Abstract

We present nanoscale photonic crystal sensor arrays (NPhCSAs) on monolithic substrates. The NPhCSAs can be used as an opto-fluidic architecture for performing highly parallel, label-free detection of biochemical interactions in aqueous environments. The architecture consists of arrays of lattice-shifted resonant cavities side-coupled to a single PhC waveguide. Each resonant cavity has slightly different cavity spacing and is shown to independently shift its resonant peak (a single and narrow drop) in response to the changes in refractive index. The extinction ratio of well-defined single drop exceeds 20 dB. With three-dimensional finite-difference time-domain (3D-FDTD) technique, we demonstrate that the refractive index sensitivity of 115.60 nm/RIU (refractive index unit) is achieved and a refractive index detection limit is approximately of 8.65×10−5 for this device. In addition, the sensitivity can be adjusted from 84.39 nm/RIU to 161.25 nm/RIU by changing the number of functionalized holes.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Erickson, S. Mandal, A. H. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid Nanofluidics 4(1-2), 33–52 (2008).
    [CrossRef] [PubMed]
  2. S. C. Buswell, V. A. Wright, J. M. Buriak, V. Van, and S. Evoy, “Specific detection of proteins using photonic crystal waveguides,” Opt. Express 16(20), 15949–15957 (2008).
    [CrossRef] [PubMed]
  3. T. W. Lu and P. T. Lee, “Ultra-high sensitivity optical stress sensor based on double-layered photonic crystal microcavity,” Opt. Express 17(3), 1518–1526 (2009).
    [CrossRef] [PubMed]
  4. A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes—Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
    [CrossRef]
  5. A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett. 31(12), 1896–1898 (2006).
    [CrossRef] [PubMed]
  6. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
    [CrossRef]
  7. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
    [CrossRef] [PubMed]
  8. R. Karlsson, “SPR for molecular interaction analysis: a review of emerging application areas,” J. Mol. Recognit. 17(3), 151–161 (2004).
    [CrossRef] [PubMed]
  9. B. J. Luff, J. S. Wilkinson, J. Piehler, U. Hollenbach, J. Ingenhoff, and N. Fabricius, “Integrated optical Mach-Zehnder biosensor,” J. Lightwave Technol. 16(4), 583–592 (1998).
    [CrossRef]
  10. A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
    [CrossRef] [PubMed]
  11. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
    [CrossRef]
  12. S. H. Kwon, T. Sünner, M. Kamp, and A. Forchel, “Optimization of photonic crystal cavity for chemical sensing,” Opt. Express 16(16), 11709–11717 (2008).
    [CrossRef] [PubMed]
  13. J. Dahdah, N. Courjal, and F. I. Baida, “Analysis of a photonic crystal cavity based on absorbent layer for sensing applications,” J. Opt. Soc. Am. B 27(2), 305–310 (2010).
    [CrossRef]
  14. S. Mandal and D. Erickson, “Nanoscale optofluidic sensor arrays,” Opt. Express 16(3), 1623–1631 (2008).
    [CrossRef] [PubMed]
  15. G. A. Cárdenas-Sevilla, V. Finazzi, J. Villatoro, and V. Pruneri, “Photonic crystal fiber sensor array based on modes overlapping,” Opt. Express 19(8), 7596–7602 (2011).
    [CrossRef] [PubMed]
  16. D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
    [CrossRef] [PubMed]
  17. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
    [CrossRef]
  18. Z. Zhang and M. Qiu, “Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs,” Opt. Express 12(17), 3988–3995 (2004).
    [CrossRef] [PubMed]
  19. T. Xu, N. Zhu, M. Y. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, “Pillar-array based optical sensor,” Opt. Express 18(6), 5420–5425 (2010).
    [CrossRef] [PubMed]
  20. J. Joannopoulos, R. Meade, and J. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995).
  21. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
    [CrossRef] [PubMed]
  22. R. Shankar, R. Leijssen, I. Bulu, and M. Lončar, “Mid-infrared photonic crystal cavities in silicon,” Opt. Express 19(6), 5579–5586 (2011).
    [CrossRef] [PubMed]
  23. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
    [CrossRef]
  24. Y. Li, J. Zheng, J. Gao, J. Shu, M. S. Aras, and C. W. Wong, “Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities,” Opt. Express 18(23), 23844–23856 (2010).
    [CrossRef] [PubMed]
  25. E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y. G. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18(15), 15859–15869 (2010).
    [CrossRef] [PubMed]
  26. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
    [CrossRef]
  27. M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73(9), 096501 (2010).
    [CrossRef]

2011

2010

2009

2008

2007

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[CrossRef] [PubMed]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[CrossRef]

2006

D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett. 31(12), 1896–1898 (2006).
[CrossRef] [PubMed]

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes—Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
[CrossRef]

2004

R. Karlsson, “SPR for molecular interaction analysis: a review of emerging application areas,” J. Mol. Recognit. 17(3), 151–161 (2004).
[CrossRef] [PubMed]

Z. Zhang and M. Qiu, “Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs,” Opt. Express 12(17), 3988–3995 (2004).
[CrossRef] [PubMed]

2003

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

2002

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[CrossRef]

1998

1997

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Aitchison, J. S.

Akahane, Y.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Aras, M. S.

Armani, A. M.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett. 31(12), 1896–1898 (2006).
[CrossRef] [PubMed]

Arnold, S.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[CrossRef]

Asano, T.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Baida, F. I.

Beumer, T. A. M.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[CrossRef] [PubMed]

Braun, D.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[CrossRef]

Bulu, I.

Buriak, J. M.

Buswell, S. C.

Cárdenas-Sevilla, G. A.

Cordovez, B.

D. Erickson, S. Mandal, A. H. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid Nanofluidics 4(1-2), 33–52 (2008).
[CrossRef] [PubMed]

Courjal, N.

Dahdah, J.

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Erickson, D.

S. Mandal and D. Erickson, “Nanoscale optofluidic sensor arrays,” Opt. Express 16(3), 1623–1631 (2008).
[CrossRef] [PubMed]

D. Erickson, S. Mandal, A. H. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid Nanofluidics 4(1-2), 33–52 (2008).
[CrossRef] [PubMed]

Evoy, S.

Fabricius, N.

Fan, S.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Ferrera, J.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Finazzi, V.

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Forchel, A.

Foresi, J. S.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Gao, J.

Greve, J.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[CrossRef] [PubMed]

Heideman, R. G.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[CrossRef] [PubMed]

Hollenbach, U.

Ilchenko, V. S.

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes—Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
[CrossRef]

Ingenhoff, J.

Ippen, E. P.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Joannopoulos, J. D.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Kamp, M.

Kanger, J. S.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[CrossRef] [PubMed]

Karlsson, R.

R. Karlsson, “SPR for molecular interaction analysis: a review of emerging application areas,” J. Mol. Recognit. 17(3), 151–161 (2004).
[CrossRef] [PubMed]

Kawasaki, K.

Khoshsima, M.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[CrossRef]

Kimerling, L. C.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Kuramochi, E.

E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y. G. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18(15), 15859–15869 (2010).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[CrossRef]

Kwon, S. H.

Lambeck, P. V.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[CrossRef] [PubMed]

Lee, P. T.

Leijssen, R.

Li, Y.

Libchaber, A.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[CrossRef]

Loncar, M.

Lu, T. W.

Luff, B. J.

Mandal, S.

D. Erickson, S. Mandal, A. H. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid Nanofluidics 4(1-2), 33–52 (2008).
[CrossRef] [PubMed]

S. Mandal and D. Erickson, “Nanoscale optofluidic sensor arrays,” Opt. Express 16(3), 1623–1631 (2008).
[CrossRef] [PubMed]

Matsko, A. B.

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes—Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
[CrossRef]

Matsuo, S.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[CrossRef]

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Noda, S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Notomi, M.

E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y. G. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18(15), 15859–15869 (2010).
[CrossRef] [PubMed]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[CrossRef]

M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73(9), 096501 (2010).
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[CrossRef]

Nozaki, K.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[CrossRef]

Piehler, J.

Pruneri, V.

Psaltis, D.

D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Qiu, M.

Quake, S. R.

D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Roh, Y. G.

Ruda, H. E.

Sato, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[CrossRef]

Shankar, R.

Shinya, A.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[CrossRef]

Shu, J.

Smith, H. I.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Song, B. S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Steinmeyer, G.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Subramaniam, V.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[CrossRef] [PubMed]

Sünner, T.

Tanabe, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[CrossRef]

E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y. G. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18(15), 15859–15869 (2010).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[CrossRef]

Taniyama, H.

E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y. G. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18(15), 15859–15869 (2010).
[CrossRef] [PubMed]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[CrossRef]

Teraoka, I.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[CrossRef]

Thoen, E. R.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Vahala, K. J.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett. 31(12), 1896–1898 (2006).
[CrossRef] [PubMed]

Van, V.

van Hövell, S. W.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[CrossRef] [PubMed]

Villatoro, J.

Villeneuve, P. R.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Vollmer, F.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[CrossRef]

Wijn, R. R.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[CrossRef] [PubMed]

Wilkinson, J. S.

Wink, T.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[CrossRef] [PubMed]

Wong, C. W.

Wosinski, L.

Wright, V. A.

Xu, M. Y.

Xu, T.

Yang, A. H.

D. Erickson, S. Mandal, A. H. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid Nanofluidics 4(1-2), 33–52 (2008).
[CrossRef] [PubMed]

Yang, C. H.

D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Ymeti, A.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[CrossRef] [PubMed]

Zhang, Z.

Zheng, J.

Zhu, N.

Appl. Phys. Lett.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes—Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
[CrossRef]

J. Lightwave Technol.

J. Mol. Recognit.

R. Karlsson, “SPR for molecular interaction analysis: a review of emerging application areas,” J. Mol. Recognit. 17(3), 151–161 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

Microfluid Nanofluidics

D. Erickson, S. Mandal, A. H. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid Nanofluidics 4(1-2), 33–52 (2008).
[CrossRef] [PubMed]

Nano Lett.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[CrossRef] [PubMed]

Nat. Photonics

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[CrossRef]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[CrossRef]

Nature

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Opt. Express

Z. Zhang and M. Qiu, “Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs,” Opt. Express 12(17), 3988–3995 (2004).
[CrossRef] [PubMed]

T. Xu, N. Zhu, M. Y. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, “Pillar-array based optical sensor,” Opt. Express 18(6), 5420–5425 (2010).
[CrossRef] [PubMed]

E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y. G. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18(15), 15859–15869 (2010).
[CrossRef] [PubMed]

Y. Li, J. Zheng, J. Gao, J. Shu, M. S. Aras, and C. W. Wong, “Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities,” Opt. Express 18(23), 23844–23856 (2010).
[CrossRef] [PubMed]

R. Shankar, R. Leijssen, I. Bulu, and M. Lončar, “Mid-infrared photonic crystal cavities in silicon,” Opt. Express 19(6), 5579–5586 (2011).
[CrossRef] [PubMed]

G. A. Cárdenas-Sevilla, V. Finazzi, J. Villatoro, and V. Pruneri, “Photonic crystal fiber sensor array based on modes overlapping,” Opt. Express 19(8), 7596–7602 (2011).
[CrossRef] [PubMed]

S. Mandal and D. Erickson, “Nanoscale optofluidic sensor arrays,” Opt. Express 16(3), 1623–1631 (2008).
[CrossRef] [PubMed]

S. H. Kwon, T. Sünner, M. Kamp, and A. Forchel, “Optimization of photonic crystal cavity for chemical sensing,” Opt. Express 16(16), 11709–11717 (2008).
[CrossRef] [PubMed]

S. C. Buswell, V. A. Wright, J. M. Buriak, V. Van, and S. Evoy, “Specific detection of proteins using photonic crystal waveguides,” Opt. Express 16(20), 15949–15957 (2008).
[CrossRef] [PubMed]

T. W. Lu and P. T. Lee, “Ultra-high sensitivity optical stress sensor based on double-layered photonic crystal microcavity,” Opt. Express 17(3), 1518–1526 (2009).
[CrossRef] [PubMed]

Opt. Lett.

Rep. Prog. Phys.

M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73(9), 096501 (2010).
[CrossRef]

Science

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Other

J. Joannopoulos, R. Meade, and J. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

3D illustration of the W1 PhC slab waveguide, where a = 423nm, r = 0.32a, T = 0.55a.

Fig. 2
Fig. 2

Steady state electric field profile for the fundamental TE mode propagating through PhCW in (a) the x-y plane; (b) the y-z plane.

Fig. 3
Fig. 3

(Color online) (a) Photonic band of the W1 PhC for the TE-like polarization; Insert is the unit cell; (b) The red line is the transmission of the W1 PhC slab waveguide; the blue line is the transmission of the perfect PhC without any defect.

Fig. 4
Fig. 4

(Color online) The 3D illustration of a sensing element in our sensor array design. It consists of a 2D photonic crystal micro-cavity which is evanescently coupled to a W1 PhCW, where a = 423nm, r = 0.32a, T = 0.55a.

Fig. 5
Fig. 5

(Color online) (a)Transmission of TE-like polarized lightwave in W1 PhC slab microcavity with the different shifts ranging from sx = 0 to sx = 0.35a; (b) Results of FDTD calculations showing H0 cavity resonance frequencies and quality factors as a function of sx, the lattice shift.

Fig. 6
Fig. 6

(Color online) Results of FDTD calculations showing H0 cavity resonance frequencies and quality factors as a function of (a) the air holes rx; (b) the air holes ry, based on the lattice shift sx = 0.2a.

Fig. 7
Fig. 7

(a) Steady state electric field distribution for the resonant wavelength in the x-y plane; (b) 3D-FDTD simulation showing the output transmission spectra for a device consisting of a waveguide with a single coupled side H0-cavity adjacent to it; (c) The amplified image of the red dotted line area in (b).

Fig. 8
Fig. 8

(Color online) (a) 3D-FDTD simulation showing the mass sensitivity of the device plotted as a function of the number of functionalized holes (orange holes of the insert). The purple circles indicate the sensitivity values calculated from simulations. The red curve shows an exponential fit using an analytical model for the device sensitivity which is described below; (b) The schematic illustration of number of functionalized holes N = 2,4,6,15,28.

Fig. 9
Fig. 9

(Color online) Plot illustrating the dependence of the shift in resonant wavelength of a resonator on the number of functionalized holes. The green circles indicate the data obtained from 3D-FDTD simulations. The red curve is a best-fit curve of the form a e bN +c e dN ,where a, b, c and d are arbitrary constants. The values of a, b, c and d used here are 38.24, 0.0121, −38.13 and −0.5796, respectively.

Fig. 10
Fig. 10

(Color online) Structure of the simulated PhC sensor arrays used in the Meep. It is made up with five slightly different H0-cavities side-coupled to a W1 PhC waveguide. Under the red shaded area there are six functionalized air holes (N = 6).

Fig. 11
Fig. 11

(a) Normalized transmission spectra observed when five sensors are set in cascade side-coupled to W1 PhC waveguide and one of them is subjected to the changes in refractive index. (b) Electric field distribution for a PhC sensor arrays in the five resonant cavity sensors of the series.

Fig. 12
Fig. 12

(Color online) (a) Simulation of output transmission spectra of a PhC sensor arrays with five resonant cavities of different sizes under the two different conditions; (b) Shift in the resonant wavelength as a function of the change in refractive index of the functionalized holes.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δλ N = a e bN +c e dN N
S= Δλ / Δn

Metrics