Abstract

We have constructed a singly resonant, continuous-wave optical parametric oscillator, where the signal beam resonates and is amplified by a semiconductor gain mirror. The gain mirror can significantly decrease the oscillation threshold compared to an identical system with conventional mirrors. The largest idler beam tuning range reached by changing the pump laser wavelength alone is from 3.6 to 4.7 µm. The single mode output power is limited but can be continuously scanned for at least 220 GHz by adding optical components in the oscillator cavity for increased stability.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, “Continuous-wave singly resonant optical parametric oscillator based on periodically poled LiNbO(3),” Opt. Lett. 21(10), 713–715 (1996).
    [CrossRef] [PubMed]
  2. M. Siltanen, M. Vainio, and L. Halonen, “Pump-tunable continuous-wave singly resonant optical parametric oscillator from 2.5 to 4.4 µm,” Opt. Express 18(13), 14087–14092 (2010).
    [CrossRef] [PubMed]
  3. I. Breunig, J. Kiessling, B. Knabe, R. Sowade, and K. Buse, “Hybridly-pumped continuous-wave optical parametric oscillator,” Opt. Express 16(8), 5662–5666 (2008).
    [CrossRef] [PubMed]
  4. G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
    [CrossRef]
  5. A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, “Vertical-external-cavity semiconductor lasers,” J. Phys. D Appl. Phys. 37(9), R75–R85 (2004).
    [CrossRef]
  6. T. Ba-Chu and M. Broyer, “Intracavity cw difference frequency generation by mixing three photons and using Gaussian laser beams,” J. Phys. 46(4), 523–533 (1985).
    [CrossRef]
  7. F. G. Colville, M. H. Dunn, and M. Ebrahimzadeh, “Continuous-wave, singly resonant, intracavity parametric oscillator,” Opt. Lett. 22(2), 75–77 (1997).
    [CrossRef] [PubMed]
  8. D. J. M. Stothard, J.-M. Hopkins, D. Burns, and M. H. Dunn, “Stable, continuous-wave, intracavity, optical parametric oscillator pumped by a semiconductor disk laser (VECSEL),” Opt. Express 17(13), 10648–10658 (2009).
    [CrossRef] [PubMed]
  9. I. Galli, S. Bartalini, S. Borri, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 4.5 μm,” Opt. Lett. 35(21), 3616–3618 (2010).
    [CrossRef] [PubMed]

2010

2009

2008

2004

A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, “Vertical-external-cavity semiconductor lasers,” J. Phys. D Appl. Phys. 37(9), R75–R85 (2004).
[CrossRef]

1997

1996

1985

T. Ba-Chu and M. Broyer, “Intracavity cw difference frequency generation by mixing three photons and using Gaussian laser beams,” J. Phys. 46(4), 523–533 (1985).
[CrossRef]

1968

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[CrossRef]

Alexander, J. I.

Ba-Chu, T.

T. Ba-Chu and M. Broyer, “Intracavity cw difference frequency generation by mixing three photons and using Gaussian laser beams,” J. Phys. 46(4), 523–533 (1985).
[CrossRef]

Bartalini, S.

Borri, S.

Bosenberg, W. R.

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[CrossRef]

Breunig, I.

Broyer, M.

T. Ba-Chu and M. Broyer, “Intracavity cw difference frequency generation by mixing three photons and using Gaussian laser beams,” J. Phys. 46(4), 523–533 (1985).
[CrossRef]

Burns, D.

Buse, K.

Byer, R. L.

Cancio, P.

Colville, F. G.

De Natale, P.

Drobshoff, A.

Dunn, M. H.

Ebrahimzadeh, M.

Foreman, H. D.

A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, “Vertical-external-cavity semiconductor lasers,” J. Phys. D Appl. Phys. 37(9), R75–R85 (2004).
[CrossRef]

Galli, I.

Garnache, A.

A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, “Vertical-external-cavity semiconductor lasers,” J. Phys. D Appl. Phys. 37(9), R75–R85 (2004).
[CrossRef]

Giusfredi, G.

Halonen, L.

Hoogland, S. H.

A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, “Vertical-external-cavity semiconductor lasers,” J. Phys. D Appl. Phys. 37(9), R75–R85 (2004).
[CrossRef]

Hopkins, J.-M.

Kiessling, J.

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[CrossRef]

Knabe, B.

Mazzotti, D.

Myers, L. E.

Siltanen, M.

Sowade, R.

Stothard, D. J. M.

Tropper, A. C.

A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, “Vertical-external-cavity semiconductor lasers,” J. Phys. D Appl. Phys. 37(9), R75–R85 (2004).
[CrossRef]

Vainio, M.

Wilcox, K. G.

A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, “Vertical-external-cavity semiconductor lasers,” J. Phys. D Appl. Phys. 37(9), R75–R85 (2004).
[CrossRef]

J. Appl. Phys.

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[CrossRef]

J. Phys.

T. Ba-Chu and M. Broyer, “Intracavity cw difference frequency generation by mixing three photons and using Gaussian laser beams,” J. Phys. 46(4), 523–533 (1985).
[CrossRef]

J. Phys. D Appl. Phys.

A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, “Vertical-external-cavity semiconductor lasers,” J. Phys. D Appl. Phys. 37(9), R75–R85 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The optical setup of the SRO with gain mirror. HR stands for “highly reflective”, MIR for “middle infrared”, DBS for “dichroic beam splitter”, and DBR for “distributed Bragg reflector”. The green arrows indicate the route of the signal beam in the standing-wave cavity. The schematic structure of the gain mirror is shown on the right.

Fig. 2
Fig. 2

a) The oscillation threshold of the SRO with gain mirror operating at short idler wavelengths. The dashed gray line shows the corresponding experimental oscillation threshold level of a conventional SRO, i.e., when the gain mirror is replaced by a regular highly reflecting mirror. b) The oscillation threshold at long idler wavelengths. The corresponding oscillation threshold using a conventional mirror is unknown due to insufficient pump power.

Fig. 3
Fig. 3

The pump depletion of the SRO with gain mirror operating at 3.10 µm idler wavelength as a function of a) the tunable pump beam power using various gain mirror power levels and b) the gain mirror pump power at a fixed pump beam power level. The pump depletion of the corresponding, conventional SRO without the gain mirror is also shown in a) for comparison.

Fig. 4
Fig. 4

Scanning the SRO with the gain mirror. A birefringent filter and etalon were inserted into the cavity to improve stability. The discontinuity is due to an etalon mode-hop in the pump laser.

Metrics