Abstract

Power Scaling of a Q-switched laser designed for internal frequency conversion is demonstrated by combining two Nd:YVO4-gain-channels with a time-multiplexing scheme based on a single crystal photo elastic modulator (SCPEM). Both channels are coupled with a polarizer and share an output-coupler and acousto-optic modulator (AOM). In order to combine two channels by time multiplexing, the single crystal photo elastic modulator is used which switches between two channels, while the acousto-optic modulator conducts the Q-switching. This allows almost to double the average output power and repetition rate within a given laser resonator design.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Hirano, N. Pavel, S. Yamamoto, Y. Koyata, and T. Tajime, “100-W, 100-h external green generation with Nd:YAG rod master-oscillator power amplifier system,” Opt. Commun. 184(1-4), 231–236 (2000).
    [CrossRef]
  2. H. Zhang, P. Shi, D. Li, and K. Du, “Diode-end-pumped, electro-optically Q-switched Nd:YVO4 slab laser and its second-harmonic generation,” Appl. Opt. 42(9), 1681–1684 (2003).
    [CrossRef] [PubMed]
  3. Q. Liu, X. Yan, M. Gong, X. Fu, and D. Wang, “103 W high beam quality green laser with an extra- cavity second harmonic generation,” Opt. Express 16(19), 14335–14340 (2008).
    [CrossRef] [PubMed]
  4. X. Ya, Q. Liu, M. Gong, X. Fu, and D. Wang, “High-repetition-rate high-beam-quality 43W ultraviolet laser with extra-cavity third harmonic generation,” Appl. Phys. B 95(2), 323–328 (2009).
    [CrossRef]
  5. A. Alfrey and E. Sinofsky, “High Efficiency High Repetition Rate, Intra-Cavity Tripled Diode Pumped Solid State Laser” patent 6.002.695 (1999)
  6. K. C. Liu, “Dual Head Laser System With Intra-Cavity Polarization, and Particle Image Velocimetry System Using Same,” US patent 2004/0100999 A1 (2004)
  7. J. Yi, H. J. Moon, and J. Lee, “Diode-pumped 100-W green Nd:YAG rod laser,” Appl. Opt. 43(18), 3732–3737 (2004).
    [CrossRef] [PubMed]
  8. C. Stolzenburg, A. Giesen, F. Butze, P. Heist, and G. Hollemann, “Cavity-dumped intracavity-frequency-doubled Yb:YAG thin disk laser with 100 W average power,” Opt. Lett. 32(9), 1123–1125 (2007).
    [CrossRef] [PubMed]
  9. Q. Liu, X. Yan, X. Fu, M. Gong, and D. Wang, “183 WTEM00 mode acoustic-optic Q-switched MOPA laser at 850 kHz,” Opt. Express 17(7), 5636–5644 (2009).
    [CrossRef] [PubMed]
  10. B.C. Johnson and R. Herbst, “Laser resonator with laser medium exhibiting thermally induced birefringence,” patent A2 0 370 620 (1990).
  11. C. Naiman and S. Pompian, “Multi-Color, Multi-Pulse Laser,” US patent 6.199.794 (2001).
  12. L. Sun and Y. Sun, “Methods and Systems for Synchronized Pulse Shape Tailoring,” patent WO 2006/062744 A2 (2006).
  13. B. Kmetec, B. Podobnik, and G. Kusnezow, “Mehrkanaliger Laser,” patent DE 10 2007 002 472 A1 (2008).
  14. F. Bammer, B. Holzinger, and T. Schumi, “Time multiplexing of high power laser diodes with single crystal photo-elastic modulators,” Opt. Express 14(8), 3324–3332 (2006).
    [CrossRef] [PubMed]
  15. F. Bammer and R. Petkovsek, “Q-switching of a fiber laser with a single crystal photo-elastic modulator,” Opt. Express 15(10), 6177–6182 (2007).
    [CrossRef] [PubMed]
  16. F. Bammer, R. Petkovsek, D. Schuöcker, and J. Mozina, “Dual-mode single-crystal photo-elastic modulator and possible applications,” Appl. Opt. 48(7), 86–91 (2008).
  17. R. Petkovšek, J. Petelin, J. Možina, and F. Bammer, “Fast ellipsometric measurements based on a single crystal photo-elastic modulator,” Opt. Express 18(20), 21410–21418 (2010).
    [CrossRef] [PubMed]
  18. D. N. Nikogosyan, “Nonlinear Optical Crystals,” Springer, 185–190 (2005)

2010

2009

Q. Liu, X. Yan, X. Fu, M. Gong, and D. Wang, “183 WTEM00 mode acoustic-optic Q-switched MOPA laser at 850 kHz,” Opt. Express 17(7), 5636–5644 (2009).
[CrossRef] [PubMed]

X. Ya, Q. Liu, M. Gong, X. Fu, and D. Wang, “High-repetition-rate high-beam-quality 43W ultraviolet laser with extra-cavity third harmonic generation,” Appl. Phys. B 95(2), 323–328 (2009).
[CrossRef]

2008

F. Bammer, R. Petkovsek, D. Schuöcker, and J. Mozina, “Dual-mode single-crystal photo-elastic modulator and possible applications,” Appl. Opt. 48(7), 86–91 (2008).

Q. Liu, X. Yan, M. Gong, X. Fu, and D. Wang, “103 W high beam quality green laser with an extra- cavity second harmonic generation,” Opt. Express 16(19), 14335–14340 (2008).
[CrossRef] [PubMed]

2007

2006

2004

2003

2000

Y. Hirano, N. Pavel, S. Yamamoto, Y. Koyata, and T. Tajime, “100-W, 100-h external green generation with Nd:YAG rod master-oscillator power amplifier system,” Opt. Commun. 184(1-4), 231–236 (2000).
[CrossRef]

Bammer, F.

Butze, F.

Du, K.

Fu, X.

Giesen, A.

Gong, M.

Heist, P.

Hirano, Y.

Y. Hirano, N. Pavel, S. Yamamoto, Y. Koyata, and T. Tajime, “100-W, 100-h external green generation with Nd:YAG rod master-oscillator power amplifier system,” Opt. Commun. 184(1-4), 231–236 (2000).
[CrossRef]

Hollemann, G.

Holzinger, B.

Koyata, Y.

Y. Hirano, N. Pavel, S. Yamamoto, Y. Koyata, and T. Tajime, “100-W, 100-h external green generation with Nd:YAG rod master-oscillator power amplifier system,” Opt. Commun. 184(1-4), 231–236 (2000).
[CrossRef]

Lee, J.

Li, D.

Liu, Q.

Moon, H. J.

Mozina, J.

F. Bammer, R. Petkovsek, D. Schuöcker, and J. Mozina, “Dual-mode single-crystal photo-elastic modulator and possible applications,” Appl. Opt. 48(7), 86–91 (2008).

Možina, J.

Pavel, N.

Y. Hirano, N. Pavel, S. Yamamoto, Y. Koyata, and T. Tajime, “100-W, 100-h external green generation with Nd:YAG rod master-oscillator power amplifier system,” Opt. Commun. 184(1-4), 231–236 (2000).
[CrossRef]

Petelin, J.

Petkovsek, R.

F. Bammer, R. Petkovsek, D. Schuöcker, and J. Mozina, “Dual-mode single-crystal photo-elastic modulator and possible applications,” Appl. Opt. 48(7), 86–91 (2008).

F. Bammer and R. Petkovsek, “Q-switching of a fiber laser with a single crystal photo-elastic modulator,” Opt. Express 15(10), 6177–6182 (2007).
[CrossRef] [PubMed]

Petkovšek, R.

Schumi, T.

Schuöcker, D.

F. Bammer, R. Petkovsek, D. Schuöcker, and J. Mozina, “Dual-mode single-crystal photo-elastic modulator and possible applications,” Appl. Opt. 48(7), 86–91 (2008).

Shi, P.

Stolzenburg, C.

Tajime, T.

Y. Hirano, N. Pavel, S. Yamamoto, Y. Koyata, and T. Tajime, “100-W, 100-h external green generation with Nd:YAG rod master-oscillator power amplifier system,” Opt. Commun. 184(1-4), 231–236 (2000).
[CrossRef]

Wang, D.

Ya, X.

X. Ya, Q. Liu, M. Gong, X. Fu, and D. Wang, “High-repetition-rate high-beam-quality 43W ultraviolet laser with extra-cavity third harmonic generation,” Appl. Phys. B 95(2), 323–328 (2009).
[CrossRef]

Yamamoto, S.

Y. Hirano, N. Pavel, S. Yamamoto, Y. Koyata, and T. Tajime, “100-W, 100-h external green generation with Nd:YAG rod master-oscillator power amplifier system,” Opt. Commun. 184(1-4), 231–236 (2000).
[CrossRef]

Yan, X.

Yi, J.

Zhang, H.

Appl. Opt.

Appl. Phys. B

X. Ya, Q. Liu, M. Gong, X. Fu, and D. Wang, “High-repetition-rate high-beam-quality 43W ultraviolet laser with extra-cavity third harmonic generation,” Appl. Phys. B 95(2), 323–328 (2009).
[CrossRef]

Opt. Commun.

Y. Hirano, N. Pavel, S. Yamamoto, Y. Koyata, and T. Tajime, “100-W, 100-h external green generation with Nd:YAG rod master-oscillator power amplifier system,” Opt. Commun. 184(1-4), 231–236 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Other

A. Alfrey and E. Sinofsky, “High Efficiency High Repetition Rate, Intra-Cavity Tripled Diode Pumped Solid State Laser” patent 6.002.695 (1999)

K. C. Liu, “Dual Head Laser System With Intra-Cavity Polarization, and Particle Image Velocimetry System Using Same,” US patent 2004/0100999 A1 (2004)

B.C. Johnson and R. Herbst, “Laser resonator with laser medium exhibiting thermally induced birefringence,” patent A2 0 370 620 (1990).

C. Naiman and S. Pompian, “Multi-Color, Multi-Pulse Laser,” US patent 6.199.794 (2001).

L. Sun and Y. Sun, “Methods and Systems for Synchronized Pulse Shape Tailoring,” patent WO 2006/062744 A2 (2006).

B. Kmetec, B. Podobnik, and G. Kusnezow, “Mehrkanaliger Laser,” patent DE 10 2007 002 472 A1 (2008).

D. N. Nikogosyan, “Nonlinear Optical Crystals,” Springer, 185–190 (2005)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scheme of the setup based on a diode-pumped Nd:YVO4-laser.

Fig. 2
Fig. 2

The SCPEM can operate without or with the λ/4-plate. The graph (a) and (b) show the retardation (green curve) and transmission of the SCPEM without and with a λ/4-plate, respectively. The blue curve is the SCPEM transmission curve for channel 1 and the red curve is the SCPEM transmission curve for channel 2.

Fig. 3
Fig. 3

Principle of operation and available repetition rates for the setup without (a) and with λ/4-plate (b). The two upper curves represent SCPEM-transmission. The pairs of curves below represent the overall transmission of channel 1 (blue curves) and 2 (red curves) for four particular repetition frequencies. The overall transmission is obtained as a combination of SCPEM and AOM transmission. Horizontal axis represents normalized time: t x fR.

Fig. 4
Fig. 4

Pulse operation for the setup without (left graph) and with a λ/4-plate (right graph). The two upper curves correspond to SCPEM transmission. Lower curves correspond to the measured output laser pulses from channel 1 (blue) and channel 2 (red) for four different repetition rates as marked in the graph.

Tables (2)

Tables Icon

Table 1 Laser pulse parameters of dual channel laser for four highest repetition rate of the SCPEM with a resonance frequency of 91.5 kHz and setup without λ/4 plate.

Tables Icon

Table 2 Laser pulse parameters of the single channel laser for the same single channel frequency as in Table 1

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

δ(t)= δ 1 sin(2π f R t)
T= 1 2 ( 1+cos( δ ) )= 1 2 ( 1+cos( δ 1 sin( 2π f R t ) ) )
T= 1 2 ( 1+cos( δ±π/2 ) )= 1 2 ( 1+cos( δ 1 sin( 2π f R t )±π/2 ) )

Metrics