Abstract

Waveguide Bragg gratings (WBGs) were directly inscribed into Alkaline Earth Boro-Aluminosilicate glass samples in a single process step at high fabrication speeds. We utilized a 5.1 MHz femtosecond oscillator to exploit high repetition rate heat accumulation effects. The pulse energy was modulated using a Pockels cell in order to fabricate waveguides that contain a periodic array of nano-structures inside their core. We have demonstrated, for the first time, that the transient build-up of heat accumulation within the sample can lead to the formation of a permanent nano-void. This effect can be exploited to fabricate WBGs at high speeds.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  2. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [CrossRef]
  3. G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide-Bragg gratings in bulk fused silica,” Opt. Lett. 31(18), 2690–2691 (2006).
    [CrossRef] [PubMed]
  4. H. Zhang, S. M. Eaton, and P. R. Herman, “Single-step writing of Bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser,” Opt. Lett. 32(17), 2559–2561 (2007).
    [CrossRef] [PubMed]
  5. G. D. Marshall, P. Dekker, M. Ams, J. A. Piper, and M. J. Withford, “Directly written monolithic waveguide laser incorporating a distributed feedback waveguide-Bragg grating,” Opt. Lett. 33(9), 956–958 (2008).
    [CrossRef] [PubMed]
  6. S. Nolte, M. Will, J. Burghoff, and A. Tunnermann, “Ultrafast laser processing: New options for three-dimensional photonic structures,” J. Mod. Opt. 51(16), 2533–2542 (2004).
    [CrossRef]
  7. R. Osellame, N. Chiodo, V. Maselli, A. Yin, M. Zavelani-Rossi, G. Cerullo, P. Laporta, L. Aiello, S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Optical properties of waveguides written by a 26 MHz stretched cavity Ti:sapphire femtosecond oscillator,” Opt. Express 13(2), 612–620 (2005).
    [CrossRef] [PubMed]
  8. S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
    [CrossRef] [PubMed]
  9. M. Ams, G. D. Marshall, D. J. Spence, and M. J. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express 13(15), 5676–5681 (2005).
    [CrossRef] [PubMed]
  10. R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B 20(7), 1559–1567 (2003).
    [CrossRef]
  11. H. Kakiuchida, K. Saito, and A. J. Ikushima, “Refractive index, density and polarizability of silica glass with various fictive temperatures,” Jpn. J. Appl. Phys. 43(6A), L743–L745 (2004).
    [CrossRef]
  12. D. J. Little, M. Ams, P. Dekker, G. D. Marshall, J. M. Dawes, and M. J. Withford, “Femtosecond laser modification of fused silica: the effect of writing polarization on Si-O ring structure,” Opt. Express 16(24), 20029–20037 (2008).
    [CrossRef] [PubMed]
  13. D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc. 42(4), 715–718 (2011).
    [CrossRef]
  14. C. Miese, A. Fuerbach, and M. Withford, “Dynamics of waveguide writing using a high pulse energy (600 nJ) MHz femtosecond oscillator,” in CLEO/Europe and EQEC 2009 Conference Digest (Optical Society of America, 2009), paper CM_P12.
  15. C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
    [CrossRef]
  16. G. Ghosh, Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic, San Diego, Calif., 1998.
  17. A. Agarwal and M. Tomozawa, “Correlation of silica glass properties with the infrared spectra,” J. Non-Cryst. Solids 209(1-2), 166–174 (1997).
    [CrossRef]
  18. C. Lu, J. Cui, and Y. Cui, “Reflection spectra of fiber Bragg gratings with random fluctuations,” Opt. Fiber Technol. 14(2), 97–101 (2008).
    [CrossRef]
  19. M. Lenzner, “Femtosecond laser-induced damage of dielectrics,” Int. J. Mod. Phys. B 13(13), 1559–1578 (1999).
    [CrossRef]
  20. B. Poumellec, M. Lancry, A. Chahid-Erraji, and P. Kazansky, “Modification thresholds in femtosecond laser processing of pure silica: review of dependencies on laser parameters [Invited],” Opt. Mater. Express 1(4), 766–782 (2011).
    [CrossRef]
  21. S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Is the nano-explosion really microscopic?” J. Non-Cryst. Solids 355(18-21), 1160–1162 (2009).
    [CrossRef]
  22. L. Hallo, C. Mézel, A. Bourgeade, D. Hébert, E. G. Gamaly, and S. Juodkazis, “Laser-matter interaction in transparent materials: confined micro-explosion and jet formation,” in Extreme Photonics Applications (Springer, 2010), pp. 121–146.
  23. E. G. Gamaly, S. Juodkazis, H. Misawa, B. Luther-Davies, A. V. Rode, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Formation of nano-voids in transparent dielectrics by femtosecond lasers,” Curr. Appl. Phys. 8(3-4), 412–415 (2008).
    [CrossRef]
  24. L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108(4), 043523 (2010).
    [CrossRef]

2011 (2)

D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc. 42(4), 715–718 (2011).
[CrossRef]

B. Poumellec, M. Lancry, A. Chahid-Erraji, and P. Kazansky, “Modification thresholds in femtosecond laser processing of pure silica: review of dependencies on laser parameters [Invited],” Opt. Mater. Express 1(4), 766–782 (2011).
[CrossRef]

2010 (1)

L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108(4), 043523 (2010).
[CrossRef]

2009 (1)

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Is the nano-explosion really microscopic?” J. Non-Cryst. Solids 355(18-21), 1160–1162 (2009).
[CrossRef]

2008 (5)

E. G. Gamaly, S. Juodkazis, H. Misawa, B. Luther-Davies, A. V. Rode, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Formation of nano-voids in transparent dielectrics by femtosecond lasers,” Curr. Appl. Phys. 8(3-4), 412–415 (2008).
[CrossRef]

C. Lu, J. Cui, and Y. Cui, “Reflection spectra of fiber Bragg gratings with random fluctuations,” Opt. Fiber Technol. 14(2), 97–101 (2008).
[CrossRef]

G. D. Marshall, P. Dekker, M. Ams, J. A. Piper, and M. J. Withford, “Directly written monolithic waveguide laser incorporating a distributed feedback waveguide-Bragg grating,” Opt. Lett. 33(9), 956–958 (2008).
[CrossRef] [PubMed]

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, J. M. Dawes, and M. J. Withford, “Femtosecond laser modification of fused silica: the effect of writing polarization on Si-O ring structure,” Opt. Express 16(24), 20029–20037 (2008).
[CrossRef] [PubMed]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

2007 (1)

2006 (1)

2005 (3)

2004 (2)

H. Kakiuchida, K. Saito, and A. J. Ikushima, “Refractive index, density and polarizability of silica glass with various fictive temperatures,” Jpn. J. Appl. Phys. 43(6A), L743–L745 (2004).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tunnermann, “Ultrafast laser processing: New options for three-dimensional photonic structures,” J. Mod. Opt. 51(16), 2533–2542 (2004).
[CrossRef]

2003 (2)

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[CrossRef]

R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B 20(7), 1559–1567 (2003).
[CrossRef]

1999 (1)

M. Lenzner, “Femtosecond laser-induced damage of dielectrics,” Int. J. Mod. Phys. B 13(13), 1559–1578 (1999).
[CrossRef]

1997 (1)

A. Agarwal and M. Tomozawa, “Correlation of silica glass properties with the infrared spectra,” J. Non-Cryst. Solids 209(1-2), 166–174 (1997).
[CrossRef]

1996 (1)

Agarwal, A.

A. Agarwal and M. Tomozawa, “Correlation of silica glass properties with the infrared spectra,” J. Non-Cryst. Solids 209(1-2), 166–174 (1997).
[CrossRef]

Aiello, L.

Ams, M.

Arai, A.

Bovatsek, J.

Burghoff, J.

S. Nolte, M. Will, J. Burghoff, and A. Tunnermann, “Ultrafast laser processing: New options for three-dimensional photonic structures,” J. Mod. Opt. 51(16), 2533–2542 (2004).
[CrossRef]

Cerullo, G.

Chahid-Erraji, A.

Chiodo, N.

Cui, J.

C. Lu, J. Cui, and Y. Cui, “Reflection spectra of fiber Bragg gratings with random fluctuations,” Opt. Fiber Technol. 14(2), 97–101 (2008).
[CrossRef]

Cui, Y.

C. Lu, J. Cui, and Y. Cui, “Reflection spectra of fiber Bragg gratings with random fluctuations,” Opt. Fiber Technol. 14(2), 97–101 (2008).
[CrossRef]

Davis, K. M.

Dawes, J. M.

De Nicola, S.

De Silvestri, S.

Dekker, P.

Eaton, S.

Eaton, S. M.

Emmert, L. A.

L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108(4), 043523 (2010).
[CrossRef]

Ferraro, P.

Finizio, A.

Fuerbach, A.

D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc. 42(4), 715–718 (2011).
[CrossRef]

Gamaly, E. G.

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Is the nano-explosion really microscopic?” J. Non-Cryst. Solids 355(18-21), 1160–1162 (2009).
[CrossRef]

E. G. Gamaly, S. Juodkazis, H. Misawa, B. Luther-Davies, A. V. Rode, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Formation of nano-voids in transparent dielectrics by femtosecond lasers,” Curr. Appl. Phys. 8(3-4), 412–415 (2008).
[CrossRef]

Garcia, J. F.

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[CrossRef]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

Gross, S.

D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc. 42(4), 715–718 (2011).
[CrossRef]

Hallo, L.

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Is the nano-explosion really microscopic?” J. Non-Cryst. Solids 355(18-21), 1160–1162 (2009).
[CrossRef]

E. G. Gamaly, S. Juodkazis, H. Misawa, B. Luther-Davies, A. V. Rode, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Formation of nano-voids in transparent dielectrics by femtosecond lasers,” Curr. Appl. Phys. 8(3-4), 412–415 (2008).
[CrossRef]

Herman, P.

Herman, P. R.

Hirao, K.

Ikushima, A. J.

H. Kakiuchida, K. Saito, and A. J. Ikushima, “Refractive index, density and polarizability of silica glass with various fictive temperatures,” Jpn. J. Appl. Phys. 43(6A), L743–L745 (2004).
[CrossRef]

Juodkazis, S.

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Is the nano-explosion really microscopic?” J. Non-Cryst. Solids 355(18-21), 1160–1162 (2009).
[CrossRef]

E. G. Gamaly, S. Juodkazis, H. Misawa, B. Luther-Davies, A. V. Rode, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Formation of nano-voids in transparent dielectrics by femtosecond lasers,” Curr. Appl. Phys. 8(3-4), 412–415 (2008).
[CrossRef]

Kakiuchida, H.

H. Kakiuchida, K. Saito, and A. J. Ikushima, “Refractive index, density and polarizability of silica glass with various fictive temperatures,” Jpn. J. Appl. Phys. 43(6A), L743–L745 (2004).
[CrossRef]

Kazansky, P.

Lancry, M.

Laporta, P.

Lenzner, M.

M. Lenzner, “Femtosecond laser-induced damage of dielectrics,” Int. J. Mod. Phys. B 13(13), 1559–1578 (1999).
[CrossRef]

Little, D. J.

D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc. 42(4), 715–718 (2011).
[CrossRef]

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, J. M. Dawes, and M. J. Withford, “Femtosecond laser modification of fused silica: the effect of writing polarization on Si-O ring structure,” Opt. Express 16(24), 20029–20037 (2008).
[CrossRef] [PubMed]

Lu, C.

C. Lu, J. Cui, and Y. Cui, “Reflection spectra of fiber Bragg gratings with random fluctuations,” Opt. Fiber Technol. 14(2), 97–101 (2008).
[CrossRef]

Luther-Davies, B.

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Is the nano-explosion really microscopic?” J. Non-Cryst. Solids 355(18-21), 1160–1162 (2009).
[CrossRef]

E. G. Gamaly, S. Juodkazis, H. Misawa, B. Luther-Davies, A. V. Rode, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Formation of nano-voids in transparent dielectrics by femtosecond lasers,” Curr. Appl. Phys. 8(3-4), 412–415 (2008).
[CrossRef]

Marangoni, M.

Marshall, G. D.

Maselli, V.

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[CrossRef]

Mero, M.

L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108(4), 043523 (2010).
[CrossRef]

Miese, C. T.

D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc. 42(4), 715–718 (2011).
[CrossRef]

Misawa, H.

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Is the nano-explosion really microscopic?” J. Non-Cryst. Solids 355(18-21), 1160–1162 (2009).
[CrossRef]

E. G. Gamaly, S. Juodkazis, H. Misawa, B. Luther-Davies, A. V. Rode, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Formation of nano-voids in transparent dielectrics by femtosecond lasers,” Curr. Appl. Phys. 8(3-4), 412–415 (2008).
[CrossRef]

Miura, K.

Nicolai, P.

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Is the nano-explosion really microscopic?” J. Non-Cryst. Solids 355(18-21), 1160–1162 (2009).
[CrossRef]

E. G. Gamaly, S. Juodkazis, H. Misawa, B. Luther-Davies, A. V. Rode, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Formation of nano-voids in transparent dielectrics by femtosecond lasers,” Curr. Appl. Phys. 8(3-4), 412–415 (2008).
[CrossRef]

Nolte, S.

S. Nolte, M. Will, J. Burghoff, and A. Tunnermann, “Ultrafast laser processing: New options for three-dimensional photonic structures,” J. Mod. Opt. 51(16), 2533–2542 (2004).
[CrossRef]

Osellame, R.

Pierattini, G.

Piper, J. A.

Polli, D.

Poumellec, B.

Ramponi, R.

Rode, A. V.

E. G. Gamaly, S. Juodkazis, H. Misawa, B. Luther-Davies, A. V. Rode, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Formation of nano-voids in transparent dielectrics by femtosecond lasers,” Curr. Appl. Phys. 8(3-4), 412–415 (2008).
[CrossRef]

Rudolph, W.

L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108(4), 043523 (2010).
[CrossRef]

Saito, K.

H. Kakiuchida, K. Saito, and A. J. Ikushima, “Refractive index, density and polarizability of silica glass with various fictive temperatures,” Jpn. J. Appl. Phys. 43(6A), L743–L745 (2004).
[CrossRef]

Schaffer, C. B.

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[CrossRef]

Shah, L.

Spence, D. J.

Sugimoto, N.

Taccheo, S.

Tikhonchuk, V. T.

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Is the nano-explosion really microscopic?” J. Non-Cryst. Solids 355(18-21), 1160–1162 (2009).
[CrossRef]

E. G. Gamaly, S. Juodkazis, H. Misawa, B. Luther-Davies, A. V. Rode, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Formation of nano-voids in transparent dielectrics by femtosecond lasers,” Curr. Appl. Phys. 8(3-4), 412–415 (2008).
[CrossRef]

Tomozawa, M.

A. Agarwal and M. Tomozawa, “Correlation of silica glass properties with the infrared spectra,” J. Non-Cryst. Solids 209(1-2), 166–174 (1997).
[CrossRef]

Tunnermann, A.

S. Nolte, M. Will, J. Burghoff, and A. Tunnermann, “Ultrafast laser processing: New options for three-dimensional photonic structures,” J. Mod. Opt. 51(16), 2533–2542 (2004).
[CrossRef]

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tunnermann, “Ultrafast laser processing: New options for three-dimensional photonic structures,” J. Mod. Opt. 51(16), 2533–2542 (2004).
[CrossRef]

Withford, M. J.

Yin, A.

Yoshino, F.

Zavelani-Rossi, M.

Zhang, H.

Appl. Phys., A Mater. Sci. Process. (1)

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[CrossRef]

Curr. Appl. Phys. (1)

E. G. Gamaly, S. Juodkazis, H. Misawa, B. Luther-Davies, A. V. Rode, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Formation of nano-voids in transparent dielectrics by femtosecond lasers,” Curr. Appl. Phys. 8(3-4), 412–415 (2008).
[CrossRef]

Int. J. Mod. Phys. B (1)

M. Lenzner, “Femtosecond laser-induced damage of dielectrics,” Int. J. Mod. Phys. B 13(13), 1559–1578 (1999).
[CrossRef]

J. Appl. Phys. (1)

L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108(4), 043523 (2010).
[CrossRef]

J. Mod. Opt. (1)

S. Nolte, M. Will, J. Burghoff, and A. Tunnermann, “Ultrafast laser processing: New options for three-dimensional photonic structures,” J. Mod. Opt. 51(16), 2533–2542 (2004).
[CrossRef]

J. Non-Cryst. Solids (2)

A. Agarwal and M. Tomozawa, “Correlation of silica glass properties with the infrared spectra,” J. Non-Cryst. Solids 209(1-2), 166–174 (1997).
[CrossRef]

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Is the nano-explosion really microscopic?” J. Non-Cryst. Solids 355(18-21), 1160–1162 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Raman Spectrosc. (1)

D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc. 42(4), 715–718 (2011).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H. Kakiuchida, K. Saito, and A. J. Ikushima, “Refractive index, density and polarizability of silica glass with various fictive temperatures,” Jpn. J. Appl. Phys. 43(6A), L743–L745 (2004).
[CrossRef]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

Opt. Express (4)

Opt. Fiber Technol. (1)

C. Lu, J. Cui, and Y. Cui, “Reflection spectra of fiber Bragg gratings with random fluctuations,” Opt. Fiber Technol. 14(2), 97–101 (2008).
[CrossRef]

Opt. Lett. (4)

Opt. Mater. Express (1)

Other (3)

L. Hallo, C. Mézel, A. Bourgeade, D. Hébert, E. G. Gamaly, and S. Juodkazis, “Laser-matter interaction in transparent materials: confined micro-explosion and jet formation,” in Extreme Photonics Applications (Springer, 2010), pp. 121–146.

G. Ghosh, Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic, San Diego, Calif., 1998.

C. Miese, A. Fuerbach, and M. Withford, “Dynamics of waveguide writing using a high pulse energy (600 nJ) MHz femtosecond oscillator,” in CLEO/Europe and EQEC 2009 Conference Digest (Optical Society of America, 2009), paper CM_P12.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the writing setup. The pulse energy of the Chirped Pulse Oscillator (CPO) is adjusted via a half-wave plate and a polarizing beam splitter (PBS). Pulse-bursts are generated by the Pockels cell that is synchronized with the motion of the stages. The quarter-wave plate in front of the microscope objective (MO) generates circular polarized light for the waveguide-inscription.

Fig. 2
Fig. 2

Final waveguide diameter as a function of pulse energy and translation speed for a laser repetition rate of 5.1 MHz (left) and 1 MHz (right), from experimental results. The black area represents a parameter regime where voids are produced inside the material. The blue area represents a pulse energy regime below the material specific threshold for heat diffusion induced material modification. Additional notes: The white corner in the left figure does not indicate the formation of voids. In this regime the average power becomes too high, leading to the formation of bubbles in the oil film between the writing objective and the sample. Further, the boundary from damage to the cumulative heating regime is a transition, i.e. the measurement of the heat modified zone in the presence of damage, causing uncertainty in the interpretation of heat diffusion radius.

Fig. 3
Fig. 3

(a) Schematic representation of pulse-by-pulse heat accumulation within the sample. The red spikes represent the incident laser pulses, the orange area represents the resultant instantaneous temperature response. After 1µs diffusion time the temperature dropped below the modifying threshold (b) Qualitative average temperature profile within the focal volume during burst inscription, (c) Corresponding Differential Interference Contrast (DIC) microscope image of the resulting waveguide segments. The nano-voids (shown by the arrow) that are produced at the beginning of each burst can be clearly seen. Also note the distinct heat diffusion taper that can be seen at the end of each segment.

Fig. 4
Fig. 4

Reflection and transmission spectrum of a first order WBG of 9 mm length.

Fig. 5
Fig. 5

Microscope image of the WBG. The small pitch of 0.52 µm can clearly be seen. The white bars mark the full width of the waveguide.

Fig. 6
Fig. 6

SEM image showing a typical nano-void array within the core of a WBG. The inset shows that the dimension of the nano-voids is much smaller than the diffraction limited writing spot

Metrics