Abstract

We propose a tiny surface plasmon resonance (SPR) sensor integrated on a silicon waveguide based on vertical coupling into a finite thickness metal-insulator-metal (f-MIM) plasmonic waveguide structure acting as a Fabry-Perot resonator. The resonant characteristics of vertically coupled f-MIM plasmonic waveguides are theoretically investigated and optimized. Numerical results show that the SPR sensor with a footprint of ~0.0375 μm2 and a sensitivity of ~635 nm/RIU can be designed at a 1.55 μm transmission wavelength.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Roh, T. Chung, and B. Lee, “Overview of the Characteristics of Micro- and Nano-Structured Surface Plasmon Resonance Sensors,” Sensors (Basel Switzerland) 11(2), 1565–1588 (2011).
    [CrossRef]
  2. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
  3. W. J. Galush, S. A. Shelby, M. J. Mulvihill, A. Tao, P. Yang, and J. T. Groves, “A nanocube plasmonic sensor for molecular binding on membrane surfaces,” Nano Lett. 9(5), 2077–2082 (2009).
    [CrossRef] [PubMed]
  4. H. Jiang and J. Sabarinathan, “Effects of Coherent Interactions on the Sensing Characteristics of Near-Infrared Gold Nanorings,” J. Phys. Chem. C 114(36), 15243–15250 (2010).
    [CrossRef]
  5. L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91(12), 123112 (2007).
    [CrossRef]
  6. D. G. Kim, W. K. Choi, Y. W. Choi, and N. Dagli, “Triangular resonator based on surface plasmon resonance of attenuated reflection mirror,” Electron. Lett. 43(24), 1365–1367 (2007).
    [CrossRef]
  7. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
    [CrossRef] [PubMed]
  8. G. Nemova, A. V. Kabashin, and R. Kashyap, “Surface plasmon-polariton Mach-Zehnder refractive index sensor,” J. Opt. Soc. Am. B 25(10), 1673–1677 (2008).
    [CrossRef]
  9. Y. H. Joo, S. H. Song, and R. Magnusson, “Long-range surface plasmon-polariton waveguide sensors with a Bragg gratingin the asymmetric double-electrode structure,” Opt. Express 17(13), 10606–10611 (2009).
    [CrossRef] [PubMed]
  10. Y. Liu and J. Kim, “Numerical investigation of finite thickness metal-insulator-metal structure for waveguide-based surface plasmon resonance biosensing,” Sens. Actuators B 148, 23–28 (2010).
  11. Y.-S. Chu, W.-H. Hsu, C.-W. Lin, and W.-S. Wang, “Surface plasmon resonance sensors using silica-on-silicon optical waveguides,” Microw. Opt. Technol. Lett. 48(5), 955–957 (2006).
    [CrossRef]
  12. Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: Analysis of optical properties,” Phys. Rev. B 75(3), 035411 (2007).
    [CrossRef]
  13. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  14. D. Woolf, M. Loncar, and F. Capasso, “The forces from coupled surface plasmon polaritons in planar waveguides,” Opt. Express 17(22), 19996–20011 (2009).
    [CrossRef] [PubMed]
  15. J. Chen, G. A. Smolyakov, S. R. J. Brueck, and K. J. Malloy, “Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides,” Opt. Express 16(19), 14902–14909 (2008).
    [CrossRef] [PubMed]
  16. K. P. Nichols, J. C. T. Eijkel, and H. J. G. E. Gardeniers, “Nanochannels in SU-8 with floor and ceiling metal electrodes and integrated microchannels,” Lab Chip 8(1), 173–175 (2008).
    [CrossRef] [PubMed]

2011

S. Roh, T. Chung, and B. Lee, “Overview of the Characteristics of Micro- and Nano-Structured Surface Plasmon Resonance Sensors,” Sensors (Basel Switzerland) 11(2), 1565–1588 (2011).
[CrossRef]

2010

Y. Liu and J. Kim, “Numerical investigation of finite thickness metal-insulator-metal structure for waveguide-based surface plasmon resonance biosensing,” Sens. Actuators B 148, 23–28 (2010).

H. Jiang and J. Sabarinathan, “Effects of Coherent Interactions on the Sensing Characteristics of Near-Infrared Gold Nanorings,” J. Phys. Chem. C 114(36), 15243–15250 (2010).
[CrossRef]

2009

2008

2007

Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: Analysis of optical properties,” Phys. Rev. B 75(3), 035411 (2007).
[CrossRef]

L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91(12), 123112 (2007).
[CrossRef]

D. G. Kim, W. K. Choi, Y. W. Choi, and N. Dagli, “Triangular resonator based on surface plasmon resonance of attenuated reflection mirror,” Electron. Lett. 43(24), 1365–1367 (2007).
[CrossRef]

2006

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Y.-S. Chu, W.-H. Hsu, C.-W. Lin, and W.-S. Wang, “Surface plasmon resonance sensors using silica-on-silicon optical waveguides,” Microw. Opt. Technol. Lett. 48(5), 955–957 (2006).
[CrossRef]

1999

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).

1972

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Brueck, S. R. J.

Capasso, F.

Chen, J.

Choi, W. K.

D. G. Kim, W. K. Choi, Y. W. Choi, and N. Dagli, “Triangular resonator based on surface plasmon resonance of attenuated reflection mirror,” Electron. Lett. 43(24), 1365–1367 (2007).
[CrossRef]

Choi, Y. W.

D. G. Kim, W. K. Choi, Y. W. Choi, and N. Dagli, “Triangular resonator based on surface plasmon resonance of attenuated reflection mirror,” Electron. Lett. 43(24), 1365–1367 (2007).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Chu, Y.-S.

Y.-S. Chu, W.-H. Hsu, C.-W. Lin, and W.-S. Wang, “Surface plasmon resonance sensors using silica-on-silicon optical waveguides,” Microw. Opt. Technol. Lett. 48(5), 955–957 (2006).
[CrossRef]

Chung, T.

S. Roh, T. Chung, and B. Lee, “Overview of the Characteristics of Micro- and Nano-Structured Surface Plasmon Resonance Sensors,” Sensors (Basel Switzerland) 11(2), 1565–1588 (2011).
[CrossRef]

Dagli, N.

D. G. Kim, W. K. Choi, Y. W. Choi, and N. Dagli, “Triangular resonator based on surface plasmon resonance of attenuated reflection mirror,” Electron. Lett. 43(24), 1365–1367 (2007).
[CrossRef]

Eijkel, J. C. T.

K. P. Nichols, J. C. T. Eijkel, and H. J. G. E. Gardeniers, “Nanochannels in SU-8 with floor and ceiling metal electrodes and integrated microchannels,” Lab Chip 8(1), 173–175 (2008).
[CrossRef] [PubMed]

Fainman, Y.

L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91(12), 123112 (2007).
[CrossRef]

Galush, W. J.

W. J. Galush, S. A. Shelby, M. J. Mulvihill, A. Tao, P. Yang, and J. T. Groves, “A nanocube plasmonic sensor for molecular binding on membrane surfaces,” Nano Lett. 9(5), 2077–2082 (2009).
[CrossRef] [PubMed]

Gardeniers, H. J. G. E.

K. P. Nichols, J. C. T. Eijkel, and H. J. G. E. Gardeniers, “Nanochannels in SU-8 with floor and ceiling metal electrodes and integrated microchannels,” Lab Chip 8(1), 173–175 (2008).
[CrossRef] [PubMed]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).

Groves, J. T.

W. J. Galush, S. A. Shelby, M. J. Mulvihill, A. Tao, P. Yang, and J. T. Groves, “A nanocube plasmonic sensor for molecular binding on membrane surfaces,” Nano Lett. 9(5), 2077–2082 (2009).
[CrossRef] [PubMed]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).

Hsu, W.-H.

Y.-S. Chu, W.-H. Hsu, C.-W. Lin, and W.-S. Wang, “Surface plasmon resonance sensors using silica-on-silicon optical waveguides,” Microw. Opt. Technol. Lett. 48(5), 955–957 (2006).
[CrossRef]

Hwang, G. M.

L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91(12), 123112 (2007).
[CrossRef]

Jiang, H.

H. Jiang and J. Sabarinathan, “Effects of Coherent Interactions on the Sensing Characteristics of Near-Infrared Gold Nanorings,” J. Phys. Chem. C 114(36), 15243–15250 (2010).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Joo, Y. H.

Kabashin, A. V.

Kashyap, R.

Kim, D. G.

D. G. Kim, W. K. Choi, Y. W. Choi, and N. Dagli, “Triangular resonator based on surface plasmon resonance of attenuated reflection mirror,” Electron. Lett. 43(24), 1365–1367 (2007).
[CrossRef]

Kim, J.

Y. Liu and J. Kim, “Numerical investigation of finite thickness metal-insulator-metal structure for waveguide-based surface plasmon resonance biosensing,” Sens. Actuators B 148, 23–28 (2010).

Kurokawa, Y.

Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: Analysis of optical properties,” Phys. Rev. B 75(3), 035411 (2007).
[CrossRef]

Lee, B.

S. Roh, T. Chung, and B. Lee, “Overview of the Characteristics of Micro- and Nano-Structured Surface Plasmon Resonance Sensors,” Sensors (Basel Switzerland) 11(2), 1565–1588 (2011).
[CrossRef]

Lin, C.-W.

Y.-S. Chu, W.-H. Hsu, C.-W. Lin, and W.-S. Wang, “Surface plasmon resonance sensors using silica-on-silicon optical waveguides,” Microw. Opt. Technol. Lett. 48(5), 955–957 (2006).
[CrossRef]

Liu, Y.

Y. Liu and J. Kim, “Numerical investigation of finite thickness metal-insulator-metal structure for waveguide-based surface plasmon resonance biosensing,” Sens. Actuators B 148, 23–28 (2010).

Loncar, M.

Magnusson, R.

Malloy, K. J.

Miyazaki, H. T.

Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: Analysis of optical properties,” Phys. Rev. B 75(3), 035411 (2007).
[CrossRef]

Mulvihill, M. J.

W. J. Galush, S. A. Shelby, M. J. Mulvihill, A. Tao, P. Yang, and J. T. Groves, “A nanocube plasmonic sensor for molecular binding on membrane surfaces,” Nano Lett. 9(5), 2077–2082 (2009).
[CrossRef] [PubMed]

Nemova, G.

Nichols, K. P.

K. P. Nichols, J. C. T. Eijkel, and H. J. G. E. Gardeniers, “Nanochannels in SU-8 with floor and ceiling metal electrodes and integrated microchannels,” Lab Chip 8(1), 173–175 (2008).
[CrossRef] [PubMed]

Pang, L.

L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91(12), 123112 (2007).
[CrossRef]

Psaltis, D.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Roh, S.

S. Roh, T. Chung, and B. Lee, “Overview of the Characteristics of Micro- and Nano-Structured Surface Plasmon Resonance Sensors,” Sensors (Basel Switzerland) 11(2), 1565–1588 (2011).
[CrossRef]

Sabarinathan, J.

H. Jiang and J. Sabarinathan, “Effects of Coherent Interactions on the Sensing Characteristics of Near-Infrared Gold Nanorings,” J. Phys. Chem. C 114(36), 15243–15250 (2010).
[CrossRef]

Shelby, S. A.

W. J. Galush, S. A. Shelby, M. J. Mulvihill, A. Tao, P. Yang, and J. T. Groves, “A nanocube plasmonic sensor for molecular binding on membrane surfaces,” Nano Lett. 9(5), 2077–2082 (2009).
[CrossRef] [PubMed]

Slutsky, B.

L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91(12), 123112 (2007).
[CrossRef]

Smolyakov, G. A.

Song, S. H.

Tao, A.

W. J. Galush, S. A. Shelby, M. J. Mulvihill, A. Tao, P. Yang, and J. T. Groves, “A nanocube plasmonic sensor for molecular binding on membrane surfaces,” Nano Lett. 9(5), 2077–2082 (2009).
[CrossRef] [PubMed]

Wang, W.-S.

Y.-S. Chu, W.-H. Hsu, C.-W. Lin, and W.-S. Wang, “Surface plasmon resonance sensors using silica-on-silicon optical waveguides,” Microw. Opt. Technol. Lett. 48(5), 955–957 (2006).
[CrossRef]

Woolf, D.

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Yang, P.

W. J. Galush, S. A. Shelby, M. J. Mulvihill, A. Tao, P. Yang, and J. T. Groves, “A nanocube plasmonic sensor for molecular binding on membrane surfaces,” Nano Lett. 9(5), 2077–2082 (2009).
[CrossRef] [PubMed]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).

Appl. Phys. Lett.

L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91(12), 123112 (2007).
[CrossRef]

Electron. Lett.

D. G. Kim, W. K. Choi, Y. W. Choi, and N. Dagli, “Triangular resonator based on surface plasmon resonance of attenuated reflection mirror,” Electron. Lett. 43(24), 1365–1367 (2007).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. C

H. Jiang and J. Sabarinathan, “Effects of Coherent Interactions on the Sensing Characteristics of Near-Infrared Gold Nanorings,” J. Phys. Chem. C 114(36), 15243–15250 (2010).
[CrossRef]

Lab Chip

K. P. Nichols, J. C. T. Eijkel, and H. J. G. E. Gardeniers, “Nanochannels in SU-8 with floor and ceiling metal electrodes and integrated microchannels,” Lab Chip 8(1), 173–175 (2008).
[CrossRef] [PubMed]

Microw. Opt. Technol. Lett.

Y.-S. Chu, W.-H. Hsu, C.-W. Lin, and W.-S. Wang, “Surface plasmon resonance sensors using silica-on-silicon optical waveguides,” Microw. Opt. Technol. Lett. 48(5), 955–957 (2006).
[CrossRef]

Nano Lett.

W. J. Galush, S. A. Shelby, M. J. Mulvihill, A. Tao, P. Yang, and J. T. Groves, “A nanocube plasmonic sensor for molecular binding on membrane surfaces,” Nano Lett. 9(5), 2077–2082 (2009).
[CrossRef] [PubMed]

Nature

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. B

Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: Analysis of optical properties,” Phys. Rev. B 75(3), 035411 (2007).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Sens. Actuators B

Y. Liu and J. Kim, “Numerical investigation of finite thickness metal-insulator-metal structure for waveguide-based surface plasmon resonance biosensing,” Sens. Actuators B 148, 23–28 (2010).

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).

Sensors (Basel Switzerland)

S. Roh, T. Chung, and B. Lee, “Overview of the Characteristics of Micro- and Nano-Structured Surface Plasmon Resonance Sensors,” Sensors (Basel Switzerland) 11(2), 1565–1588 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the proposed tiny SPR sensor integrated on a Si waveguide. (b) The magnetic (Hy) field distribution at λ=1.55 um in which LFP=250nm, ta=50nm, and tm=50nm.

Fig. 2
Fig. 2

(a) The dispersion relation of the f-MIM plasmonic waveguide (n = 1.33 and 1 are the waveguide core and cladding indices, respectively) and the MIM waveguide. The antisymmetric modes of the f-MIM waveguide do not appear in this wavelength range. The inset shows (top) the enlarged view of the dispersion relation in the 1.5–1.6 μm wavelength range and (bottom) the geometry of the f-MIM waveguide. (b) The Hy field patterns (λ=1.55 μm) of the f-MIM SPP modes with ta=tm=50 nm and the MIM SPP mode as a function of z. (c) Effective refractive indices (neff) of the Si waveguide (dashed line) and the f-MIM waveguide (solid line) as a function of wavelength when tm is 50 nm. The inset shows the schematic of the Si waveguide structure used for calculation of the effective refractive indices. The resonant wavelength from the calculated results (d) as a function of LFP when ta and tm are both 50 nm, (inset) as a function of ta when LFP and tm are 250 nm, 50 nm, respectively.

Fig. 3
Fig. 3

Transmission spectra for the proposed tiny SPR sensor integrated on a Si waveguide (a) with LFP ranging from 200 nm to 300 nm, in increments of 20 nm (exception: 10 nm between 240 nm and 260 nm), in which ta and tm are both kept as 50 nm, (b) with ta equaling 30 nm, 50 nm, 70 nm, and 100 nm, in which LFP and tm are kept as 250 nm, 50 nm, respectively. The resonant wavelength from calculated (black dots and line) and 2D FDTD simulated (red dots and line) results (c) as a function of LFP with ta=tm=50 nm, (d) as a function of ta with LFP=250 nm and tm=50 nm.

Fig. 4
Fig. 4

(a) Transmission spectra for the proposed tiny SPR sensor integrated on a Si waveguide in which LFP=250 nm, ta=50 nm, and tm=50 nm when the refractive index of the analyte is changed from 1.33 to 1.35 RIU. (b) Resonant wavelength as a function of the refractive index of the analyte. (c) Schematic of the tiny SPR sensor integrated on a Si waveguide with a micro/nano fluidic channel. (d) Transmission spectra for the left inset of Fig. 4(d) which is the cross section in the micro/nano fluidic region of Fig. 4(c), in which LFP=250 nm, ta=50 nm, and tm=50 nm when the refractive index of the analyte is changed from 1.33 to 1.35 RIU. The right inset shows the resonant wavelength shift as a function of the refractive index of the analyte.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S+: ε r1 k z3 ε r3 k z1 coth( k z1 t a 2 )= 1+ ε r2 k z3 ε r3 k z2 tanh( k z2 t m ) 1+ ε r3 k z2 ε r2 k z3 tanh( k z2 t m )
S: ε r1 k z3 ε r3 k z1 coth( k z1 t a 2 )= 1+ ε r2 k z3 ε r3 k z2 coth( k z2 t m ) 1+ ε r3 k z2 ε r2 k z3 coth( k z2 t m )
k z1,2,3 2 = k x 2 ε r1,2,3 ( ω c ) 2
0.5( φ 1 + φ 2 )α=mπ
r 1 =| r 1 | e i φ 1 = n eff,fMIM n eff,Si n eff,fMIM + n eff,Si , r 2 =| r 2 | e i φ 2 = n eff,fMIM n air n eff,fMIM + n air

Metrics