Abstract

Lasing of whispering-gallery modes in nematic liquid-crystal microdroplets, floating in water, is demonstrated. It is shown that millimolar concentrations of sodium dodecyl sulfate in water effect the orientation of liquid-crystal molecules in the microdroplet, which changes the lasing spectrum. The presence of targeted molecules in water can be monitored by simply measuring and recognizing the spectrum of light, lasing from a small liquid-crystal droplet in water.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. G. de Gennes, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1974).
  2. T. Rasing and I. Muševič, Surfaces and Interfaces of Liquid Crystals (Springer, Berlin, Heidelberg, New York, 2004).
  3. J. M. Brake, M. K. Daschner, and N. L. Abbott, “Formation and characterization of phospholipid monolayers spontaneously assembled at interfaces between aqueous phases and thermotropic liquid crystals,” Langmuir 21, 2218–2228 (2005).
    [CrossRef] [PubMed]
  4. J. M. Brake, M. K. Daschner, Y. Y. Luk, and N. L. Abbott, “Biomolecular Interactions at Phospholipid-Decorated Surfaces of Liquid Crystals,” Science 302, 2094–2097 (2003).
    [CrossRef] [PubMed]
  5. Y. Y. Luk, M. L. Tingey, K. A. Dickson, R. T. Raines, and N. L. Abbott, “Imaging the Binding Ability of Proteins Immobilized on Surfaces with Different Orientations by Using Liquid Crystals,” J. Am. Chem. Soc. 126, 9024–9032 (2004).
    [CrossRef] [PubMed]
  6. C.-H. Jang, L.-L. Cheng, C. W. Olsen, and N. L. Abbott, “Anchoring of Nematic Liquid Crystals on Viruses with Different Envelope Structures,” Nano Lett. 6, 1053–1058 (2006).
    [CrossRef] [PubMed]
  7. S. Sivakumar, K. L. Wark, J. K. Gupta, N. L. Abbott, and F. Caruso, “Liquid Crystal Emulsions as the Basis of Biological Sensors for the Optical Detection of Bacteria and Viruses,” Adv. Funct. Mater. 19, 2260–2265 (2009).
    [CrossRef]
  8. M.I. Kinsinger, B. Sun, N.L. Abbott, and D.M. Lynn, “Reversible control of ordering transitions at aqueous/liquid crystal interfaces using functional amphiphilic polymers,” Adv. Mater. 19, 4208–4212 (2007).
    [CrossRef]
  9. N. A. Lockwood, J. K. Gupta, and N. L. Abbott, “Self-assembly of amphiphiles, polymers and proteins at interfaces between thermotropic liquid crystals and aqueous phases,” Surf. Sci. Rep. 63, 255–293 (2008).
    [CrossRef]
  10. M. K. McCamley, G. P. Crawford, M. Ravnik, S. Žumer, A. W. Artstein, and S. M. Opal, “Optical detection of anchoring at free and fluid surfaces using a nematic liquid crystal sensor,” Appl. Phys. Lett. 91, 141916-1–141916-4 (2007).
    [CrossRef]
  11. J. K. Gupta, J. S. Zimmerman, J. J. de Pablo, F. Caruso, and N. L. Abbott, “Characterization of Adsorbate-Induced Ordering Transitions of Liquid Crystals within Monodisperse Droplets,” Langmuir 25, 9016–9024 (2009).
    [CrossRef] [PubMed]
  12. E. Tjipto, K. D. Cadwell, J. F. Quinn, A. P. R. Johnston, N. L. Abbott, and F. Caruso, “Tailoring the Interfaces between Nematic Liquid Crystal Emulsions and Aqueous Phases via Layer-by-Layer Assembly,” Nano Lett. 6, 2243–2248 (2006).
    [CrossRef] [PubMed]
  13. I-H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-Induced Structural Transformations in Liquid Crystalline Droplets,” Science 332, 1297–1300 (2011).
    [CrossRef] [PubMed]
  14. O. D. Lavrentovich, “Topological defects in dispersed words and worlds around liquid crystals, or liquid crystal drops”, Liq. Cryst. 24, 117–125 (1998).
    [CrossRef]
  15. K.J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
    [CrossRef] [PubMed]
  16. L. Novotny and B. Hesht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2006).
  17. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule Detection with Optical Microcavities,” Science 317, 783–787 (2007).
    [CrossRef] [PubMed]
  18. M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
    [CrossRef]
  19. M. L. Gorodetsky and A. E. Fomin, “Geometrical Theory of Whispering-Gallery Modes,” IEEE J. Sel. Top. Quant. 12, 33–39 (2006).
    [CrossRef]
  20. M. Humar and I. Muševič, “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets,” Opt. Express 18, 26995–27003 (2010).
    [CrossRef]
  21. A. D. Rey, “Thermodynamics of soft anisotropic interfaces,” J. Chem. Phys. 120, 2010–2019 (2004).
    [CrossRef] [PubMed]
  22. B. D. Hamlington, B. Steinhaus, J. J. Feng, D. Link, M. J. Shelley, and A. Q. Shen, “Liquid crystal droplet production in a microfluidic device,” Liq. Cryst. 34, 861–870 (2007).
    [CrossRef]
  23. M. Tanyeri, R. Perron, and I. M. Kennedy, “Lasing droplets in a microfabricated channel,” Opt. Lett. 32, 2529–2531 (2007).
    [CrossRef] [PubMed]

2011 (1)

I-H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-Induced Structural Transformations in Liquid Crystalline Droplets,” Science 332, 1297–1300 (2011).
[CrossRef] [PubMed]

2010 (1)

2009 (3)

J. K. Gupta, J. S. Zimmerman, J. J. de Pablo, F. Caruso, and N. L. Abbott, “Characterization of Adsorbate-Induced Ordering Transitions of Liquid Crystals within Monodisperse Droplets,” Langmuir 25, 9016–9024 (2009).
[CrossRef] [PubMed]

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[CrossRef]

S. Sivakumar, K. L. Wark, J. K. Gupta, N. L. Abbott, and F. Caruso, “Liquid Crystal Emulsions as the Basis of Biological Sensors for the Optical Detection of Bacteria and Viruses,” Adv. Funct. Mater. 19, 2260–2265 (2009).
[CrossRef]

2008 (1)

N. A. Lockwood, J. K. Gupta, and N. L. Abbott, “Self-assembly of amphiphiles, polymers and proteins at interfaces between thermotropic liquid crystals and aqueous phases,” Surf. Sci. Rep. 63, 255–293 (2008).
[CrossRef]

2007 (5)

M. K. McCamley, G. P. Crawford, M. Ravnik, S. Žumer, A. W. Artstein, and S. M. Opal, “Optical detection of anchoring at free and fluid surfaces using a nematic liquid crystal sensor,” Appl. Phys. Lett. 91, 141916-1–141916-4 (2007).
[CrossRef]

M.I. Kinsinger, B. Sun, N.L. Abbott, and D.M. Lynn, “Reversible control of ordering transitions at aqueous/liquid crystal interfaces using functional amphiphilic polymers,” Adv. Mater. 19, 4208–4212 (2007).
[CrossRef]

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule Detection with Optical Microcavities,” Science 317, 783–787 (2007).
[CrossRef] [PubMed]

B. D. Hamlington, B. Steinhaus, J. J. Feng, D. Link, M. J. Shelley, and A. Q. Shen, “Liquid crystal droplet production in a microfluidic device,” Liq. Cryst. 34, 861–870 (2007).
[CrossRef]

M. Tanyeri, R. Perron, and I. M. Kennedy, “Lasing droplets in a microfabricated channel,” Opt. Lett. 32, 2529–2531 (2007).
[CrossRef] [PubMed]

2006 (3)

M. L. Gorodetsky and A. E. Fomin, “Geometrical Theory of Whispering-Gallery Modes,” IEEE J. Sel. Top. Quant. 12, 33–39 (2006).
[CrossRef]

E. Tjipto, K. D. Cadwell, J. F. Quinn, A. P. R. Johnston, N. L. Abbott, and F. Caruso, “Tailoring the Interfaces between Nematic Liquid Crystal Emulsions and Aqueous Phases via Layer-by-Layer Assembly,” Nano Lett. 6, 2243–2248 (2006).
[CrossRef] [PubMed]

C.-H. Jang, L.-L. Cheng, C. W. Olsen, and N. L. Abbott, “Anchoring of Nematic Liquid Crystals on Viruses with Different Envelope Structures,” Nano Lett. 6, 1053–1058 (2006).
[CrossRef] [PubMed]

2005 (1)

J. M. Brake, M. K. Daschner, and N. L. Abbott, “Formation and characterization of phospholipid monolayers spontaneously assembled at interfaces between aqueous phases and thermotropic liquid crystals,” Langmuir 21, 2218–2228 (2005).
[CrossRef] [PubMed]

2004 (2)

Y. Y. Luk, M. L. Tingey, K. A. Dickson, R. T. Raines, and N. L. Abbott, “Imaging the Binding Ability of Proteins Immobilized on Surfaces with Different Orientations by Using Liquid Crystals,” J. Am. Chem. Soc. 126, 9024–9032 (2004).
[CrossRef] [PubMed]

A. D. Rey, “Thermodynamics of soft anisotropic interfaces,” J. Chem. Phys. 120, 2010–2019 (2004).
[CrossRef] [PubMed]

2003 (2)

K.J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef] [PubMed]

J. M. Brake, M. K. Daschner, Y. Y. Luk, and N. L. Abbott, “Biomolecular Interactions at Phospholipid-Decorated Surfaces of Liquid Crystals,” Science 302, 2094–2097 (2003).
[CrossRef] [PubMed]

1998 (1)

O. D. Lavrentovich, “Topological defects in dispersed words and worlds around liquid crystals, or liquid crystal drops”, Liq. Cryst. 24, 117–125 (1998).
[CrossRef]

Abbott, N. L.

I-H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-Induced Structural Transformations in Liquid Crystalline Droplets,” Science 332, 1297–1300 (2011).
[CrossRef] [PubMed]

S. Sivakumar, K. L. Wark, J. K. Gupta, N. L. Abbott, and F. Caruso, “Liquid Crystal Emulsions as the Basis of Biological Sensors for the Optical Detection of Bacteria and Viruses,” Adv. Funct. Mater. 19, 2260–2265 (2009).
[CrossRef]

J. K. Gupta, J. S. Zimmerman, J. J. de Pablo, F. Caruso, and N. L. Abbott, “Characterization of Adsorbate-Induced Ordering Transitions of Liquid Crystals within Monodisperse Droplets,” Langmuir 25, 9016–9024 (2009).
[CrossRef] [PubMed]

N. A. Lockwood, J. K. Gupta, and N. L. Abbott, “Self-assembly of amphiphiles, polymers and proteins at interfaces between thermotropic liquid crystals and aqueous phases,” Surf. Sci. Rep. 63, 255–293 (2008).
[CrossRef]

E. Tjipto, K. D. Cadwell, J. F. Quinn, A. P. R. Johnston, N. L. Abbott, and F. Caruso, “Tailoring the Interfaces between Nematic Liquid Crystal Emulsions and Aqueous Phases via Layer-by-Layer Assembly,” Nano Lett. 6, 2243–2248 (2006).
[CrossRef] [PubMed]

C.-H. Jang, L.-L. Cheng, C. W. Olsen, and N. L. Abbott, “Anchoring of Nematic Liquid Crystals on Viruses with Different Envelope Structures,” Nano Lett. 6, 1053–1058 (2006).
[CrossRef] [PubMed]

J. M. Brake, M. K. Daschner, and N. L. Abbott, “Formation and characterization of phospholipid monolayers spontaneously assembled at interfaces between aqueous phases and thermotropic liquid crystals,” Langmuir 21, 2218–2228 (2005).
[CrossRef] [PubMed]

Y. Y. Luk, M. L. Tingey, K. A. Dickson, R. T. Raines, and N. L. Abbott, “Imaging the Binding Ability of Proteins Immobilized on Surfaces with Different Orientations by Using Liquid Crystals,” J. Am. Chem. Soc. 126, 9024–9032 (2004).
[CrossRef] [PubMed]

J. M. Brake, M. K. Daschner, Y. Y. Luk, and N. L. Abbott, “Biomolecular Interactions at Phospholipid-Decorated Surfaces of Liquid Crystals,” Science 302, 2094–2097 (2003).
[CrossRef] [PubMed]

Abbott, N.L.

M.I. Kinsinger, B. Sun, N.L. Abbott, and D.M. Lynn, “Reversible control of ordering transitions at aqueous/liquid crystal interfaces using functional amphiphilic polymers,” Adv. Mater. 19, 4208–4212 (2007).
[CrossRef]

Armani, A. M.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule Detection with Optical Microcavities,” Science 317, 783–787 (2007).
[CrossRef] [PubMed]

Artstein, A. W.

M. K. McCamley, G. P. Crawford, M. Ravnik, S. Žumer, A. W. Artstein, and S. M. Opal, “Optical detection of anchoring at free and fluid surfaces using a nematic liquid crystal sensor,” Appl. Phys. Lett. 91, 141916-1–141916-4 (2007).
[CrossRef]

Bertics, P. J.

I-H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-Induced Structural Transformations in Liquid Crystalline Droplets,” Science 332, 1297–1300 (2011).
[CrossRef] [PubMed]

Brake, J. M.

J. M. Brake, M. K. Daschner, and N. L. Abbott, “Formation and characterization of phospholipid monolayers spontaneously assembled at interfaces between aqueous phases and thermotropic liquid crystals,” Langmuir 21, 2218–2228 (2005).
[CrossRef] [PubMed]

J. M. Brake, M. K. Daschner, Y. Y. Luk, and N. L. Abbott, “Biomolecular Interactions at Phospholipid-Decorated Surfaces of Liquid Crystals,” Science 302, 2094–2097 (2003).
[CrossRef] [PubMed]

Cadwell, K. D.

E. Tjipto, K. D. Cadwell, J. F. Quinn, A. P. R. Johnston, N. L. Abbott, and F. Caruso, “Tailoring the Interfaces between Nematic Liquid Crystal Emulsions and Aqueous Phases via Layer-by-Layer Assembly,” Nano Lett. 6, 2243–2248 (2006).
[CrossRef] [PubMed]

Caruso, F.

J. K. Gupta, J. S. Zimmerman, J. J. de Pablo, F. Caruso, and N. L. Abbott, “Characterization of Adsorbate-Induced Ordering Transitions of Liquid Crystals within Monodisperse Droplets,” Langmuir 25, 9016–9024 (2009).
[CrossRef] [PubMed]

S. Sivakumar, K. L. Wark, J. K. Gupta, N. L. Abbott, and F. Caruso, “Liquid Crystal Emulsions as the Basis of Biological Sensors for the Optical Detection of Bacteria and Viruses,” Adv. Funct. Mater. 19, 2260–2265 (2009).
[CrossRef]

E. Tjipto, K. D. Cadwell, J. F. Quinn, A. P. R. Johnston, N. L. Abbott, and F. Caruso, “Tailoring the Interfaces between Nematic Liquid Crystal Emulsions and Aqueous Phases via Layer-by-Layer Assembly,” Nano Lett. 6, 2243–2248 (2006).
[CrossRef] [PubMed]

Cheng, L.-L.

C.-H. Jang, L.-L. Cheng, C. W. Olsen, and N. L. Abbott, “Anchoring of Nematic Liquid Crystals on Viruses with Different Envelope Structures,” Nano Lett. 6, 1053–1058 (2006).
[CrossRef] [PubMed]

Crawford, G. P.

M. K. McCamley, G. P. Crawford, M. Ravnik, S. Žumer, A. W. Artstein, and S. M. Opal, “Optical detection of anchoring at free and fluid surfaces using a nematic liquid crystal sensor,” Appl. Phys. Lett. 91, 141916-1–141916-4 (2007).
[CrossRef]

Daschner, M. K.

J. M. Brake, M. K. Daschner, and N. L. Abbott, “Formation and characterization of phospholipid monolayers spontaneously assembled at interfaces between aqueous phases and thermotropic liquid crystals,” Langmuir 21, 2218–2228 (2005).
[CrossRef] [PubMed]

J. M. Brake, M. K. Daschner, Y. Y. Luk, and N. L. Abbott, “Biomolecular Interactions at Phospholipid-Decorated Surfaces of Liquid Crystals,” Science 302, 2094–2097 (2003).
[CrossRef] [PubMed]

de Gennes, P. G.

P. G. de Gennes, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1974).

de Pablo, J. J.

I-H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-Induced Structural Transformations in Liquid Crystalline Droplets,” Science 332, 1297–1300 (2011).
[CrossRef] [PubMed]

J. K. Gupta, J. S. Zimmerman, J. J. de Pablo, F. Caruso, and N. L. Abbott, “Characterization of Adsorbate-Induced Ordering Transitions of Liquid Crystals within Monodisperse Droplets,” Langmuir 25, 9016–9024 (2009).
[CrossRef] [PubMed]

Dickson, K. A.

Y. Y. Luk, M. L. Tingey, K. A. Dickson, R. T. Raines, and N. L. Abbott, “Imaging the Binding Ability of Proteins Immobilized on Surfaces with Different Orientations by Using Liquid Crystals,” J. Am. Chem. Soc. 126, 9024–9032 (2004).
[CrossRef] [PubMed]

Feng, J. J.

B. D. Hamlington, B. Steinhaus, J. J. Feng, D. Link, M. J. Shelley, and A. Q. Shen, “Liquid crystal droplet production in a microfluidic device,” Liq. Cryst. 34, 861–870 (2007).
[CrossRef]

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule Detection with Optical Microcavities,” Science 317, 783–787 (2007).
[CrossRef] [PubMed]

Fomin, A. E.

M. L. Gorodetsky and A. E. Fomin, “Geometrical Theory of Whispering-Gallery Modes,” IEEE J. Sel. Top. Quant. 12, 33–39 (2006).
[CrossRef]

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule Detection with Optical Microcavities,” Science 317, 783–787 (2007).
[CrossRef] [PubMed]

Gorodetsky, M. L.

M. L. Gorodetsky and A. E. Fomin, “Geometrical Theory of Whispering-Gallery Modes,” IEEE J. Sel. Top. Quant. 12, 33–39 (2006).
[CrossRef]

Gupta, J. K.

J. K. Gupta, J. S. Zimmerman, J. J. de Pablo, F. Caruso, and N. L. Abbott, “Characterization of Adsorbate-Induced Ordering Transitions of Liquid Crystals within Monodisperse Droplets,” Langmuir 25, 9016–9024 (2009).
[CrossRef] [PubMed]

S. Sivakumar, K. L. Wark, J. K. Gupta, N. L. Abbott, and F. Caruso, “Liquid Crystal Emulsions as the Basis of Biological Sensors for the Optical Detection of Bacteria and Viruses,” Adv. Funct. Mater. 19, 2260–2265 (2009).
[CrossRef]

N. A. Lockwood, J. K. Gupta, and N. L. Abbott, “Self-assembly of amphiphiles, polymers and proteins at interfaces between thermotropic liquid crystals and aqueous phases,” Surf. Sci. Rep. 63, 255–293 (2008).
[CrossRef]

Hamlington, B. D.

B. D. Hamlington, B. Steinhaus, J. J. Feng, D. Link, M. J. Shelley, and A. Q. Shen, “Liquid crystal droplet production in a microfluidic device,” Liq. Cryst. 34, 861–870 (2007).
[CrossRef]

Hesht, B.

L. Novotny and B. Hesht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2006).

Humar, M.

M. Humar and I. Muševič, “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets,” Opt. Express 18, 26995–27003 (2010).
[CrossRef]

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[CrossRef]

Jang, C.-H.

C.-H. Jang, L.-L. Cheng, C. W. Olsen, and N. L. Abbott, “Anchoring of Nematic Liquid Crystals on Viruses with Different Envelope Structures,” Nano Lett. 6, 1053–1058 (2006).
[CrossRef] [PubMed]

Johnston, A. P. R.

E. Tjipto, K. D. Cadwell, J. F. Quinn, A. P. R. Johnston, N. L. Abbott, and F. Caruso, “Tailoring the Interfaces between Nematic Liquid Crystal Emulsions and Aqueous Phases via Layer-by-Layer Assembly,” Nano Lett. 6, 2243–2248 (2006).
[CrossRef] [PubMed]

Kennedy, I. M.

Kinsinger, M.I.

M.I. Kinsinger, B. Sun, N.L. Abbott, and D.M. Lynn, “Reversible control of ordering transitions at aqueous/liquid crystal interfaces using functional amphiphilic polymers,” Adv. Mater. 19, 4208–4212 (2007).
[CrossRef]

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule Detection with Optical Microcavities,” Science 317, 783–787 (2007).
[CrossRef] [PubMed]

Lavrentovich, O. D.

O. D. Lavrentovich, “Topological defects in dispersed words and worlds around liquid crystals, or liquid crystal drops”, Liq. Cryst. 24, 117–125 (1998).
[CrossRef]

Lin, I-H.

I-H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-Induced Structural Transformations in Liquid Crystalline Droplets,” Science 332, 1297–1300 (2011).
[CrossRef] [PubMed]

Link, D.

B. D. Hamlington, B. Steinhaus, J. J. Feng, D. Link, M. J. Shelley, and A. Q. Shen, “Liquid crystal droplet production in a microfluidic device,” Liq. Cryst. 34, 861–870 (2007).
[CrossRef]

Lockwood, N. A.

N. A. Lockwood, J. K. Gupta, and N. L. Abbott, “Self-assembly of amphiphiles, polymers and proteins at interfaces between thermotropic liquid crystals and aqueous phases,” Surf. Sci. Rep. 63, 255–293 (2008).
[CrossRef]

Luk, Y. Y.

Y. Y. Luk, M. L. Tingey, K. A. Dickson, R. T. Raines, and N. L. Abbott, “Imaging the Binding Ability of Proteins Immobilized on Surfaces with Different Orientations by Using Liquid Crystals,” J. Am. Chem. Soc. 126, 9024–9032 (2004).
[CrossRef] [PubMed]

J. M. Brake, M. K. Daschner, Y. Y. Luk, and N. L. Abbott, “Biomolecular Interactions at Phospholipid-Decorated Surfaces of Liquid Crystals,” Science 302, 2094–2097 (2003).
[CrossRef] [PubMed]

Lynn, D.M.

M.I. Kinsinger, B. Sun, N.L. Abbott, and D.M. Lynn, “Reversible control of ordering transitions at aqueous/liquid crystal interfaces using functional amphiphilic polymers,” Adv. Mater. 19, 4208–4212 (2007).
[CrossRef]

McCamley, M. K.

M. K. McCamley, G. P. Crawford, M. Ravnik, S. Žumer, A. W. Artstein, and S. M. Opal, “Optical detection of anchoring at free and fluid surfaces using a nematic liquid crystal sensor,” Appl. Phys. Lett. 91, 141916-1–141916-4 (2007).
[CrossRef]

Miller, D. S.

I-H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-Induced Structural Transformations in Liquid Crystalline Droplets,” Science 332, 1297–1300 (2011).
[CrossRef] [PubMed]

Murphy, C. J.

I-H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-Induced Structural Transformations in Liquid Crystalline Droplets,” Science 332, 1297–1300 (2011).
[CrossRef] [PubMed]

Muševic, I.

M. Humar and I. Muševič, “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets,” Opt. Express 18, 26995–27003 (2010).
[CrossRef]

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[CrossRef]

T. Rasing and I. Muševič, Surfaces and Interfaces of Liquid Crystals (Springer, Berlin, Heidelberg, New York, 2004).

Novotny, L.

L. Novotny and B. Hesht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2006).

Olsen, C. W.

C.-H. Jang, L.-L. Cheng, C. W. Olsen, and N. L. Abbott, “Anchoring of Nematic Liquid Crystals on Viruses with Different Envelope Structures,” Nano Lett. 6, 1053–1058 (2006).
[CrossRef] [PubMed]

Opal, S. M.

M. K. McCamley, G. P. Crawford, M. Ravnik, S. Žumer, A. W. Artstein, and S. M. Opal, “Optical detection of anchoring at free and fluid surfaces using a nematic liquid crystal sensor,” Appl. Phys. Lett. 91, 141916-1–141916-4 (2007).
[CrossRef]

Pajk, S.

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[CrossRef]

Perron, R.

Quinn, J. F.

E. Tjipto, K. D. Cadwell, J. F. Quinn, A. P. R. Johnston, N. L. Abbott, and F. Caruso, “Tailoring the Interfaces between Nematic Liquid Crystal Emulsions and Aqueous Phases via Layer-by-Layer Assembly,” Nano Lett. 6, 2243–2248 (2006).
[CrossRef] [PubMed]

Raines, R. T.

Y. Y. Luk, M. L. Tingey, K. A. Dickson, R. T. Raines, and N. L. Abbott, “Imaging the Binding Ability of Proteins Immobilized on Surfaces with Different Orientations by Using Liquid Crystals,” J. Am. Chem. Soc. 126, 9024–9032 (2004).
[CrossRef] [PubMed]

Rasing, T.

T. Rasing and I. Muševič, Surfaces and Interfaces of Liquid Crystals (Springer, Berlin, Heidelberg, New York, 2004).

Ravnik, M.

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[CrossRef]

M. K. McCamley, G. P. Crawford, M. Ravnik, S. Žumer, A. W. Artstein, and S. M. Opal, “Optical detection of anchoring at free and fluid surfaces using a nematic liquid crystal sensor,” Appl. Phys. Lett. 91, 141916-1–141916-4 (2007).
[CrossRef]

Rey, A. D.

A. D. Rey, “Thermodynamics of soft anisotropic interfaces,” J. Chem. Phys. 120, 2010–2019 (2004).
[CrossRef] [PubMed]

Shelley, M. J.

B. D. Hamlington, B. Steinhaus, J. J. Feng, D. Link, M. J. Shelley, and A. Q. Shen, “Liquid crystal droplet production in a microfluidic device,” Liq. Cryst. 34, 861–870 (2007).
[CrossRef]

Shen, A. Q.

B. D. Hamlington, B. Steinhaus, J. J. Feng, D. Link, M. J. Shelley, and A. Q. Shen, “Liquid crystal droplet production in a microfluidic device,” Liq. Cryst. 34, 861–870 (2007).
[CrossRef]

Sivakumar, S.

S. Sivakumar, K. L. Wark, J. K. Gupta, N. L. Abbott, and F. Caruso, “Liquid Crystal Emulsions as the Basis of Biological Sensors for the Optical Detection of Bacteria and Viruses,” Adv. Funct. Mater. 19, 2260–2265 (2009).
[CrossRef]

Steinhaus, B.

B. D. Hamlington, B. Steinhaus, J. J. Feng, D. Link, M. J. Shelley, and A. Q. Shen, “Liquid crystal droplet production in a microfluidic device,” Liq. Cryst. 34, 861–870 (2007).
[CrossRef]

Sun, B.

M.I. Kinsinger, B. Sun, N.L. Abbott, and D.M. Lynn, “Reversible control of ordering transitions at aqueous/liquid crystal interfaces using functional amphiphilic polymers,” Adv. Mater. 19, 4208–4212 (2007).
[CrossRef]

Tanyeri, M.

Tingey, M. L.

Y. Y. Luk, M. L. Tingey, K. A. Dickson, R. T. Raines, and N. L. Abbott, “Imaging the Binding Ability of Proteins Immobilized on Surfaces with Different Orientations by Using Liquid Crystals,” J. Am. Chem. Soc. 126, 9024–9032 (2004).
[CrossRef] [PubMed]

Tjipto, E.

E. Tjipto, K. D. Cadwell, J. F. Quinn, A. P. R. Johnston, N. L. Abbott, and F. Caruso, “Tailoring the Interfaces between Nematic Liquid Crystal Emulsions and Aqueous Phases via Layer-by-Layer Assembly,” Nano Lett. 6, 2243–2248 (2006).
[CrossRef] [PubMed]

Vahala, K. J.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule Detection with Optical Microcavities,” Science 317, 783–787 (2007).
[CrossRef] [PubMed]

Vahala, K.J.

K.J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef] [PubMed]

Wark, K. L.

S. Sivakumar, K. L. Wark, J. K. Gupta, N. L. Abbott, and F. Caruso, “Liquid Crystal Emulsions as the Basis of Biological Sensors for the Optical Detection of Bacteria and Viruses,” Adv. Funct. Mater. 19, 2260–2265 (2009).
[CrossRef]

Zimmerman, J. S.

J. K. Gupta, J. S. Zimmerman, J. J. de Pablo, F. Caruso, and N. L. Abbott, “Characterization of Adsorbate-Induced Ordering Transitions of Liquid Crystals within Monodisperse Droplets,” Langmuir 25, 9016–9024 (2009).
[CrossRef] [PubMed]

Žumer, S.

M. K. McCamley, G. P. Crawford, M. Ravnik, S. Žumer, A. W. Artstein, and S. M. Opal, “Optical detection of anchoring at free and fluid surfaces using a nematic liquid crystal sensor,” Appl. Phys. Lett. 91, 141916-1–141916-4 (2007).
[CrossRef]

Adv. Funct. Mater. (1)

S. Sivakumar, K. L. Wark, J. K. Gupta, N. L. Abbott, and F. Caruso, “Liquid Crystal Emulsions as the Basis of Biological Sensors for the Optical Detection of Bacteria and Viruses,” Adv. Funct. Mater. 19, 2260–2265 (2009).
[CrossRef]

Adv. Mater. (1)

M.I. Kinsinger, B. Sun, N.L. Abbott, and D.M. Lynn, “Reversible control of ordering transitions at aqueous/liquid crystal interfaces using functional amphiphilic polymers,” Adv. Mater. 19, 4208–4212 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

M. K. McCamley, G. P. Crawford, M. Ravnik, S. Žumer, A. W. Artstein, and S. M. Opal, “Optical detection of anchoring at free and fluid surfaces using a nematic liquid crystal sensor,” Appl. Phys. Lett. 91, 141916-1–141916-4 (2007).
[CrossRef]

IEEE J. Sel. Top. Quant. (1)

M. L. Gorodetsky and A. E. Fomin, “Geometrical Theory of Whispering-Gallery Modes,” IEEE J. Sel. Top. Quant. 12, 33–39 (2006).
[CrossRef]

J. Am. Chem. Soc. (1)

Y. Y. Luk, M. L. Tingey, K. A. Dickson, R. T. Raines, and N. L. Abbott, “Imaging the Binding Ability of Proteins Immobilized on Surfaces with Different Orientations by Using Liquid Crystals,” J. Am. Chem. Soc. 126, 9024–9032 (2004).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

A. D. Rey, “Thermodynamics of soft anisotropic interfaces,” J. Chem. Phys. 120, 2010–2019 (2004).
[CrossRef] [PubMed]

Langmuir (2)

J. M. Brake, M. K. Daschner, and N. L. Abbott, “Formation and characterization of phospholipid monolayers spontaneously assembled at interfaces between aqueous phases and thermotropic liquid crystals,” Langmuir 21, 2218–2228 (2005).
[CrossRef] [PubMed]

J. K. Gupta, J. S. Zimmerman, J. J. de Pablo, F. Caruso, and N. L. Abbott, “Characterization of Adsorbate-Induced Ordering Transitions of Liquid Crystals within Monodisperse Droplets,” Langmuir 25, 9016–9024 (2009).
[CrossRef] [PubMed]

Liq. Cryst. (2)

O. D. Lavrentovich, “Topological defects in dispersed words and worlds around liquid crystals, or liquid crystal drops”, Liq. Cryst. 24, 117–125 (1998).
[CrossRef]

B. D. Hamlington, B. Steinhaus, J. J. Feng, D. Link, M. J. Shelley, and A. Q. Shen, “Liquid crystal droplet production in a microfluidic device,” Liq. Cryst. 34, 861–870 (2007).
[CrossRef]

Nano Lett. (2)

E. Tjipto, K. D. Cadwell, J. F. Quinn, A. P. R. Johnston, N. L. Abbott, and F. Caruso, “Tailoring the Interfaces between Nematic Liquid Crystal Emulsions and Aqueous Phases via Layer-by-Layer Assembly,” Nano Lett. 6, 2243–2248 (2006).
[CrossRef] [PubMed]

C.-H. Jang, L.-L. Cheng, C. W. Olsen, and N. L. Abbott, “Anchoring of Nematic Liquid Crystals on Viruses with Different Envelope Structures,” Nano Lett. 6, 1053–1058 (2006).
[CrossRef] [PubMed]

Nat. Photonics (1)

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[CrossRef]

Nature (1)

K.J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Science (3)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule Detection with Optical Microcavities,” Science 317, 783–787 (2007).
[CrossRef] [PubMed]

I-H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-Induced Structural Transformations in Liquid Crystalline Droplets,” Science 332, 1297–1300 (2011).
[CrossRef] [PubMed]

J. M. Brake, M. K. Daschner, Y. Y. Luk, and N. L. Abbott, “Biomolecular Interactions at Phospholipid-Decorated Surfaces of Liquid Crystals,” Science 302, 2094–2097 (2003).
[CrossRef] [PubMed]

Surf. Sci. Rep. (1)

N. A. Lockwood, J. K. Gupta, and N. L. Abbott, “Self-assembly of amphiphiles, polymers and proteins at interfaces between thermotropic liquid crystals and aqueous phases,” Surf. Sci. Rep. 63, 255–293 (2008).
[CrossRef]

Other (3)

P. G. de Gennes, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1974).

T. Rasing and I. Muševič, Surfaces and Interfaces of Liquid Crystals (Springer, Berlin, Heidelberg, New York, 2004).

L. Novotny and B. Hesht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The experimental setup. A selected 5CB microdroplet (blue dot, upper panel, top view) was held by the infrared laser tweezers in a blind leg of a microfluidic channel. Water with predetermined concentration of SDS was fed through the main channel at a rate of 500μl/min. The optical setup is shown in a side view in the bottom panel. The position of the focused infrared beam is controlled by two AODs, thus allowing for the manipulation and tweezing of the 5CB droplets in water. The green pulsed beam from the doubled Nd:YAG is used to induce the fluorescence of Nile red molecules, dissolved and captured inside the 5CB droplet. The imaging spectrometer is used to measure the optical spectrum emitted by the droplet. The CCD camera is used to take the photomicrographs of the droplets.

Fig. 2
Fig. 2

Fluorescence and lasing spectra of radial and bipolar nematic microdroplets. (a) At the SDS concentration of 4mM the 5CB droplet is in the radial configuration with a point defect in the center. The lines inside the droplet indicate molecular orientation. The fluorescence shows characteristic spectrum of WGMs. (b) In pure water with no SDS added, the 5CB droplet is in the bipolar configuration. No modes are visible in the fluorescence spectra of the microdroplet. (c) Above the lasing threshold of 0.25mJ/cm2, lasing of the WGMs is clearly observable in the radial droplet configuration. (d) Above the lasing threshold of 0.7mJ/cm2 several groups of lasing modes are clearly recognizable in the spectrum of 5CB microdroplet with bipolar director configuration.

Fig. 3
Fig. 3

The intensity of the laser line as the pump laser intensity is increased, for (a) radial 5CB nematic microdroplet and, (b) bipolar 5CB nematic microdroplet, both 13.7μm in diameter. The lines are drawn as a guide for the eye. In both cases a clear threshold for lasing is observed.

Fig. 4
Fig. 4

Changes of the structure of a small droplet of the nematic liquid crystal at increasing concentrations of SDS. (a) The lines represent the orientation of the long axes of the LC molecules. The dots are point defects, where the orientation is not defined. In pure water, the LC molecules align parallel to the water-LC interface and the structure is bipolar. By increasing the SDS concentration, the surface anchoring of LC molecules gradually changes towards the perpendicular molecular orientation, obtained at 2.0mM of SDS and beyond. (b) Non-polarized optical microscope images of ∼ 17μm diameter microdroplets of 5CB in water and SDS. The “inner” ring is observable at 0.2mM of SDS. The point defect evolves at the surface and sinks into the center at 0.8mM concentration of SDS. Scale bar 10μm. (c) The same images as in (b), taken between crossed polarizers. (d) The spectrum of laser light, emitted from a 13μm 5CB droplet in water with various concentrations of SDS added. (e) Part of the lasing spectrum in the “chaotic” regime of intermediate SDS concentrations (0.3 – 0.4mM) of a 16μm droplet.

Metrics