Abstract

We experimentally demonstrate an efficient electro-optic sampling scheme based on Cherenkov phase matching of broadband terahertz radiation with 800-nm femtosecond probe beam in a 0.5 mm-thick LiNbO3 crystal coupled to a Si prism. The electro-optic signal from a Cherenkov-phase-matched LiNbO3 crystal is found to be comparable to that with a 4 mm-thick ZnTe crystal using a collinear phase matching. The Cherenkov phase matching technique can be achieved with any probe wavelength and hence has an advantage over the collinear phase matching method.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. H. Auston, “Subpicosecond electro-optic shock waves,” Appl. Phys. Lett. 43(8), 713–715 (1983).
    [CrossRef]
  2. D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett. 53(16), 1555–1558 (1984).
    [CrossRef]
  3. M. Theuer, G. Torosyan, C. Rau, R. Beigang, K. Maki, C. Otani, and K. Kawase, “Efficient generation of Cherenkov-type terahertz radiation from a lithium niobate crystal with a silicon prism output coupler,” Appl. Phys. Lett. 88(7), 071122 (2006).
    [CrossRef]
  4. S. B. Bodrov, M. I. Bakunov, and M. Hangyo, “Efficient Cherenkov emission of broadband terahertz radiation from an ultrashort laser pulse in a sandwich structure with nonlinear core,” J. Appl. Phys. 104(9), 093105 (2008).
    [CrossRef]
  5. M. I. Bakunov and S. B. Bodrov, “Si–LiNbO3–air–metal structure for concentrated terahertz emission from ultrashort laser pulses,” Appl. Phys. B 98(1), 1–4 (2010).
    [CrossRef]
  6. S. B. Bodrov, A. N. Stepanov, M. I. Bakunov, B. V. Shishkin, I. E. Ilyakov, and R. A. Akhmedzhanov, “Highly efficient optical-to-terahertz conversion in a sandwich structure with LiNbO3 core,” Opt. Express 17(3), 1871–1879 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=oe-17-3-1871 .
    [CrossRef] [PubMed]
  7. K. Suizu, K. Koketsu, T. Shibuya, T. Tsutsui, T. Akiba, and K. Kawase, “Extremely frequency-widened terahertz wave generation using Cherenkov-type radiation,” Opt. Express 17(8), 6676–6681 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=oe-17-8-6676 .
    [CrossRef] [PubMed]
  8. J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25(7), B6–B19 (2008).
    [CrossRef]
  9. P. Y. Han, M. Tani, F. Pan, and X.-C. Zhang, “Use of the organic crystal DAST for terahertz beam applications,” Opt. Lett. 25(9), 675–677 (2000).
    [CrossRef] [PubMed]
  10. C. Winnewisser, P. U. Jepsen, M. Schall, V. Schyja, and H. Helm, “Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe,” Appl. Phys. Lett. 70(23), 3069–3071 (1997).
    [CrossRef]
  11. L. Pálfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
    [CrossRef]
  12. A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
    [CrossRef]
  13. D. F. Edwards, “Silicon (Si),” in Handbook of Optical Constant of Solids, E. D. Palik, ed. (Academic, 1985).
  14. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008), Chap. 11.
  15. J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78(5), 593–599 (2004).
    [CrossRef]
  16. G. Gallot, J. Zhang, R. W. McGowan, T.-I. Jeon, and D. Grischkowsky, “Measurements of the THz absorption and dispersion of ZnTe and their relevance to the electro-optic detection of THz radiation,” Appl. Phys. Lett. 74(23), 3450–3452 (1999).
    [CrossRef]

2010 (1)

M. I. Bakunov and S. B. Bodrov, “Si–LiNbO3–air–metal structure for concentrated terahertz emission from ultrashort laser pulses,” Appl. Phys. B 98(1), 1–4 (2010).
[CrossRef]

2009 (2)

2008 (2)

J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25(7), B6–B19 (2008).
[CrossRef]

S. B. Bodrov, M. I. Bakunov, and M. Hangyo, “Efficient Cherenkov emission of broadband terahertz radiation from an ultrashort laser pulse in a sandwich structure with nonlinear core,” J. Appl. Phys. 104(9), 093105 (2008).
[CrossRef]

2006 (1)

M. Theuer, G. Torosyan, C. Rau, R. Beigang, K. Maki, C. Otani, and K. Kawase, “Efficient generation of Cherenkov-type terahertz radiation from a lithium niobate crystal with a silicon prism output coupler,” Appl. Phys. Lett. 88(7), 071122 (2006).
[CrossRef]

2005 (1)

L. Pálfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[CrossRef]

2004 (1)

J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78(5), 593–599 (2004).
[CrossRef]

2000 (1)

1999 (1)

G. Gallot, J. Zhang, R. W. McGowan, T.-I. Jeon, and D. Grischkowsky, “Measurements of the THz absorption and dispersion of ZnTe and their relevance to the electro-optic detection of THz radiation,” Appl. Phys. Lett. 74(23), 3450–3452 (1999).
[CrossRef]

1997 (1)

C. Winnewisser, P. U. Jepsen, M. Schall, V. Schyja, and H. Helm, “Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe,” Appl. Phys. Lett. 70(23), 3069–3071 (1997).
[CrossRef]

1996 (1)

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[CrossRef]

1984 (1)

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett. 53(16), 1555–1558 (1984).
[CrossRef]

1983 (1)

D. H. Auston, “Subpicosecond electro-optic shock waves,” Appl. Phys. Lett. 43(8), 713–715 (1983).
[CrossRef]

Akhmedzhanov, R. A.

Akiba, T.

Almasi, G.

J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78(5), 593–599 (2004).
[CrossRef]

Auston, D. H.

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett. 53(16), 1555–1558 (1984).
[CrossRef]

D. H. Auston, “Subpicosecond electro-optic shock waves,” Appl. Phys. Lett. 43(8), 713–715 (1983).
[CrossRef]

Bakunov, M. I.

M. I. Bakunov and S. B. Bodrov, “Si–LiNbO3–air–metal structure for concentrated terahertz emission from ultrashort laser pulses,” Appl. Phys. B 98(1), 1–4 (2010).
[CrossRef]

S. B. Bodrov, A. N. Stepanov, M. I. Bakunov, B. V. Shishkin, I. E. Ilyakov, and R. A. Akhmedzhanov, “Highly efficient optical-to-terahertz conversion in a sandwich structure with LiNbO3 core,” Opt. Express 17(3), 1871–1879 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=oe-17-3-1871 .
[CrossRef] [PubMed]

S. B. Bodrov, M. I. Bakunov, and M. Hangyo, “Efficient Cherenkov emission of broadband terahertz radiation from an ultrashort laser pulse in a sandwich structure with nonlinear core,” J. Appl. Phys. 104(9), 093105 (2008).
[CrossRef]

Bartal, B.

J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25(7), B6–B19 (2008).
[CrossRef]

J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78(5), 593–599 (2004).
[CrossRef]

Beigang, R.

M. Theuer, G. Torosyan, C. Rau, R. Beigang, K. Maki, C. Otani, and K. Kawase, “Efficient generation of Cherenkov-type terahertz radiation from a lithium niobate crystal with a silicon prism output coupler,” Appl. Phys. Lett. 88(7), 071122 (2006).
[CrossRef]

Bodrov, S. B.

M. I. Bakunov and S. B. Bodrov, “Si–LiNbO3–air–metal structure for concentrated terahertz emission from ultrashort laser pulses,” Appl. Phys. B 98(1), 1–4 (2010).
[CrossRef]

S. B. Bodrov, A. N. Stepanov, M. I. Bakunov, B. V. Shishkin, I. E. Ilyakov, and R. A. Akhmedzhanov, “Highly efficient optical-to-terahertz conversion in a sandwich structure with LiNbO3 core,” Opt. Express 17(3), 1871–1879 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=oe-17-3-1871 .
[CrossRef] [PubMed]

S. B. Bodrov, M. I. Bakunov, and M. Hangyo, “Efficient Cherenkov emission of broadband terahertz radiation from an ultrashort laser pulse in a sandwich structure with nonlinear core,” J. Appl. Phys. 104(9), 093105 (2008).
[CrossRef]

Cheung, K. P.

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett. 53(16), 1555–1558 (1984).
[CrossRef]

Gallot, G.

G. Gallot, J. Zhang, R. W. McGowan, T.-I. Jeon, and D. Grischkowsky, “Measurements of the THz absorption and dispersion of ZnTe and their relevance to the electro-optic detection of THz radiation,” Appl. Phys. Lett. 74(23), 3450–3452 (1999).
[CrossRef]

Grischkowsky, D.

G. Gallot, J. Zhang, R. W. McGowan, T.-I. Jeon, and D. Grischkowsky, “Measurements of the THz absorption and dispersion of ZnTe and their relevance to the electro-optic detection of THz radiation,” Appl. Phys. Lett. 74(23), 3450–3452 (1999).
[CrossRef]

Han, P. Y.

Hangyo, M.

S. B. Bodrov, M. I. Bakunov, and M. Hangyo, “Efficient Cherenkov emission of broadband terahertz radiation from an ultrashort laser pulse in a sandwich structure with nonlinear core,” J. Appl. Phys. 104(9), 093105 (2008).
[CrossRef]

Hebling, J.

J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25(7), B6–B19 (2008).
[CrossRef]

L. Pálfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[CrossRef]

J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78(5), 593–599 (2004).
[CrossRef]

Heinz, T. F.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[CrossRef]

Helm, H.

C. Winnewisser, P. U. Jepsen, M. Schall, V. Schyja, and H. Helm, “Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe,” Appl. Phys. Lett. 70(23), 3069–3071 (1997).
[CrossRef]

Hoffmann, M. C.

Ilyakov, I. E.

Jeon, T.-I.

G. Gallot, J. Zhang, R. W. McGowan, T.-I. Jeon, and D. Grischkowsky, “Measurements of the THz absorption and dispersion of ZnTe and their relevance to the electro-optic detection of THz radiation,” Appl. Phys. Lett. 74(23), 3450–3452 (1999).
[CrossRef]

Jepsen, P. U.

C. Winnewisser, P. U. Jepsen, M. Schall, V. Schyja, and H. Helm, “Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe,” Appl. Phys. Lett. 70(23), 3069–3071 (1997).
[CrossRef]

Kawase, K.

K. Suizu, K. Koketsu, T. Shibuya, T. Tsutsui, T. Akiba, and K. Kawase, “Extremely frequency-widened terahertz wave generation using Cherenkov-type radiation,” Opt. Express 17(8), 6676–6681 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=oe-17-8-6676 .
[CrossRef] [PubMed]

M. Theuer, G. Torosyan, C. Rau, R. Beigang, K. Maki, C. Otani, and K. Kawase, “Efficient generation of Cherenkov-type terahertz radiation from a lithium niobate crystal with a silicon prism output coupler,” Appl. Phys. Lett. 88(7), 071122 (2006).
[CrossRef]

Kleinman, D. A.

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett. 53(16), 1555–1558 (1984).
[CrossRef]

Koketsu, K.

Kuhl, J.

L. Pálfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[CrossRef]

J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78(5), 593–599 (2004).
[CrossRef]

Maki, K.

M. Theuer, G. Torosyan, C. Rau, R. Beigang, K. Maki, C. Otani, and K. Kawase, “Efficient generation of Cherenkov-type terahertz radiation from a lithium niobate crystal with a silicon prism output coupler,” Appl. Phys. Lett. 88(7), 071122 (2006).
[CrossRef]

McGowan, R. W.

G. Gallot, J. Zhang, R. W. McGowan, T.-I. Jeon, and D. Grischkowsky, “Measurements of the THz absorption and dispersion of ZnTe and their relevance to the electro-optic detection of THz radiation,” Appl. Phys. Lett. 74(23), 3450–3452 (1999).
[CrossRef]

Nahata, A.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[CrossRef]

Nelson, K. A.

Otani, C.

M. Theuer, G. Torosyan, C. Rau, R. Beigang, K. Maki, C. Otani, and K. Kawase, “Efficient generation of Cherenkov-type terahertz radiation from a lithium niobate crystal with a silicon prism output coupler,” Appl. Phys. Lett. 88(7), 071122 (2006).
[CrossRef]

Pálfalvi, L.

L. Pálfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[CrossRef]

Pan, F.

Peter, A.

L. Pálfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[CrossRef]

Polgar, K.

L. Pálfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[CrossRef]

Rau, C.

M. Theuer, G. Torosyan, C. Rau, R. Beigang, K. Maki, C. Otani, and K. Kawase, “Efficient generation of Cherenkov-type terahertz radiation from a lithium niobate crystal with a silicon prism output coupler,” Appl. Phys. Lett. 88(7), 071122 (2006).
[CrossRef]

Schall, M.

C. Winnewisser, P. U. Jepsen, M. Schall, V. Schyja, and H. Helm, “Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe,” Appl. Phys. Lett. 70(23), 3069–3071 (1997).
[CrossRef]

Schyja, V.

C. Winnewisser, P. U. Jepsen, M. Schall, V. Schyja, and H. Helm, “Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe,” Appl. Phys. Lett. 70(23), 3069–3071 (1997).
[CrossRef]

Shibuya, T.

Shishkin, B. V.

Stepanov, A. G.

J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78(5), 593–599 (2004).
[CrossRef]

Stepanov, A. N.

Suizu, K.

Tani, M.

Theuer, M.

M. Theuer, G. Torosyan, C. Rau, R. Beigang, K. Maki, C. Otani, and K. Kawase, “Efficient generation of Cherenkov-type terahertz radiation from a lithium niobate crystal with a silicon prism output coupler,” Appl. Phys. Lett. 88(7), 071122 (2006).
[CrossRef]

Torosyan, G.

M. Theuer, G. Torosyan, C. Rau, R. Beigang, K. Maki, C. Otani, and K. Kawase, “Efficient generation of Cherenkov-type terahertz radiation from a lithium niobate crystal with a silicon prism output coupler,” Appl. Phys. Lett. 88(7), 071122 (2006).
[CrossRef]

Tsutsui, T.

Valdmanis, J. A.

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett. 53(16), 1555–1558 (1984).
[CrossRef]

Weling, A. S.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[CrossRef]

Winnewisser, C.

C. Winnewisser, P. U. Jepsen, M. Schall, V. Schyja, and H. Helm, “Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe,” Appl. Phys. Lett. 70(23), 3069–3071 (1997).
[CrossRef]

Yeh, K.-L.

Zhang, J.

G. Gallot, J. Zhang, R. W. McGowan, T.-I. Jeon, and D. Grischkowsky, “Measurements of the THz absorption and dispersion of ZnTe and their relevance to the electro-optic detection of THz radiation,” Appl. Phys. Lett. 74(23), 3450–3452 (1999).
[CrossRef]

Zhang, X.-C.

Appl. Phys. B (2)

M. I. Bakunov and S. B. Bodrov, “Si–LiNbO3–air–metal structure for concentrated terahertz emission from ultrashort laser pulses,” Appl. Phys. B 98(1), 1–4 (2010).
[CrossRef]

J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78(5), 593–599 (2004).
[CrossRef]

Appl. Phys. Lett. (5)

G. Gallot, J. Zhang, R. W. McGowan, T.-I. Jeon, and D. Grischkowsky, “Measurements of the THz absorption and dispersion of ZnTe and their relevance to the electro-optic detection of THz radiation,” Appl. Phys. Lett. 74(23), 3450–3452 (1999).
[CrossRef]

C. Winnewisser, P. U. Jepsen, M. Schall, V. Schyja, and H. Helm, “Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe,” Appl. Phys. Lett. 70(23), 3069–3071 (1997).
[CrossRef]

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[CrossRef]

D. H. Auston, “Subpicosecond electro-optic shock waves,” Appl. Phys. Lett. 43(8), 713–715 (1983).
[CrossRef]

M. Theuer, G. Torosyan, C. Rau, R. Beigang, K. Maki, C. Otani, and K. Kawase, “Efficient generation of Cherenkov-type terahertz radiation from a lithium niobate crystal with a silicon prism output coupler,” Appl. Phys. Lett. 88(7), 071122 (2006).
[CrossRef]

J. Appl. Phys. (2)

S. B. Bodrov, M. I. Bakunov, and M. Hangyo, “Efficient Cherenkov emission of broadband terahertz radiation from an ultrashort laser pulse in a sandwich structure with nonlinear core,” J. Appl. Phys. 104(9), 093105 (2008).
[CrossRef]

L. Pálfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett. 53(16), 1555–1558 (1984).
[CrossRef]

Other (2)

D. F. Edwards, “Silicon (Si),” in Handbook of Optical Constant of Solids, E. D. Palik, ed. (Academic, 1985).

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008), Chap. 11.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the experimental setup.

Fig. 2
Fig. 2

(a) Terahertz waveforms measured with the LN/Si-prism structure (solid) and a 4 mm-thick ZnTe crystal (dashed). (b) Corresponding Fourier transform amplitude spectra.

Fig. 3
Fig. 3

Coherence length Lc defined by Eq. (1) as a function of the terahertz frequency ν for β = 48º, 49º, and 50º at 800 nm wavelength.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

L c ( ν )= c 2ν| n Si cosβ n g | ,
δφ(τ)= ω opt 2c ( n e 3 r 33 n o 3 r 13 ) E THz (τ)L,
FOM LN = 1 2 ( n e 3 r 33 n o 3 r 13 ).
δφ(τ)= ω opt c n opt 3 r 41 E THz (τ)L,
FOM ZnTe = n opt 3 r 41
L=1.22 λ THz n Si f b 1 cosβ ~4mm,

Metrics