Abstract

We present a novel method, based on stimulated Brillouin scattering (SBS), for the simultaneous distributed measurement of fast strain variations along the entire length of the sensing fiber. A specially synthesized and adaptable probe wave is used to place the Brillouin interaction always on the slope of the local Brillouin gain spectrum, allowing a single pump pulse to sample fast strain variations along the full length of a fiber with an arbitrary distribution of the Brillouin frequency shift. In this early demonstration of the method, strain vibrations of a few hundred Hz are demonstrated, simultaneously measured on two different sections of an 85m long fiber, having different static Brillouin shifts and with a spatial resolution of 1.5m.

© 2011 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin Gain Spectrum Characterization in Single-Mode Optical Fibers,” IEEE J. Light. Technol. 15(10), 1842–1851 (1997).
    [CrossRef]
  2. A. W. Brown, B. G. Colpitts, and K. Brown, “Dark-Pulse Brillouin Optical Time-Domain Sensor with 20-mm Spatial Resolution,” IEEE J. Light. Technol. 25(1), 381–386 (2007).
    [CrossRef]
  3. W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16(26), 21616–21625 (2008).
    [CrossRef] [PubMed]
  4. S. M. Foaleng, M. Tur, J.-C. Beugnot, and L. Thevenaz, “High spatial and spectral resolution long-range sensing using brillouin echoes,” IEEE J. Light. Tech. 28(20), 2993–3003 (2010).
    [CrossRef]
  5. K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
    [CrossRef] [PubMed]
  6. Y. S. Kwang and K. Hotate, “Distributed Fiber Strain Sensor with 1-kHz Sampling Rate Based on Brillouin Optical Correlation Domain Analysis,” IEEE Photon. Technol. Lett.  19(23), 1928–1930 (2007).
    [CrossRef]
  7. K. Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” Opt. Lett. 36(11), 2062–2064 (2011).
    [CrossRef] [PubMed]
  8. L. Thévenaz, “Inelastic Scatterings and Applications to Distributed Sensing” in Advanced Fiber Optics - Concepts and Technology, Thévenaz L. ed, (Lausanne, Switzerland: EPFL Press, 2011).
  9. Z. Zhang and X. Bao, “Distributed optical fiber vibration sensor based on spectrum analysis of Polarization-OTDR system,” Opt. Express 16(14), 10240–10247 (2008).
    [CrossRef] [PubMed]
  10. A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008).
    [CrossRef] [PubMed]
  11. A. Voskoboinik, J. Wang, B. Shamee, R. S. Nuccio, L. Zhang, M. Chitgarha, E. A. Willner, and M. Tur, “SBS-Based Fiber Optical Sensing Using Frequency-Domain Simultaneous Tone Interrogation, ” IEEE J. Light.Technol. 29, 1729–1735 (2011).
  12. K. Hotate and S. S. L. Ong, “Distributed fiber Brillouin strain sensing by correlation-based continuous-wave technique ~cm-order spatial resolution and dynamic strain measurement,” Proc. SPIE 4920, 299–310 (2002).
    [CrossRef]
  13. R. Bernini, A. Minardo, and L. Zeni, “Dynamic strain measurement in optical fibers by stimulated Brillouin scattering,” Opt. Lett. 34(17), 2613–2615 (2009).
    [CrossRef] [PubMed]
  14. Y. Peled, A. Motil, L. Yaron, and M. Tur, “Distributed and dynamical Brillouin sensing in optical fibers,” Proc. SPIE 7753, 775323, 775323-4 (2011).
    [CrossRef]
  15. K. Shimizu, T. Horiguchi, and Y. Koyamada, “Measurement of distributed strain and temperature in a branched optical fiber network by use of Brillouin optical time-domain reflectometry,” Opt. Lett. 20(5), 507–509 (1995).
    [CrossRef] [PubMed]
  16. X. Bao, A. Brown, M. Demerchant, and J. Smith, “Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (<10-ns) pulses,” Opt. Lett. 24(8), 510–512 (1999).
    [CrossRef] [PubMed]

2011 (3)

A. Voskoboinik, J. Wang, B. Shamee, R. S. Nuccio, L. Zhang, M. Chitgarha, E. A. Willner, and M. Tur, “SBS-Based Fiber Optical Sensing Using Frequency-Domain Simultaneous Tone Interrogation, ” IEEE J. Light.Technol. 29, 1729–1735 (2011).

Y. Peled, A. Motil, L. Yaron, and M. Tur, “Distributed and dynamical Brillouin sensing in optical fibers,” Proc. SPIE 7753, 775323, 775323-4 (2011).
[CrossRef]

K. Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” Opt. Lett. 36(11), 2062–2064 (2011).
[CrossRef] [PubMed]

2010 (1)

S. M. Foaleng, M. Tur, J.-C. Beugnot, and L. Thevenaz, “High spatial and spectral resolution long-range sensing using brillouin echoes,” IEEE J. Light. Tech. 28(20), 2993–3003 (2010).
[CrossRef]

2009 (1)

2008 (3)

2007 (2)

Y. S. Kwang and K. Hotate, “Distributed Fiber Strain Sensor with 1-kHz Sampling Rate Based on Brillouin Optical Correlation Domain Analysis,” IEEE Photon. Technol. Lett.  19(23), 1928–1930 (2007).
[CrossRef]

A. W. Brown, B. G. Colpitts, and K. Brown, “Dark-Pulse Brillouin Optical Time-Domain Sensor with 20-mm Spatial Resolution,” IEEE J. Light. Technol. 25(1), 381–386 (2007).
[CrossRef]

2006 (1)

2002 (1)

K. Hotate and S. S. L. Ong, “Distributed fiber Brillouin strain sensing by correlation-based continuous-wave technique ~cm-order spatial resolution and dynamic strain measurement,” Proc. SPIE 4920, 299–310 (2002).
[CrossRef]

1999 (1)

1997 (1)

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin Gain Spectrum Characterization in Single-Mode Optical Fibers,” IEEE J. Light. Technol. 15(10), 1842–1851 (1997).
[CrossRef]

1995 (1)

Bao, X.

Bernini, R.

Beugnot, J.-C.

S. M. Foaleng, M. Tur, J.-C. Beugnot, and L. Thevenaz, “High spatial and spectral resolution long-range sensing using brillouin echoes,” IEEE J. Light. Tech. 28(20), 2993–3003 (2010).
[CrossRef]

Brown, A.

Brown, A. W.

A. W. Brown, B. G. Colpitts, and K. Brown, “Dark-Pulse Brillouin Optical Time-Domain Sensor with 20-mm Spatial Resolution,” IEEE J. Light. Technol. 25(1), 381–386 (2007).
[CrossRef]

Brown, K.

A. W. Brown, B. G. Colpitts, and K. Brown, “Dark-Pulse Brillouin Optical Time-Domain Sensor with 20-mm Spatial Resolution,” IEEE J. Light. Technol. 25(1), 381–386 (2007).
[CrossRef]

Chen, L.

Chitgarha, M.

A. Voskoboinik, J. Wang, B. Shamee, R. S. Nuccio, L. Zhang, M. Chitgarha, E. A. Willner, and M. Tur, “SBS-Based Fiber Optical Sensing Using Frequency-Domain Simultaneous Tone Interrogation, ” IEEE J. Light.Technol. 29, 1729–1735 (2011).

Colpitts, B. G.

A. W. Brown, B. G. Colpitts, and K. Brown, “Dark-Pulse Brillouin Optical Time-Domain Sensor with 20-mm Spatial Resolution,” IEEE J. Light. Technol. 25(1), 381–386 (2007).
[CrossRef]

Demerchant, M.

Eyal, A.

Foaleng, S. M.

S. M. Foaleng, M. Tur, J.-C. Beugnot, and L. Thevenaz, “High spatial and spectral resolution long-range sensing using brillouin echoes,” IEEE J. Light. Tech. 28(20), 2993–3003 (2010).
[CrossRef]

He, Z.

Horiguchi, T.

Hotate, K.

K. Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” Opt. Lett. 36(11), 2062–2064 (2011).
[CrossRef] [PubMed]

Y. S. Kwang and K. Hotate, “Distributed Fiber Strain Sensor with 1-kHz Sampling Rate Based on Brillouin Optical Correlation Domain Analysis,” IEEE Photon. Technol. Lett.  19(23), 1928–1930 (2007).
[CrossRef]

K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
[CrossRef] [PubMed]

K. Hotate and S. S. L. Ong, “Distributed fiber Brillouin strain sensing by correlation-based continuous-wave technique ~cm-order spatial resolution and dynamic strain measurement,” Proc. SPIE 4920, 299–310 (2002).
[CrossRef]

Kishi, M.

Koyamada, Y.

Kwang, Y. S.

Y. S. Kwang and K. Hotate, “Distributed Fiber Strain Sensor with 1-kHz Sampling Rate Based on Brillouin Optical Correlation Domain Analysis,” IEEE Photon. Technol. Lett.  19(23), 1928–1930 (2007).
[CrossRef]

Li, W.

Li, Y.

Minardo, A.

Motil, A.

Y. Peled, A. Motil, L. Yaron, and M. Tur, “Distributed and dynamical Brillouin sensing in optical fibers,” Proc. SPIE 7753, 775323, 775323-4 (2011).
[CrossRef]

Nikles, M.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin Gain Spectrum Characterization in Single-Mode Optical Fibers,” IEEE J. Light. Technol. 15(10), 1842–1851 (1997).
[CrossRef]

Nuccio, R. S.

A. Voskoboinik, J. Wang, B. Shamee, R. S. Nuccio, L. Zhang, M. Chitgarha, E. A. Willner, and M. Tur, “SBS-Based Fiber Optical Sensing Using Frequency-Domain Simultaneous Tone Interrogation, ” IEEE J. Light.Technol. 29, 1729–1735 (2011).

Ong, S. S. L.

K. Hotate and S. S. L. Ong, “Distributed fiber Brillouin strain sensing by correlation-based continuous-wave technique ~cm-order spatial resolution and dynamic strain measurement,” Proc. SPIE 4920, 299–310 (2002).
[CrossRef]

Peled, Y.

Y. Peled, A. Motil, L. Yaron, and M. Tur, “Distributed and dynamical Brillouin sensing in optical fibers,” Proc. SPIE 7753, 775323, 775323-4 (2011).
[CrossRef]

Robert, P. A.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin Gain Spectrum Characterization in Single-Mode Optical Fibers,” IEEE J. Light. Technol. 15(10), 1842–1851 (1997).
[CrossRef]

Shamee, B.

A. Voskoboinik, J. Wang, B. Shamee, R. S. Nuccio, L. Zhang, M. Chitgarha, E. A. Willner, and M. Tur, “SBS-Based Fiber Optical Sensing Using Frequency-Domain Simultaneous Tone Interrogation, ” IEEE J. Light.Technol. 29, 1729–1735 (2011).

Shimizu, K.

Smith, J.

Song, K. Y.

Thevenaz, L.

S. M. Foaleng, M. Tur, J.-C. Beugnot, and L. Thevenaz, “High spatial and spectral resolution long-range sensing using brillouin echoes,” IEEE J. Light. Tech. 28(20), 2993–3003 (2010).
[CrossRef]

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin Gain Spectrum Characterization in Single-Mode Optical Fibers,” IEEE J. Light. Technol. 15(10), 1842–1851 (1997).
[CrossRef]

Thévenaz, L.

Tur, M.

Y. Peled, A. Motil, L. Yaron, and M. Tur, “Distributed and dynamical Brillouin sensing in optical fibers,” Proc. SPIE 7753, 775323, 775323-4 (2011).
[CrossRef]

A. Voskoboinik, J. Wang, B. Shamee, R. S. Nuccio, L. Zhang, M. Chitgarha, E. A. Willner, and M. Tur, “SBS-Based Fiber Optical Sensing Using Frequency-Domain Simultaneous Tone Interrogation, ” IEEE J. Light.Technol. 29, 1729–1735 (2011).

S. M. Foaleng, M. Tur, J.-C. Beugnot, and L. Thevenaz, “High spatial and spectral resolution long-range sensing using brillouin echoes,” IEEE J. Light. Tech. 28(20), 2993–3003 (2010).
[CrossRef]

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008).
[CrossRef] [PubMed]

Voskoboinik, A.

A. Voskoboinik, J. Wang, B. Shamee, R. S. Nuccio, L. Zhang, M. Chitgarha, E. A. Willner, and M. Tur, “SBS-Based Fiber Optical Sensing Using Frequency-Domain Simultaneous Tone Interrogation, ” IEEE J. Light.Technol. 29, 1729–1735 (2011).

Wang, J.

A. Voskoboinik, J. Wang, B. Shamee, R. S. Nuccio, L. Zhang, M. Chitgarha, E. A. Willner, and M. Tur, “SBS-Based Fiber Optical Sensing Using Frequency-Domain Simultaneous Tone Interrogation, ” IEEE J. Light.Technol. 29, 1729–1735 (2011).

Willner, E. A.

A. Voskoboinik, J. Wang, B. Shamee, R. S. Nuccio, L. Zhang, M. Chitgarha, E. A. Willner, and M. Tur, “SBS-Based Fiber Optical Sensing Using Frequency-Domain Simultaneous Tone Interrogation, ” IEEE J. Light.Technol. 29, 1729–1735 (2011).

Yaron, L.

Y. Peled, A. Motil, L. Yaron, and M. Tur, “Distributed and dynamical Brillouin sensing in optical fibers,” Proc. SPIE 7753, 775323, 775323-4 (2011).
[CrossRef]

Zadok, A.

Zeni, L.

Zhang, L.

A. Voskoboinik, J. Wang, B. Shamee, R. S. Nuccio, L. Zhang, M. Chitgarha, E. A. Willner, and M. Tur, “SBS-Based Fiber Optical Sensing Using Frequency-Domain Simultaneous Tone Interrogation, ” IEEE J. Light.Technol. 29, 1729–1735 (2011).

Zhang, Z.

Zilka, E.

IEEE J. Light. Tech. (1)

S. M. Foaleng, M. Tur, J.-C. Beugnot, and L. Thevenaz, “High spatial and spectral resolution long-range sensing using brillouin echoes,” IEEE J. Light. Tech. 28(20), 2993–3003 (2010).
[CrossRef]

IEEE J. Light. Technol. (2)

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin Gain Spectrum Characterization in Single-Mode Optical Fibers,” IEEE J. Light. Technol. 15(10), 1842–1851 (1997).
[CrossRef]

A. W. Brown, B. G. Colpitts, and K. Brown, “Dark-Pulse Brillouin Optical Time-Domain Sensor with 20-mm Spatial Resolution,” IEEE J. Light. Technol. 25(1), 381–386 (2007).
[CrossRef]

IEEE J. Light.Technol. (1)

A. Voskoboinik, J. Wang, B. Shamee, R. S. Nuccio, L. Zhang, M. Chitgarha, E. A. Willner, and M. Tur, “SBS-Based Fiber Optical Sensing Using Frequency-Domain Simultaneous Tone Interrogation, ” IEEE J. Light.Technol. 29, 1729–1735 (2011).

IEEE Photon. Technol. Lett. (1)

Y. S. Kwang and K. Hotate, “Distributed Fiber Strain Sensor with 1-kHz Sampling Rate Based on Brillouin Optical Correlation Domain Analysis,” IEEE Photon. Technol. Lett.  19(23), 1928–1930 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (5)

Proc. SPIE (2)

Y. Peled, A. Motil, L. Yaron, and M. Tur, “Distributed and dynamical Brillouin sensing in optical fibers,” Proc. SPIE 7753, 775323, 775323-4 (2011).
[CrossRef]

K. Hotate and S. S. L. Ong, “Distributed fiber Brillouin strain sensing by correlation-based continuous-wave technique ~cm-order spatial resolution and dynamic strain measurement,” Proc. SPIE 4920, 299–310 (2002).
[CrossRef]

Other (1)

L. Thévenaz, “Inelastic Scatterings and Applications to Distributed Sensing” in Advanced Fiber Optics - Concepts and Technology, Thévenaz L. ed, (Lausanne, Switzerland: EPFL Press, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics