Abstract

We report a simple technique that allows obtaining mid-infrared absorption spectra with nanoscale spatial resolution under low-power illumination from tunable quantum cascade lasers. Light absorption is detected by measuring associated sample thermal expansion with an atomic force microscope. To detect minute thermal expansion we tune the repetition frequency of laser pulses in resonance with the mechanical frequency of the atomic force microscope cantilever. Spatial resolution of better than 50 nm is experimentally demonstrated.

© 2011 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. H. Stuart, Infrared Spectroscopy: Fundamentals and Applications (Wiley, New York, 2004).
  2. I. W. Levin and R. Bhargava, “Fourier transform infrared vibrational spectroscopic imaging: integrating microscopy and molecular recognition,” Annu. Rev. Phys. Chem. 56(1), 429–474 (2005), and references therein.
    [CrossRef] [PubMed]
  3. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1987).
  4. M. Troccoli, L. Diehl, D. P. Bour, S. W. Corzine, N. Yu, C. Y. Wang, M. A. Belkin, G. Hofler, R. Lewicki, G. Wysocki, F. K. Tittel, and F. Capasso, “High performance quantum cascade lasers grown by metal-organic vapor phase epitaxy and their applications to trace gas sensing,” J. Lightwave Technol. 26(21), 3534–3555 (2008).
    [CrossRef]
  5. B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399(6732), 134–137 (1999).
    [CrossRef]
  6. F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10(5), 352–356 (2011).
    [CrossRef] [PubMed]
  7. T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microsc. 210(3), 311–314 (2003).
    [CrossRef] [PubMed]
  8. M. B. Raschke, L. Molina, T. Elsaesser, D. H. Kim, W. Knoll, and K. Hinrichs, “Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution,” ChemPhysChem 6(10), 2197–2203 (2005).
    [CrossRef] [PubMed]
  9. A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
    [CrossRef] [PubMed]
  10. A. Dazzi, R. Prazeres, F. Glotin, and J. M. Ortega, “Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor,” Opt. Lett. 30(18), 2388–2390 (2005).
    [CrossRef] [PubMed]
  11. A. Dazzi, R. Prazeres, F. Glotin, J. M. Ortega, M. Al-Sawaftah, and M. de Frutos, “Chemical mapping of the distribution of viruses into infected bacteria with a photothermal method,” Ultramicroscopy 108(7), 635–641 (2008).
    [CrossRef] [PubMed]
  12. K. Kjoller, J. R. Felts, D. Cook, C. B. Prater, and W. P. King, “High-sensitivity nanometer-scale infrared spectroscopy using a contact mode microcantilever with an internal resonator paddle,” Nanotechnology 21(18), 185705 (2010).
    [CrossRef] [PubMed]
  13. C. Prater, K. Kjoller, and R. Shetty, “Nanoscale infrared spectroscopy,” Mater. Today 13(11), 56–60 (2010).
    [CrossRef]
  14. We obtain sample temperature change in the range 5–50 K using the experimental parameters reported in Refs. [10,12,13] and the simulation results reported in Ref. [11].
  15. A. A. Kosterev, Y. A. Bakhirkin, R. F. Curl, and F. K. Tittel, “Quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 27(21), 1902–1904 (2002).
    [CrossRef] [PubMed]
  16. H. Hida, M. Shikida, K. Fukuzawa, S. Murakami, K. Sato, K. Asaumi, Y. Iriye, and K. Sato, “Fabrication of a quartz tuning-fork probe with a sharp tip for AFM systems,” Sens. Actuators A Phys. 148(1), 311–318 (2008).
    [CrossRef]
  17. G. Y. Chen, R. J. Warmack, T. Thundat, D. P. Allison, and A. Huang, “Resonance response of scanning force microscopy cantilevers,” Rev. Sci. Instrum. 65(8), 2532–2537 (1994).
    [CrossRef]
  18. A. Dazzi, F. Glotin, and R. Carminati, “Theory of infrared nanospectroscopy by photothermal induced resonance,” J. Appl. Phys. 107(12), 124519 (2010).
    [CrossRef]
  19. J. R. Taylor, Classical Mechanics (University Science Books, Herndon, VA, 2005).
  20. U. Rabe, K. Janser, and W. Arnold, “Vibrations of free and surface‐coupled atomic force microscope cantilevers: theory and experiment,” Rev. Sci. Instrum. 67(9), 3281–3293 (1996).
    [CrossRef]
  21. N. Bloembergen, “Pulsed laser interactions with condensed matter,” Mat. Res. Soc. Symp. Proc. 51, 3 (1985).
    [CrossRef]
  22. J. E. Mark, ed., Physical Properties of Polymers Handbook, 2nd ed. (Springer, New York, 2007).
  23. T. Sikanen, T. Zwinger, S. Tuomikoski, S. Franssila, R. Lehtiniemi, C.-M. Fager, T. Kotiaho, and A. Pursula, “Temperature modeling and measurement of an electrokinetic separation chip,” Microfluidics Nanofluidics 5(4), 479–491 (2008).
    [CrossRef]
  24. R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers,” Electron. Lett. 37(3), 191–193 (2001).
    [CrossRef]
  25. C. Y. Wang, L. Kuznetsova, V. M. Gkortsas, L. Diehl, F. X. Kärtner, M. A. Belkin, A. Belyanin, X. Li, D. Ham, H. Schneider, P. Grant, C. Y. Song, S. Haffouz, Z. R. Wasilewski, H. C. Liu, and F. Capasso, “Mode-locked pulses from mid-infrared quantum cascade lasers,” Opt. Express 17(15), 12929–12943 (2009).
    [CrossRef] [PubMed]
  26. A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
    [CrossRef]
  27. A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Tunable terahertz quantum cascade lasers with external gratings,” Opt. Lett. 35(7), 910–912 (2010).
    [CrossRef] [PubMed]

2011

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10(5), 352–356 (2011).
[CrossRef] [PubMed]

2010

K. Kjoller, J. R. Felts, D. Cook, C. B. Prater, and W. P. King, “High-sensitivity nanometer-scale infrared spectroscopy using a contact mode microcantilever with an internal resonator paddle,” Nanotechnology 21(18), 185705 (2010).
[CrossRef] [PubMed]

C. Prater, K. Kjoller, and R. Shetty, “Nanoscale infrared spectroscopy,” Mater. Today 13(11), 56–60 (2010).
[CrossRef]

A. Dazzi, F. Glotin, and R. Carminati, “Theory of infrared nanospectroscopy by photothermal induced resonance,” J. Appl. Phys. 107(12), 124519 (2010).
[CrossRef]

A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Tunable terahertz quantum cascade lasers with external gratings,” Opt. Lett. 35(7), 910–912 (2010).
[CrossRef] [PubMed]

2009

C. Y. Wang, L. Kuznetsova, V. M. Gkortsas, L. Diehl, F. X. Kärtner, M. A. Belkin, A. Belyanin, X. Li, D. Ham, H. Schneider, P. Grant, C. Y. Song, S. Haffouz, Z. R. Wasilewski, H. C. Liu, and F. Capasso, “Mode-locked pulses from mid-infrared quantum cascade lasers,” Opt. Express 17(15), 12929–12943 (2009).
[CrossRef] [PubMed]

A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[CrossRef] [PubMed]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[CrossRef]

2008

T. Sikanen, T. Zwinger, S. Tuomikoski, S. Franssila, R. Lehtiniemi, C.-M. Fager, T. Kotiaho, and A. Pursula, “Temperature modeling and measurement of an electrokinetic separation chip,” Microfluidics Nanofluidics 5(4), 479–491 (2008).
[CrossRef]

A. Dazzi, R. Prazeres, F. Glotin, J. M. Ortega, M. Al-Sawaftah, and M. de Frutos, “Chemical mapping of the distribution of viruses into infected bacteria with a photothermal method,” Ultramicroscopy 108(7), 635–641 (2008).
[CrossRef] [PubMed]

H. Hida, M. Shikida, K. Fukuzawa, S. Murakami, K. Sato, K. Asaumi, Y. Iriye, and K. Sato, “Fabrication of a quartz tuning-fork probe with a sharp tip for AFM systems,” Sens. Actuators A Phys. 148(1), 311–318 (2008).
[CrossRef]

M. Troccoli, L. Diehl, D. P. Bour, S. W. Corzine, N. Yu, C. Y. Wang, M. A. Belkin, G. Hofler, R. Lewicki, G. Wysocki, F. K. Tittel, and F. Capasso, “High performance quantum cascade lasers grown by metal-organic vapor phase epitaxy and their applications to trace gas sensing,” J. Lightwave Technol. 26(21), 3534–3555 (2008).
[CrossRef]

2005

I. W. Levin and R. Bhargava, “Fourier transform infrared vibrational spectroscopic imaging: integrating microscopy and molecular recognition,” Annu. Rev. Phys. Chem. 56(1), 429–474 (2005), and references therein.
[CrossRef] [PubMed]

A. Dazzi, R. Prazeres, F. Glotin, and J. M. Ortega, “Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor,” Opt. Lett. 30(18), 2388–2390 (2005).
[CrossRef] [PubMed]

M. B. Raschke, L. Molina, T. Elsaesser, D. H. Kim, W. Knoll, and K. Hinrichs, “Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution,” ChemPhysChem 6(10), 2197–2203 (2005).
[CrossRef] [PubMed]

2003

T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microsc. 210(3), 311–314 (2003).
[CrossRef] [PubMed]

2002

2001

R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers,” Electron. Lett. 37(3), 191–193 (2001).
[CrossRef]

1999

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399(6732), 134–137 (1999).
[CrossRef]

1996

U. Rabe, K. Janser, and W. Arnold, “Vibrations of free and surface‐coupled atomic force microscope cantilevers: theory and experiment,” Rev. Sci. Instrum. 67(9), 3281–3293 (1996).
[CrossRef]

1994

G. Y. Chen, R. J. Warmack, T. Thundat, D. P. Allison, and A. Huang, “Resonance response of scanning force microscopy cantilevers,” Rev. Sci. Instrum. 65(8), 2532–2537 (1994).
[CrossRef]

1985

N. Bloembergen, “Pulsed laser interactions with condensed matter,” Mat. Res. Soc. Symp. Proc. 51, 3 (1985).
[CrossRef]

Allison, D. P.

G. Y. Chen, R. J. Warmack, T. Thundat, D. P. Allison, and A. Huang, “Resonance response of scanning force microscopy cantilevers,” Rev. Sci. Instrum. 65(8), 2532–2537 (1994).
[CrossRef]

Al-Sawaftah, M.

A. Dazzi, R. Prazeres, F. Glotin, J. M. Ortega, M. Al-Sawaftah, and M. de Frutos, “Chemical mapping of the distribution of viruses into infected bacteria with a photothermal method,” Ultramicroscopy 108(7), 635–641 (2008).
[CrossRef] [PubMed]

Arnold, W.

U. Rabe, K. Janser, and W. Arnold, “Vibrations of free and surface‐coupled atomic force microscope cantilevers: theory and experiment,” Rev. Sci. Instrum. 67(9), 3281–3293 (1996).
[CrossRef]

Asaumi, K.

H. Hida, M. Shikida, K. Fukuzawa, S. Murakami, K. Sato, K. Asaumi, Y. Iriye, and K. Sato, “Fabrication of a quartz tuning-fork probe with a sharp tip for AFM systems,” Sens. Actuators A Phys. 148(1), 311–318 (2008).
[CrossRef]

Bakhirkin, Y. A.

Beck, M.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[CrossRef]

Belkin, M. A.

Belyanin, A.

Bethea, C. G.

R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers,” Electron. Lett. 37(3), 191–193 (2001).
[CrossRef]

Bhargava, R.

I. W. Levin and R. Bhargava, “Fourier transform infrared vibrational spectroscopic imaging: integrating microscopy and molecular recognition,” Annu. Rev. Phys. Chem. 56(1), 429–474 (2005), and references therein.
[CrossRef] [PubMed]

Bloembergen, N.

N. Bloembergen, “Pulsed laser interactions with condensed matter,” Mat. Res. Soc. Symp. Proc. 51, 3 (1985).
[CrossRef]

Bonetti, Y.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[CrossRef]

Bour, D. P.

Capasso, F.

Carminati, R.

A. Dazzi, F. Glotin, and R. Carminati, “Theory of infrared nanospectroscopy by photothermal induced resonance,” J. Appl. Phys. 107(12), 124519 (2010).
[CrossRef]

Chen, G. Y.

G. Y. Chen, R. J. Warmack, T. Thundat, D. P. Allison, and A. Huang, “Resonance response of scanning force microscopy cantilevers,” Rev. Sci. Instrum. 65(8), 2532–2537 (1994).
[CrossRef]

Cho, A. Y.

R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers,” Electron. Lett. 37(3), 191–193 (2001).
[CrossRef]

Cook, D.

K. Kjoller, J. R. Felts, D. Cook, C. B. Prater, and W. P. King, “High-sensitivity nanometer-scale infrared spectroscopy using a contact mode microcantilever with an internal resonator paddle,” Nanotechnology 21(18), 185705 (2010).
[CrossRef] [PubMed]

Corzine, S. W.

Curl, R. F.

Curti, F. G.

R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers,” Electron. Lett. 37(3), 191–193 (2001).
[CrossRef]

Dazzi, A.

A. Dazzi, F. Glotin, and R. Carminati, “Theory of infrared nanospectroscopy by photothermal induced resonance,” J. Appl. Phys. 107(12), 124519 (2010).
[CrossRef]

A. Dazzi, R. Prazeres, F. Glotin, J. M. Ortega, M. Al-Sawaftah, and M. de Frutos, “Chemical mapping of the distribution of viruses into infected bacteria with a photothermal method,” Ultramicroscopy 108(7), 635–641 (2008).
[CrossRef] [PubMed]

A. Dazzi, R. Prazeres, F. Glotin, and J. M. Ortega, “Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor,” Opt. Lett. 30(18), 2388–2390 (2005).
[CrossRef] [PubMed]

de Frutos, M.

A. Dazzi, R. Prazeres, F. Glotin, J. M. Ortega, M. Al-Sawaftah, and M. de Frutos, “Chemical mapping of the distribution of viruses into infected bacteria with a photothermal method,” Ultramicroscopy 108(7), 635–641 (2008).
[CrossRef] [PubMed]

Diehl, L.

Elsaesser, T.

M. B. Raschke, L. Molina, T. Elsaesser, D. H. Kim, W. Knoll, and K. Hinrichs, “Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution,” ChemPhysChem 6(10), 2197–2203 (2005).
[CrossRef] [PubMed]

Fager, C.-M.

T. Sikanen, T. Zwinger, S. Tuomikoski, S. Franssila, R. Lehtiniemi, C.-M. Fager, T. Kotiaho, and A. Pursula, “Temperature modeling and measurement of an electrokinetic separation chip,” Microfluidics Nanofluidics 5(4), 479–491 (2008).
[CrossRef]

Faist, J.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[CrossRef]

Falciglia, J.

R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers,” Electron. Lett. 37(3), 191–193 (2001).
[CrossRef]

Felts, J. R.

K. Kjoller, J. R. Felts, D. Cook, C. B. Prater, and W. P. King, “High-sensitivity nanometer-scale infrared spectroscopy using a contact mode microcantilever with an internal resonator paddle,” Nanotechnology 21(18), 185705 (2010).
[CrossRef] [PubMed]

Fischer, M.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[CrossRef]

Franssila, S.

T. Sikanen, T. Zwinger, S. Tuomikoski, S. Franssila, R. Lehtiniemi, C.-M. Fager, T. Kotiaho, and A. Pursula, “Temperature modeling and measurement of an electrokinetic separation chip,” Microfluidics Nanofluidics 5(4), 479–491 (2008).
[CrossRef]

Fukuzawa, K.

H. Hida, M. Shikida, K. Fukuzawa, S. Murakami, K. Sato, K. Asaumi, Y. Iriye, and K. Sato, “Fabrication of a quartz tuning-fork probe with a sharp tip for AFM systems,” Sens. Actuators A Phys. 148(1), 311–318 (2008).
[CrossRef]

Gini, E.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[CrossRef]

Gkortsas, V. M.

Glotin, F.

A. Dazzi, F. Glotin, and R. Carminati, “Theory of infrared nanospectroscopy by photothermal induced resonance,” J. Appl. Phys. 107(12), 124519 (2010).
[CrossRef]

A. Dazzi, R. Prazeres, F. Glotin, J. M. Ortega, M. Al-Sawaftah, and M. de Frutos, “Chemical mapping of the distribution of viruses into infected bacteria with a photothermal method,” Ultramicroscopy 108(7), 635–641 (2008).
[CrossRef] [PubMed]

A. Dazzi, R. Prazeres, F. Glotin, and J. M. Ortega, “Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor,” Opt. Lett. 30(18), 2388–2390 (2005).
[CrossRef] [PubMed]

Gmachl, C.

R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers,” Electron. Lett. 37(3), 191–193 (2001).
[CrossRef]

Grant, P.

Haffouz, S.

Ham, D.

Hida, H.

H. Hida, M. Shikida, K. Fukuzawa, S. Murakami, K. Sato, K. Asaumi, Y. Iriye, and K. Sato, “Fabrication of a quartz tuning-fork probe with a sharp tip for AFM systems,” Sens. Actuators A Phys. 148(1), 311–318 (2008).
[CrossRef]

Hillenbrand, R.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10(5), 352–356 (2011).
[CrossRef] [PubMed]

A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[CrossRef] [PubMed]

T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microsc. 210(3), 311–314 (2003).
[CrossRef] [PubMed]

Hinrichs, K.

M. B. Raschke, L. Molina, T. Elsaesser, D. H. Kim, W. Knoll, and K. Hinrichs, “Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution,” ChemPhysChem 6(10), 2197–2203 (2005).
[CrossRef] [PubMed]

Hofler, G.

Hu, Q.

Huang, A.

G. Y. Chen, R. J. Warmack, T. Thundat, D. P. Allison, and A. Huang, “Resonance response of scanning force microscopy cantilevers,” Rev. Sci. Instrum. 65(8), 2532–2537 (1994).
[CrossRef]

Huber, A. J.

A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[CrossRef] [PubMed]

Hugi, A.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[CrossRef]

Hutchinson, A. L.

R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers,” Electron. Lett. 37(3), 191–193 (2001).
[CrossRef]

Huth, F.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10(5), 352–356 (2011).
[CrossRef] [PubMed]

Iriye, Y.

H. Hida, M. Shikida, K. Fukuzawa, S. Murakami, K. Sato, K. Asaumi, Y. Iriye, and K. Sato, “Fabrication of a quartz tuning-fork probe with a sharp tip for AFM systems,” Sens. Actuators A Phys. 148(1), 311–318 (2008).
[CrossRef]

Janser, K.

U. Rabe, K. Janser, and W. Arnold, “Vibrations of free and surface‐coupled atomic force microscope cantilevers: theory and experiment,” Rev. Sci. Instrum. 67(9), 3281–3293 (1996).
[CrossRef]

Kärtner, F. X.

Keilmann, F.

T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microsc. 210(3), 311–314 (2003).
[CrossRef] [PubMed]

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399(6732), 134–137 (1999).
[CrossRef]

Kim, D. H.

M. B. Raschke, L. Molina, T. Elsaesser, D. H. Kim, W. Knoll, and K. Hinrichs, “Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution,” ChemPhysChem 6(10), 2197–2203 (2005).
[CrossRef] [PubMed]

King, W. P.

K. Kjoller, J. R. Felts, D. Cook, C. B. Prater, and W. P. King, “High-sensitivity nanometer-scale infrared spectroscopy using a contact mode microcantilever with an internal resonator paddle,” Nanotechnology 21(18), 185705 (2010).
[CrossRef] [PubMed]

Kjoller, K.

K. Kjoller, J. R. Felts, D. Cook, C. B. Prater, and W. P. King, “High-sensitivity nanometer-scale infrared spectroscopy using a contact mode microcantilever with an internal resonator paddle,” Nanotechnology 21(18), 185705 (2010).
[CrossRef] [PubMed]

C. Prater, K. Kjoller, and R. Shetty, “Nanoscale infrared spectroscopy,” Mater. Today 13(11), 56–60 (2010).
[CrossRef]

Knoll, B.

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399(6732), 134–137 (1999).
[CrossRef]

Knoll, W.

M. B. Raschke, L. Molina, T. Elsaesser, D. H. Kim, W. Knoll, and K. Hinrichs, “Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution,” ChemPhysChem 6(10), 2197–2203 (2005).
[CrossRef] [PubMed]

Köck, T.

A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[CrossRef] [PubMed]

Kosterev, A. A.

Kotiaho, T.

T. Sikanen, T. Zwinger, S. Tuomikoski, S. Franssila, R. Lehtiniemi, C.-M. Fager, T. Kotiaho, and A. Pursula, “Temperature modeling and measurement of an electrokinetic separation chip,” Microfluidics Nanofluidics 5(4), 479–491 (2008).
[CrossRef]

Kumar, S.

Kuznetsova, L.

Lee, A. W. M.

Lehtiniemi, R.

T. Sikanen, T. Zwinger, S. Tuomikoski, S. Franssila, R. Lehtiniemi, C.-M. Fager, T. Kotiaho, and A. Pursula, “Temperature modeling and measurement of an electrokinetic separation chip,” Microfluidics Nanofluidics 5(4), 479–491 (2008).
[CrossRef]

Levin, I. W.

I. W. Levin and R. Bhargava, “Fourier transform infrared vibrational spectroscopic imaging: integrating microscopy and molecular recognition,” Annu. Rev. Phys. Chem. 56(1), 429–474 (2005), and references therein.
[CrossRef] [PubMed]

Lewicki, R.

Li, X.

Liu, H. C.

Martini, R.

R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers,” Electron. Lett. 37(3), 191–193 (2001).
[CrossRef]

Molina, L.

M. B. Raschke, L. Molina, T. Elsaesser, D. H. Kim, W. Knoll, and K. Hinrichs, “Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution,” ChemPhysChem 6(10), 2197–2203 (2005).
[CrossRef] [PubMed]

Murakami, S.

H. Hida, M. Shikida, K. Fukuzawa, S. Murakami, K. Sato, K. Asaumi, Y. Iriye, and K. Sato, “Fabrication of a quartz tuning-fork probe with a sharp tip for AFM systems,” Sens. Actuators A Phys. 148(1), 311–318 (2008).
[CrossRef]

Ocelic, N.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10(5), 352–356 (2011).
[CrossRef] [PubMed]

Ortega, J. M.

A. Dazzi, R. Prazeres, F. Glotin, J. M. Ortega, M. Al-Sawaftah, and M. de Frutos, “Chemical mapping of the distribution of viruses into infected bacteria with a photothermal method,” Ultramicroscopy 108(7), 635–641 (2008).
[CrossRef] [PubMed]

A. Dazzi, R. Prazeres, F. Glotin, and J. M. Ortega, “Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor,” Opt. Lett. 30(18), 2388–2390 (2005).
[CrossRef] [PubMed]

Paiella, R.

R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers,” Electron. Lett. 37(3), 191–193 (2001).
[CrossRef]

Prater, C.

C. Prater, K. Kjoller, and R. Shetty, “Nanoscale infrared spectroscopy,” Mater. Today 13(11), 56–60 (2010).
[CrossRef]

Prater, C. B.

K. Kjoller, J. R. Felts, D. Cook, C. B. Prater, and W. P. King, “High-sensitivity nanometer-scale infrared spectroscopy using a contact mode microcantilever with an internal resonator paddle,” Nanotechnology 21(18), 185705 (2010).
[CrossRef] [PubMed]

Prazeres, R.

A. Dazzi, R. Prazeres, F. Glotin, J. M. Ortega, M. Al-Sawaftah, and M. de Frutos, “Chemical mapping of the distribution of viruses into infected bacteria with a photothermal method,” Ultramicroscopy 108(7), 635–641 (2008).
[CrossRef] [PubMed]

A. Dazzi, R. Prazeres, F. Glotin, and J. M. Ortega, “Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor,” Opt. Lett. 30(18), 2388–2390 (2005).
[CrossRef] [PubMed]

Pursula, A.

T. Sikanen, T. Zwinger, S. Tuomikoski, S. Franssila, R. Lehtiniemi, C.-M. Fager, T. Kotiaho, and A. Pursula, “Temperature modeling and measurement of an electrokinetic separation chip,” Microfluidics Nanofluidics 5(4), 479–491 (2008).
[CrossRef]

Rabe, U.

U. Rabe, K. Janser, and W. Arnold, “Vibrations of free and surface‐coupled atomic force microscope cantilevers: theory and experiment,” Rev. Sci. Instrum. 67(9), 3281–3293 (1996).
[CrossRef]

Raschke, M. B.

M. B. Raschke, L. Molina, T. Elsaesser, D. H. Kim, W. Knoll, and K. Hinrichs, “Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution,” ChemPhysChem 6(10), 2197–2203 (2005).
[CrossRef] [PubMed]

Reno, J. L.

Sato, K.

H. Hida, M. Shikida, K. Fukuzawa, S. Murakami, K. Sato, K. Asaumi, Y. Iriye, and K. Sato, “Fabrication of a quartz tuning-fork probe with a sharp tip for AFM systems,” Sens. Actuators A Phys. 148(1), 311–318 (2008).
[CrossRef]

H. Hida, M. Shikida, K. Fukuzawa, S. Murakami, K. Sato, K. Asaumi, Y. Iriye, and K. Sato, “Fabrication of a quartz tuning-fork probe with a sharp tip for AFM systems,” Sens. Actuators A Phys. 148(1), 311–318 (2008).
[CrossRef]

Schneider, H.

Schnell, M.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10(5), 352–356 (2011).
[CrossRef] [PubMed]

Shetty, R.

C. Prater, K. Kjoller, and R. Shetty, “Nanoscale infrared spectroscopy,” Mater. Today 13(11), 56–60 (2010).
[CrossRef]

Shikida, M.

H. Hida, M. Shikida, K. Fukuzawa, S. Murakami, K. Sato, K. Asaumi, Y. Iriye, and K. Sato, “Fabrication of a quartz tuning-fork probe with a sharp tip for AFM systems,” Sens. Actuators A Phys. 148(1), 311–318 (2008).
[CrossRef]

Sikanen, T.

T. Sikanen, T. Zwinger, S. Tuomikoski, S. Franssila, R. Lehtiniemi, C.-M. Fager, T. Kotiaho, and A. Pursula, “Temperature modeling and measurement of an electrokinetic separation chip,” Microfluidics Nanofluidics 5(4), 479–491 (2008).
[CrossRef]

Sivco, D. L.

R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers,” Electron. Lett. 37(3), 191–193 (2001).
[CrossRef]

Song, C. Y.

Taubner, T.

T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microsc. 210(3), 311–314 (2003).
[CrossRef] [PubMed]

Terazzi, R.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[CrossRef]

Thundat, T.

G. Y. Chen, R. J. Warmack, T. Thundat, D. P. Allison, and A. Huang, “Resonance response of scanning force microscopy cantilevers,” Rev. Sci. Instrum. 65(8), 2532–2537 (1994).
[CrossRef]

Tittel, F. K.

Tredicucci, A.

R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers,” Electron. Lett. 37(3), 191–193 (2001).
[CrossRef]

Troccoli, M.

Tuomikoski, S.

T. Sikanen, T. Zwinger, S. Tuomikoski, S. Franssila, R. Lehtiniemi, C.-M. Fager, T. Kotiaho, and A. Pursula, “Temperature modeling and measurement of an electrokinetic separation chip,” Microfluidics Nanofluidics 5(4), 479–491 (2008).
[CrossRef]

Wang, C. Y.

Warmack, R. J.

G. Y. Chen, R. J. Warmack, T. Thundat, D. P. Allison, and A. Huang, “Resonance response of scanning force microscopy cantilevers,” Rev. Sci. Instrum. 65(8), 2532–2537 (1994).
[CrossRef]

Wasilewski, Z. R.

Whittaker, E. A.

R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers,” Electron. Lett. 37(3), 191–193 (2001).
[CrossRef]

Williams, B. S.

Wittborn, J.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10(5), 352–356 (2011).
[CrossRef] [PubMed]

Wittmann, A.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[CrossRef]

Wysocki, G.

Yu, N.

Ziegler, A.

A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[CrossRef] [PubMed]

Zwinger, T.

T. Sikanen, T. Zwinger, S. Tuomikoski, S. Franssila, R. Lehtiniemi, C.-M. Fager, T. Kotiaho, and A. Pursula, “Temperature modeling and measurement of an electrokinetic separation chip,” Microfluidics Nanofluidics 5(4), 479–491 (2008).
[CrossRef]

Annu. Rev. Phys. Chem.

I. W. Levin and R. Bhargava, “Fourier transform infrared vibrational spectroscopic imaging: integrating microscopy and molecular recognition,” Annu. Rev. Phys. Chem. 56(1), 429–474 (2005), and references therein.
[CrossRef] [PubMed]

Appl. Phys. Lett.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[CrossRef]

ChemPhysChem

M. B. Raschke, L. Molina, T. Elsaesser, D. H. Kim, W. Knoll, and K. Hinrichs, “Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution,” ChemPhysChem 6(10), 2197–2203 (2005).
[CrossRef] [PubMed]

Electron. Lett.

R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers,” Electron. Lett. 37(3), 191–193 (2001).
[CrossRef]

J. Appl. Phys.

A. Dazzi, F. Glotin, and R. Carminati, “Theory of infrared nanospectroscopy by photothermal induced resonance,” J. Appl. Phys. 107(12), 124519 (2010).
[CrossRef]

J. Lightwave Technol.

J. Microsc.

T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microsc. 210(3), 311–314 (2003).
[CrossRef] [PubMed]

Mat. Res. Soc. Symp. Proc.

N. Bloembergen, “Pulsed laser interactions with condensed matter,” Mat. Res. Soc. Symp. Proc. 51, 3 (1985).
[CrossRef]

Mater. Today

C. Prater, K. Kjoller, and R. Shetty, “Nanoscale infrared spectroscopy,” Mater. Today 13(11), 56–60 (2010).
[CrossRef]

Microfluidics Nanofluidics

T. Sikanen, T. Zwinger, S. Tuomikoski, S. Franssila, R. Lehtiniemi, C.-M. Fager, T. Kotiaho, and A. Pursula, “Temperature modeling and measurement of an electrokinetic separation chip,” Microfluidics Nanofluidics 5(4), 479–491 (2008).
[CrossRef]

Nanotechnology

K. Kjoller, J. R. Felts, D. Cook, C. B. Prater, and W. P. King, “High-sensitivity nanometer-scale infrared spectroscopy using a contact mode microcantilever with an internal resonator paddle,” Nanotechnology 21(18), 185705 (2010).
[CrossRef] [PubMed]

Nat. Mater.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10(5), 352–356 (2011).
[CrossRef] [PubMed]

Nat. Nanotechnol.

A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[CrossRef] [PubMed]

Nature

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399(6732), 134–137 (1999).
[CrossRef]

Opt. Express

Opt. Lett.

Rev. Sci. Instrum.

G. Y. Chen, R. J. Warmack, T. Thundat, D. P. Allison, and A. Huang, “Resonance response of scanning force microscopy cantilevers,” Rev. Sci. Instrum. 65(8), 2532–2537 (1994).
[CrossRef]

U. Rabe, K. Janser, and W. Arnold, “Vibrations of free and surface‐coupled atomic force microscope cantilevers: theory and experiment,” Rev. Sci. Instrum. 67(9), 3281–3293 (1996).
[CrossRef]

Sens. Actuators A Phys.

H. Hida, M. Shikida, K. Fukuzawa, S. Murakami, K. Sato, K. Asaumi, Y. Iriye, and K. Sato, “Fabrication of a quartz tuning-fork probe with a sharp tip for AFM systems,” Sens. Actuators A Phys. 148(1), 311–318 (2008).
[CrossRef]

Ultramicroscopy

A. Dazzi, R. Prazeres, F. Glotin, J. M. Ortega, M. Al-Sawaftah, and M. de Frutos, “Chemical mapping of the distribution of viruses into infected bacteria with a photothermal method,” Ultramicroscopy 108(7), 635–641 (2008).
[CrossRef] [PubMed]

Other

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1987).

We obtain sample temperature change in the range 5–50 K using the experimental parameters reported in Refs. [10,12,13] and the simulation results reported in Ref. [11].

B. H. Stuart, Infrared Spectroscopy: Fundamentals and Applications (Wiley, New York, 2004).

J. R. Taylor, Classical Mechanics (University Science Books, Herndon, VA, 2005).

J. E. Mark, ed., Physical Properties of Polymers Handbook, 2nd ed. (Springer, New York, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics