Chim. 5, 907–913 (2002).
[CrossRef]

Sokolowski-Tinten, K.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett. 97, 237403 (2006).
[CrossRef]

Sowa, S.

Spear, W.

D. Gibbons and W. Spear, “Electron hopping transport and trapping phenomena in orthorhombic sulphur crystals,” J. Phys. Chem. Solids 27, 1917–1925 (1966).
[CrossRef]

Stoian, R.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
[CrossRef] [PubMed]

Stryland, E. V.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. V. Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[CrossRef]

Sudrie, L.

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87, 213902 (2001).
[CrossRef] [PubMed]

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).

Sugimoto, N.

Taccheo, S.

Takata, M.

T. Matsunaga, J. Akola, S. Kohara, T. Honma, K. Kobayashi, E. Ikenaga, R. O. Jones, N. Yamada, M. Takata, and R. Kojima, “From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials,” Nature Mater. 10, 129–134 (2011).
[CrossRef]

Tamaki, T.

Tan, Y.

A. Benayas, W. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. Thomsom, N. Psaila, D. Reid, G. Torchia, A. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys. A: Mater. Sci. Process. 104, 301–309 (2011).
[CrossRef]

Taylor, R. S.

Temnov, V. V.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett. 97, 237403 (2006).
[CrossRef]

Thomsom, R.

A. Benayas, W. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. Thomsom, N. Psaila, D. Reid, G. Torchia, A. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys. A: Mater. Sci. Process. 104, 301–309 (2011).
[CrossRef]

Thomson, R. R.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007).
[CrossRef]

Torchia, G.

A. Benayas, W. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. Thomsom, N. Psaila, D. Reid, G. Torchia, A. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys. A: Mater. Sci. Process. 104, 301–309 (2011).
[CrossRef]

Tuennermann, A.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A: Mater. Sci. Process. 77, 109–111 (2003).
[CrossRef]

Tunnermann, A.

J. Burghoff, C. Grebing, S. Nolte, and A. Tunnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89, 081108 (2006).
[CrossRef]

Tzortzakis, S.

G. Méchain, A. Couairon, Y.-B. André, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B: Lasers Opt. 79, 379–382 (2004).
[CrossRef]

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87, 213902 (2001).
[CrossRef] [PubMed]

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).

Valle, G.

Valle, G. D.

G. D. Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11, 013001 (2009).
[CrossRef]

Vázquez de Aldana, J.

A. Benayas, W. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. Thomsom, N. Psaila, D. Reid, G. Torchia, A. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys. A: Mater. Sci. Process. 104, 301–309 (2011).
[CrossRef]

Vigreux-Bercovici, C.

von der Linde, D.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett. 97, 237403 (2006).
[CrossRef]

Watanabe, W.

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A: Mater. Sci. Process. 77, 109–111 (2003).
[CrossRef]

Withford, M. J.

Wuttig, M.

M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nature Mater. 6, 824–832 (2007).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch and N. Bloembergen, “Avalanche ionization and the limiting diameter of filaments induced by light pulses in transparent media,” Phys. Rev. Lett. 29, 907–910 (1972).
[CrossRef]

Yamada, K.

Yamada, N.

T. Matsunaga, J. Akola, S. Kohara, T. Honma, K. Kobayashi, E. Ikenaga, R. O. Jones, N. Yamada, M. Takata, and R. Kojima, “From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials,” Nature Mater. 10, 129–134 (2011).
[CrossRef]

M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nature Mater. 6, 824–832 (2007).
[CrossRef]

Yang, W.

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass.” Appl. Phys. Lett. 90, 131113 (2007).
[CrossRef]

Yin, A.

Yoshino, F.

Zakery, A.

A. Zakery and S. R. Elliott, Optical Nonlinearities in Chalcogenide Glasses and Their Applications, Springer Series in Optical Sciences (Springer, 2007).

Zavelani-Rossi, M.

Zhang, H.

Zhang, X.

P. Masselin, D. L. Coq, L. Calvez, E. Petracovschi, E. Lépine, E. Bychkov, and X. Zhang, “CsCl effect on the optical properties of the 80 GeS2 - 20 Ga2S3 base glass,” submitted to Appl. Phys. A: Mater. Sci. Process.

Zhou, P.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett. 97, 237403 (2006).
[CrossRef]

Zhou, Z.

Appl. Phys. A: Mater. Sci. Process. (2)

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A: Mater. Sci. Process. 77, 109–111 (2003).
[CrossRef]

A. Benayas, W. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. Thomsom, N. Psaila, D. Reid, G. Torchia, A. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys. A: Mater. Sci. Process. 104, 301–309 (2011).
[CrossRef]

Appl. Phys. B: Lasers Opt. (2)

G. Méchain, A. Couairon, Y.-B. André, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B: Lasers Opt. 79, 379–382 (2004).
[CrossRef]

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B: Lasers Opt. 100, 131–135 (2010).
[CrossRef]

Appl. Phys. Lett. (3)

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass.” Appl. Phys. Lett. 90, 131113 (2007).
[CrossRef]

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007).
[CrossRef]

J. Burghoff, C. Grebing, S. Nolte, and A. Tunnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89, 081108 (2006).
[CrossRef]

C. R. Chim. (1)

D. L. Coq, K. Michel, J. Keirsse, C. Boussard-Plédel, G. Fonteneau, B. Bureau, J.-M. L. Quéré, O. Sire, and J. Lucas, “Infrared glass fibers for in-situ sensing, chemical and biochemical reactions,” C. R. Chim. 5, 907–913 (2002).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

G. D. Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11, 013001 (2009).
[CrossRef]

J. Phys. Chem. Solids (1)

D. Gibbons and W. Spear, “Electron hopping transport and trapping phenomena in orthorhombic sulphur crystals,” J. Phys. Chem. Solids 27, 1917–1925 (1966).
[CrossRef]

MRS Bull. (1)

S. Hudgens and B. Johnson, “Overview of phase-change chalcogenide nonvolatile memory technology,” MRS Bull. 29, 829–832 (2004).
[CrossRef]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[CrossRef]

Nature Mater. (2)

T. Matsunaga, J. Akola, S. Kohara, T. Honma, K. Kobayashi, E. Ikenaga, R. O. Jones, N. Yamada, M. Takata, and R. Kojima, “From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials,” Nature Mater. 10, 129–134 (2011).
[CrossRef]

M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nature Mater. 6, 824–832 (2007).
[CrossRef]

Opt. Commun. (1)

H. Schroeder and S. L. Chin, “Visualization of the evolution of multiple filaments in methanol,” Opt. Commun. 234, 399–406 (2004).
[CrossRef]

Opt. Express (8)

R. Osellame, N. Chiodo, V. Maselli, A. Yin, M. Zavelani-Rossi, G. Cerullo, P. Laporta, L. Aiello, S. D. Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Optical properties of waveguides written by a 26 MHz stretched cavity ti:sapphire femtosecond oscillator,” Opt. Express 13, 612–620 (2005).
[CrossRef] [PubMed]

E. Ampem-Lassen, S. T. Huntington, N. M. Dragomir, K. A. Nugent, and A. Roberts, “Refractive index profiling of axially symmetric optical fibers: a new technique,” Opt. Express 13, 3277–3282 (2005).
[CrossRef] [PubMed]

S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13, 4708–4716 (2005).
[CrossRef] [PubMed]

S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, “Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses,” Opt. Express 14, 291–297 (2006).
[CrossRef] [PubMed]

R. R. Gattass, L. R. Cerami, and E. Mazur, “Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates,” Opt. Express 14, 5279–5284 (2006).
[CrossRef] [PubMed]

L. Labadie, C. Vigreux-Bercovici, A. Pradel, P. Kern, B. Arezki, and J.-E. Broquin, “M-lines characterization of selenide and telluride thick films for mid-infrared interferometry,” Opt. Express 14, 8459–8469 (2006).
[CrossRef] [PubMed]

M. Ams, G. D. Marshall, and M. J. Withford, “Study of the influence of femtosecond laser polarisation on direct writing of waveguides,” Opt. Express 14, 13158–13163 (2006).
[CrossRef] [PubMed]

Y. Li, K. Yamada, T. Ishizuka, W. Watanabe, K. Itoh, and Z. Zhou, “Single femtosecond pulse holography using polymethyl methacrylate,” Opt. Express 10, 1173–1178 (2002).
[PubMed]

Opt. Lett. (3)

Opt. Mater. (4)

I. Blonskyi, V. Kadan, O. Shpotyuk, M. Iovu, and I. Pavlov, “Femtosecond filamentation in chalcogenide glasses limited by two-photon absorption,” Opt. Mater. 32, 1553–1557 (2010).
[CrossRef]

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. V. Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[CrossRef]

L. Petit, N. Carlie, T. Anderson, M. Couzi, J. Choi, M. Richardson, and K. Richardson, “Effect of ir femtosecond laser irradiation on the structure of new sulfo-selenide glasses,” Opt. Mater. 29, 1075–1083 (2007).
[CrossRef]

P. Masselin, D. L. Coq, and E. Bychkov, “Refractive index variations induced by femtosecond laser direct writing in the bulk of As2S3 glass at high repetition rate,” Opt. Mater. 33, 872–876 (2011).
[CrossRef]

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[CrossRef]

Phys. Rev. B (1)

G. Pfister and H. Scher, “Time-dependent electrical transport in amorphous solids: As2Se3,” Phys. Rev. B 15, 2062–2083 (1977).
[CrossRef]

Phys. Rev. Lett. (5)

G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Organizing multiple femtosecond filaments in air,” Phys. Rev. Lett. 93, 035003 (2004).
[CrossRef] [PubMed]

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett. 97, 237403 (2006).
[CrossRef]

E. Yablonovitch and N. Bloembergen, “Avalanche ionization and the limiting diameter of filaments induced by light pulses in transparent media,” Phys. Rev. Lett. 29, 907–910 (1972).
[CrossRef]

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87, 213902 (2001).
[CrossRef] [PubMed]

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).

Prog. Quantum Electron. (1)

J. Marburger, “Self-focusing: theory,” Prog. Quantum Electron. 4, 35–110 (1975).
[CrossRef]

Rev. Sci. Instrum. (1)

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
[CrossRef] [PubMed]

Other (6)

N. F. Mott and E. A. Davis, Electronic Processes in Non-crystalline Materials, 2nd ed. (Clarendon Press, 1979).

P. Masselin, D. L. Coq, L. Calvez, E. Petracovschi, E. Lépine, E. Bychkov, and X. Zhang, “CsCl effect on the optical properties of the 80 GeS2 - 20 Ga2S3 base glass,” submitted to Appl. Phys. A: Mater. Sci. Process.

P. Masselin, D. L. Coq, E. Bychkov, E. Lepine, C. Lin, and L. Calvez, “Laser filamentation in chalcogenide glass,” (SPIE, 2010), Vol. 7993, p. 79931B.

S. L. Chin, Femtosecond Laser Filamentation (Springer, New York, 2010).
[CrossRef]

A. Zakery and S. R. Elliott, Optical Nonlinearities in Chalcogenide Glasses and Their Applications, Springer Series in Optical Sciences (Springer, 2007).

V. F. Kokorina, Glasses for Infrared Optics (CRC Press, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup used for the free carrier lifetime measurement. CH : chopper ; λ/2 and λ/4: half and quarter waveplates, resp ; DM : dichroic mirror ; S : sample ; A : aperture ; PD : photodiode.

Fig. 6
Fig. 6

Example of the morphology of the Δn channel and dependence of the full width at half maximum and the magnitude with the intensity of the incoming pulse for different repetition rate.

Fig. 2
Fig. 2

Transmission of CW beam through the aperture after femtosecond excitation. The black curve represents the signal resulting from a single pulse excitation and the red one from a pulse train separated by 1.5 ms.

Fig. 3
Fig. 3

Effect of repetition rate on charge accumulation and free carriers lifetime measurement.

Fig. 4
Fig. 4

Polarization dependence of the observed signal. This dependence is obtained by rotating the half wave plate in the femtosecond beam path.

Fig. 5
Fig. 5

Δn examples obtained in static exposure and by translation of the sample through the focal point.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ n P = ρ ( t ) 2 ρ c
P c = 3.77 λ 2 8 π n n 2

Metrics