Abstract

The influence of the geometric shape of optically confining structures on the emission properties of ZnSe-based microcavities is studied. Elliptical as well as coupled circular structures were fabricated with quantum wells or quantum dots as optical active material. For the elliptical pillars a lifting of the polarization degeneracy of the resonator modes is observed as it is favorable to control the polarization state of the emitted photons. The influence of the ellipticity on the polarization splitting of the fundamental mode as well as on the quality factor of the sample is discussed. For the coupled pillar microcavities the effect of their distance on the energy splitting of the fundamental resonator mode is analyzed. Furthermore, detailed measurements of the spatial mode distribution in elliptically shaped pillars and photonic molecules are performed. By comparing these results to the calculated mode distribution their analogy to a diatomic molecule is illustrated. It turns out that the observed mode splitting into localized bonding and delocalized antibonding states in ZnSe-based microcavities is more pronounced for elliptical geometries. The realization of delocalized mode profiles is favorable for the coupling of spatially separated quantum dots.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
    [CrossRef] [PubMed]
  2. J. Gérard, “Solid-state cavity-quantum electrodynamics with self-assembled quantum dots,” in Single Quantum Dots, P. Michler, ed. (Springer, 2003), p. 269.
    [CrossRef]
  3. E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865–2867 (2001).
    [CrossRef]
  4. M. Pelton, C. Santori, J. Vuc̆ković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
    [CrossRef] [PubMed]
  5. B. Gayral, J. M. Gérard, B. Legrand, E. Costard, and V. Thierry-Mieg, “Optical study of GaAs/AlAs pillar microcavities with elliptical cross section,” Appl. Phys. Lett. 72, 1421–1423, (1998).
    [CrossRef]
  6. A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimaraes, H. Vinck, D. M. Whittaker, M. S. Skolnick, and A. M. Fox, “Control of polarized single quantum dot emission in high-quality-factor microcavity pillars,” Appl. Phys. Lett. 88, 051113 (2006).
    [CrossRef]
  7. S. Ates, S. M. Ulrich, P. Michler, S. Reitzenstein, A. Löffler, and A. Forchel, “Coherence properties of high-beta elliptical semiconductor micropillar lasers,” Appl. Phys. Lett. 90, 161111 (2007).
    [CrossRef]
  8. D. Whittaker, P. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Darai, Y.-L. D. Ho, J. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” App. Phys. Lett. 90, 161105 (2007).
    [CrossRef]
  9. M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett. 81, 2582–2585 (1998).
    [CrossRef]
  10. A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
    [CrossRef] [PubMed]
  11. M. Benyoucef, S. Kiravittaya, Y. F. Mei, A. Rastelli, and O. G. Schmidt, “Strongly coupled semiconductor microcavities: A route to couple artificial atoms over micrometric distances,” Phys. Rev. B 77, 035108 (2008).
    [CrossRef]
  12. K. A. Atlasov, K. F. Karlsson, A. Rudra, B. Dwir, and E. Kapon, “Wavelength and loss splitting in directly coupled photonic-crystal defect microcavities,” Opt. Express 16, 16255–16264 (2008).
    [CrossRef] [PubMed]
  13. S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett. 94, 151103 (2009).
    [CrossRef]
  14. V. Zhuk, D. Regelman, D. Gershoni, M. Bayer, J. Reithmaier, A. Forchel, P. Knipp, and T. Reinecke, “Near-field mapping of the electromagnetic field in confined photon geometries,” Phys. Rev. B 66, 115302 (2002).
    [CrossRef]
  15. M. Karl, S. Li, T. Passow, W. Löffler, H. Kalt, and M. Hetterich, “Localized and delocalized modes in coupled optical micropillar cavities,” Opt. Express 15, 8191–8196 (2007).
    [CrossRef] [PubMed]
  16. K. Sebald, P. Michler, T. Passow, D. Hommel, G. Bacher, and A. Forchel, “Single-photon emission of CdSe quantum dots at temperatures up to 200 K,” Appl. Phys. Lett. 81, 2920–2922 (2002).
    [CrossRef]
  17. R. Arians, T. Kümmel, G. Bacher, A. Gust, C. Kruse, and D. Hommel, “Room temperature emission from CdSe/ZnSSe/MgS single quantum dots,” Appl. Phys. Lett. 90, 101114 (2007).
    [CrossRef]
  18. C. Kruse, H. Lohmeyer, K. Sebald, J. Gutowski, D. Hommel, J. Wiersig, and F. Jahnke, “Green laser emission from monolithic II–VI-based pillar microcavities near room temperature,” Appl. Phys. Lett. 92, 031101 (2008).
    [CrossRef]
  19. I. C. Robin, R. André, A. Balocchi, S. Carayon, S. Moehl, J. M. Gérard, and L. Ferlazzo, “Purcell effect for CdSe/ZnSe quantum dots placed into hybrid micropillars,” Appl. Phys. Lett. 87, 233114 (2005).
    [CrossRef]
  20. J. Renner, L. Worschech, A. Forchel, S. Mahapatra, and K. Brunner, “CdSe quantum dot microdisk laser,” Appl. Phys. Lett. 89, 231104 (2006).
    [CrossRef]
  21. A. Gust, C. Kruse, and D. Hommel, “Investigation of CdSe quantum dots in MgS barriers as active region in light emitting diodes,” J. Crys. Growth 301–302, 789–792 (2007).
    [CrossRef]
  22. C. Kruse, S. M. Ulrich, G. Alexe, E. Roventa, R. Kröger, B. Brendemühl, P. Michler, J. Gutowski, and D. Hommel, “Green monolithic IIVI vertical-cavity surface-emitting laser operating at room temperature,” Phys. Status Solidi B 241, 731–738 (2004).
    [CrossRef]
  23. H. Lohmeyer, K. Sebald, C. Kruse, R. Kröger, J. Gutowski, D. Hommel, J. Wiersig, N. Baer, and F. Jahnke, “Confined optical modes in monolithic II–VI pillar microcavities,” Appl. Phys. Lett. 88, 051101 (2006).
    [CrossRef]
  24. H. Lohmeyer, C. Kruse, K. Sebald, J. Gutowski, and D. Hommel, “Enhanced spontaneous emission of CdSe quantum dots in monolithic II–VI pillar microcavities,” Appl. Phys. Lett. 89, 091107 (2006).
    [CrossRef]
  25. S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
    [CrossRef]
  26. M. Seyfried, J. Kalden, K. Sebald, C. Kruse, S. Figge, A. Gust, C. Tessarek, H. Dartsch, D. Hommel, M. Florian, F. Jahnke, and J. Gutowski, “Optical properties of wide-bandgap monolithic pillar microcavities with different geometries,” Phys. Status Solidi C 8, 1246–1249 (2011).
    [CrossRef]
  27. T. Rivera, J.-P. Debray, J. M. Gérard, B. Legrand, L. Manin-Ferlazzo, and J. L. Oudar, “Optical losses in plasma-etched AlGaAs microresonators using reflection spectroscopy,” Appl. Phys. Lett. 74, 911–913 (1999).
    [CrossRef]
  28. S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190, (2001).
    [CrossRef] [PubMed]
  29. A. Daraei, D. Sanvitto, J. A. Timpson, A. M. Fox, D. M. Whittaker, M. S. Skolnick, P. S. S. Guimarães, H. Vinck, A. Tahraoui, P. W. Fry, S. L. Liew, and M. Hopkinson, “Control of polarization and mode mapping of small volume high Q micropillars,” J. Appl. Phys. 102, 043105 (2007).
    [CrossRef]
  30. K. Sebald, C. Kruse, and J. Wiersig, “Properties and prospects of bluegreen emitting IIVI-based monolithic microcavities,” Phys. Status Solidi B 246, 255–271 (2009).
    [CrossRef]
  31. S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett. 94, 151103 (2009).
    [CrossRef]

2011 (1)

M. Seyfried, J. Kalden, K. Sebald, C. Kruse, S. Figge, A. Gust, C. Tessarek, H. Dartsch, D. Hommel, M. Florian, F. Jahnke, and J. Gutowski, “Optical properties of wide-bandgap monolithic pillar microcavities with different geometries,” Phys. Status Solidi C 8, 1246–1249 (2011).
[CrossRef]

2010 (1)

A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[CrossRef] [PubMed]

2009 (3)

S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett. 94, 151103 (2009).
[CrossRef]

K. Sebald, C. Kruse, and J. Wiersig, “Properties and prospects of bluegreen emitting IIVI-based monolithic microcavities,” Phys. Status Solidi B 246, 255–271 (2009).
[CrossRef]

S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett. 94, 151103 (2009).
[CrossRef]

2008 (3)

C. Kruse, H. Lohmeyer, K. Sebald, J. Gutowski, D. Hommel, J. Wiersig, and F. Jahnke, “Green laser emission from monolithic II–VI-based pillar microcavities near room temperature,” Appl. Phys. Lett. 92, 031101 (2008).
[CrossRef]

M. Benyoucef, S. Kiravittaya, Y. F. Mei, A. Rastelli, and O. G. Schmidt, “Strongly coupled semiconductor microcavities: A route to couple artificial atoms over micrometric distances,” Phys. Rev. B 77, 035108 (2008).
[CrossRef]

K. A. Atlasov, K. F. Karlsson, A. Rudra, B. Dwir, and E. Kapon, “Wavelength and loss splitting in directly coupled photonic-crystal defect microcavities,” Opt. Express 16, 16255–16264 (2008).
[CrossRef] [PubMed]

2007 (7)

S. Ates, S. M. Ulrich, P. Michler, S. Reitzenstein, A. Löffler, and A. Forchel, “Coherence properties of high-beta elliptical semiconductor micropillar lasers,” Appl. Phys. Lett. 90, 161111 (2007).
[CrossRef]

D. Whittaker, P. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Darai, Y.-L. D. Ho, J. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” App. Phys. Lett. 90, 161105 (2007).
[CrossRef]

R. Arians, T. Kümmel, G. Bacher, A. Gust, C. Kruse, and D. Hommel, “Room temperature emission from CdSe/ZnSSe/MgS single quantum dots,” Appl. Phys. Lett. 90, 101114 (2007).
[CrossRef]

M. Karl, S. Li, T. Passow, W. Löffler, H. Kalt, and M. Hetterich, “Localized and delocalized modes in coupled optical micropillar cavities,” Opt. Express 15, 8191–8196 (2007).
[CrossRef] [PubMed]

A. Daraei, D. Sanvitto, J. A. Timpson, A. M. Fox, D. M. Whittaker, M. S. Skolnick, P. S. S. Guimarães, H. Vinck, A. Tahraoui, P. W. Fry, S. L. Liew, and M. Hopkinson, “Control of polarization and mode mapping of small volume high Q micropillars,” J. Appl. Phys. 102, 043105 (2007).
[CrossRef]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

A. Gust, C. Kruse, and D. Hommel, “Investigation of CdSe quantum dots in MgS barriers as active region in light emitting diodes,” J. Crys. Growth 301–302, 789–792 (2007).
[CrossRef]

2006 (4)

H. Lohmeyer, K. Sebald, C. Kruse, R. Kröger, J. Gutowski, D. Hommel, J. Wiersig, N. Baer, and F. Jahnke, “Confined optical modes in monolithic II–VI pillar microcavities,” Appl. Phys. Lett. 88, 051101 (2006).
[CrossRef]

H. Lohmeyer, C. Kruse, K. Sebald, J. Gutowski, and D. Hommel, “Enhanced spontaneous emission of CdSe quantum dots in monolithic II–VI pillar microcavities,” Appl. Phys. Lett. 89, 091107 (2006).
[CrossRef]

J. Renner, L. Worschech, A. Forchel, S. Mahapatra, and K. Brunner, “CdSe quantum dot microdisk laser,” Appl. Phys. Lett. 89, 231104 (2006).
[CrossRef]

A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimaraes, H. Vinck, D. M. Whittaker, M. S. Skolnick, and A. M. Fox, “Control of polarized single quantum dot emission in high-quality-factor microcavity pillars,” Appl. Phys. Lett. 88, 051113 (2006).
[CrossRef]

2005 (1)

I. C. Robin, R. André, A. Balocchi, S. Carayon, S. Moehl, J. M. Gérard, and L. Ferlazzo, “Purcell effect for CdSe/ZnSe quantum dots placed into hybrid micropillars,” Appl. Phys. Lett. 87, 233114 (2005).
[CrossRef]

2004 (1)

C. Kruse, S. M. Ulrich, G. Alexe, E. Roventa, R. Kröger, B. Brendemühl, P. Michler, J. Gutowski, and D. Hommel, “Green monolithic IIVI vertical-cavity surface-emitting laser operating at room temperature,” Phys. Status Solidi B 241, 731–738 (2004).
[CrossRef]

2003 (1)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef] [PubMed]

2002 (3)

M. Pelton, C. Santori, J. Vuc̆ković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

K. Sebald, P. Michler, T. Passow, D. Hommel, G. Bacher, and A. Forchel, “Single-photon emission of CdSe quantum dots at temperatures up to 200 K,” Appl. Phys. Lett. 81, 2920–2922 (2002).
[CrossRef]

V. Zhuk, D. Regelman, D. Gershoni, M. Bayer, J. Reithmaier, A. Forchel, P. Knipp, and T. Reinecke, “Near-field mapping of the electromagnetic field in confined photon geometries,” Phys. Rev. B 66, 115302 (2002).
[CrossRef]

2001 (2)

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865–2867 (2001).
[CrossRef]

S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190, (2001).
[CrossRef] [PubMed]

1999 (1)

T. Rivera, J.-P. Debray, J. M. Gérard, B. Legrand, L. Manin-Ferlazzo, and J. L. Oudar, “Optical losses in plasma-etched AlGaAs microresonators using reflection spectroscopy,” Appl. Phys. Lett. 74, 911–913 (1999).
[CrossRef]

1998 (2)

B. Gayral, J. M. Gérard, B. Legrand, E. Costard, and V. Thierry-Mieg, “Optical study of GaAs/AlAs pillar microcavities with elliptical cross section,” Appl. Phys. Lett. 72, 1421–1423, (1998).
[CrossRef]

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett. 81, 2582–2585 (1998).
[CrossRef]

Abram, I.

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865–2867 (2001).
[CrossRef]

Alexe, G.

C. Kruse, S. M. Ulrich, G. Alexe, E. Roventa, R. Kröger, B. Brendemühl, P. Michler, J. Gutowski, and D. Hommel, “Green monolithic IIVI vertical-cavity surface-emitting laser operating at room temperature,” Phys. Status Solidi B 241, 731–738 (2004).
[CrossRef]

André, R.

I. C. Robin, R. André, A. Balocchi, S. Carayon, S. Moehl, J. M. Gérard, and L. Ferlazzo, “Purcell effect for CdSe/ZnSe quantum dots placed into hybrid micropillars,” Appl. Phys. Lett. 87, 233114 (2005).
[CrossRef]

Arians, R.

R. Arians, T. Kümmel, G. Bacher, A. Gust, C. Kruse, and D. Hommel, “Room temperature emission from CdSe/ZnSSe/MgS single quantum dots,” Appl. Phys. Lett. 90, 101114 (2007).
[CrossRef]

Ates, S.

S. Ates, S. M. Ulrich, P. Michler, S. Reitzenstein, A. Löffler, and A. Forchel, “Coherence properties of high-beta elliptical semiconductor micropillar lasers,” Appl. Phys. Lett. 90, 161111 (2007).
[CrossRef]

Atlasov, K. A.

Bacher, G.

R. Arians, T. Kümmel, G. Bacher, A. Gust, C. Kruse, and D. Hommel, “Room temperature emission from CdSe/ZnSSe/MgS single quantum dots,” Appl. Phys. Lett. 90, 101114 (2007).
[CrossRef]

K. Sebald, P. Michler, T. Passow, D. Hommel, G. Bacher, and A. Forchel, “Single-photon emission of CdSe quantum dots at temperatures up to 200 K,” Appl. Phys. Lett. 81, 2920–2922 (2002).
[CrossRef]

Baer, N.

H. Lohmeyer, K. Sebald, C. Kruse, R. Kröger, J. Gutowski, D. Hommel, J. Wiersig, N. Baer, and F. Jahnke, “Confined optical modes in monolithic II–VI pillar microcavities,” Appl. Phys. Lett. 88, 051101 (2006).
[CrossRef]

Balet, L.

S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett. 94, 151103 (2009).
[CrossRef]

S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett. 94, 151103 (2009).
[CrossRef]

Balocchi, A.

I. C. Robin, R. André, A. Balocchi, S. Carayon, S. Moehl, J. M. Gérard, and L. Ferlazzo, “Purcell effect for CdSe/ZnSe quantum dots placed into hybrid micropillars,” Appl. Phys. Lett. 87, 233114 (2005).
[CrossRef]

Bayer, M.

V. Zhuk, D. Regelman, D. Gershoni, M. Bayer, J. Reithmaier, A. Forchel, P. Knipp, and T. Reinecke, “Near-field mapping of the electromagnetic field in confined photon geometries,” Phys. Rev. B 66, 115302 (2002).
[CrossRef]

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett. 81, 2582–2585 (1998).
[CrossRef]

Benyoucef, M.

M. Benyoucef, S. Kiravittaya, Y. F. Mei, A. Rastelli, and O. G. Schmidt, “Strongly coupled semiconductor microcavities: A route to couple artificial atoms over micrometric distances,” Phys. Rev. B 77, 035108 (2008).
[CrossRef]

Beveratos, A.

A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[CrossRef] [PubMed]

Bloch, J.

A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[CrossRef] [PubMed]

Brendemühl, B.

C. Kruse, S. M. Ulrich, G. Alexe, E. Roventa, R. Kröger, B. Brendemühl, P. Michler, J. Gutowski, and D. Hommel, “Green monolithic IIVI vertical-cavity surface-emitting laser operating at room temperature,” Phys. Status Solidi B 241, 731–738 (2004).
[CrossRef]

Brunner, K.

J. Renner, L. Worschech, A. Forchel, S. Mahapatra, and K. Brunner, “CdSe quantum dot microdisk laser,” Appl. Phys. Lett. 89, 231104 (2006).
[CrossRef]

Carayon, S.

I. C. Robin, R. André, A. Balocchi, S. Carayon, S. Moehl, J. M. Gérard, and L. Ferlazzo, “Purcell effect for CdSe/ZnSe quantum dots placed into hybrid micropillars,” Appl. Phys. Lett. 87, 233114 (2005).
[CrossRef]

Costard, E.

B. Gayral, J. M. Gérard, B. Legrand, E. Costard, and V. Thierry-Mieg, “Optical study of GaAs/AlAs pillar microcavities with elliptical cross section,” Appl. Phys. Lett. 72, 1421–1423, (1998).
[CrossRef]

Daraei, A.

A. Daraei, D. Sanvitto, J. A. Timpson, A. M. Fox, D. M. Whittaker, M. S. Skolnick, P. S. S. Guimarães, H. Vinck, A. Tahraoui, P. W. Fry, S. L. Liew, and M. Hopkinson, “Control of polarization and mode mapping of small volume high Q micropillars,” J. Appl. Phys. 102, 043105 (2007).
[CrossRef]

A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimaraes, H. Vinck, D. M. Whittaker, M. S. Skolnick, and A. M. Fox, “Control of polarized single quantum dot emission in high-quality-factor microcavity pillars,” Appl. Phys. Lett. 88, 051113 (2006).
[CrossRef]

Darai, A.

D. Whittaker, P. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Darai, Y.-L. D. Ho, J. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” App. Phys. Lett. 90, 161105 (2007).
[CrossRef]

Dartsch, H.

M. Seyfried, J. Kalden, K. Sebald, C. Kruse, S. Figge, A. Gust, C. Tessarek, H. Dartsch, D. Hommel, M. Florian, F. Jahnke, and J. Gutowski, “Optical properties of wide-bandgap monolithic pillar microcavities with different geometries,” Phys. Status Solidi C 8, 1246–1249 (2011).
[CrossRef]

Debray, J.-P.

T. Rivera, J.-P. Debray, J. M. Gérard, B. Legrand, L. Manin-Ferlazzo, and J. L. Oudar, “Optical losses in plasma-etched AlGaAs microresonators using reflection spectroscopy,” Appl. Phys. Lett. 74, 911–913 (1999).
[CrossRef]

Dousse, A.

A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[CrossRef] [PubMed]

Dremin, A. A.

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett. 81, 2582–2585 (1998).
[CrossRef]

Dwir, B.

Ferlazzo, L.

I. C. Robin, R. André, A. Balocchi, S. Carayon, S. Moehl, J. M. Gérard, and L. Ferlazzo, “Purcell effect for CdSe/ZnSe quantum dots placed into hybrid micropillars,” Appl. Phys. Lett. 87, 233114 (2005).
[CrossRef]

Figge, S.

M. Seyfried, J. Kalden, K. Sebald, C. Kruse, S. Figge, A. Gust, C. Tessarek, H. Dartsch, D. Hommel, M. Florian, F. Jahnke, and J. Gutowski, “Optical properties of wide-bandgap monolithic pillar microcavities with different geometries,” Phys. Status Solidi C 8, 1246–1249 (2011).
[CrossRef]

Fiore, A.

S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett. 94, 151103 (2009).
[CrossRef]

S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett. 94, 151103 (2009).
[CrossRef]

Florian, M.

M. Seyfried, J. Kalden, K. Sebald, C. Kruse, S. Figge, A. Gust, C. Tessarek, H. Dartsch, D. Hommel, M. Florian, F. Jahnke, and J. Gutowski, “Optical properties of wide-bandgap monolithic pillar microcavities with different geometries,” Phys. Status Solidi C 8, 1246–1249 (2011).
[CrossRef]

Forchel, A.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

S. Ates, S. M. Ulrich, P. Michler, S. Reitzenstein, A. Löffler, and A. Forchel, “Coherence properties of high-beta elliptical semiconductor micropillar lasers,” Appl. Phys. Lett. 90, 161111 (2007).
[CrossRef]

J. Renner, L. Worschech, A. Forchel, S. Mahapatra, and K. Brunner, “CdSe quantum dot microdisk laser,” Appl. Phys. Lett. 89, 231104 (2006).
[CrossRef]

V. Zhuk, D. Regelman, D. Gershoni, M. Bayer, J. Reithmaier, A. Forchel, P. Knipp, and T. Reinecke, “Near-field mapping of the electromagnetic field in confined photon geometries,” Phys. Rev. B 66, 115302 (2002).
[CrossRef]

K. Sebald, P. Michler, T. Passow, D. Hommel, G. Bacher, and A. Forchel, “Single-photon emission of CdSe quantum dots at temperatures up to 200 K,” Appl. Phys. Lett. 81, 2920–2922 (2002).
[CrossRef]

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett. 81, 2582–2585 (1998).
[CrossRef]

Fox, A. M.

A. Daraei, D. Sanvitto, J. A. Timpson, A. M. Fox, D. M. Whittaker, M. S. Skolnick, P. S. S. Guimarães, H. Vinck, A. Tahraoui, P. W. Fry, S. L. Liew, and M. Hopkinson, “Control of polarization and mode mapping of small volume high Q micropillars,” J. Appl. Phys. 102, 043105 (2007).
[CrossRef]

A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimaraes, H. Vinck, D. M. Whittaker, M. S. Skolnick, and A. M. Fox, “Control of polarized single quantum dot emission in high-quality-factor microcavity pillars,” Appl. Phys. Lett. 88, 051113 (2006).
[CrossRef]

Francardi, M.

S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett. 94, 151103 (2009).
[CrossRef]

S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett. 94, 151103 (2009).
[CrossRef]

Fry, P. W.

A. Daraei, D. Sanvitto, J. A. Timpson, A. M. Fox, D. M. Whittaker, M. S. Skolnick, P. S. S. Guimarães, H. Vinck, A. Tahraoui, P. W. Fry, S. L. Liew, and M. Hopkinson, “Control of polarization and mode mapping of small volume high Q micropillars,” J. Appl. Phys. 102, 043105 (2007).
[CrossRef]

A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimaraes, H. Vinck, D. M. Whittaker, M. S. Skolnick, and A. M. Fox, “Control of polarized single quantum dot emission in high-quality-factor microcavity pillars,” Appl. Phys. Lett. 88, 051113 (2006).
[CrossRef]

Gayral, B.

B. Gayral, J. M. Gérard, B. Legrand, E. Costard, and V. Thierry-Mieg, “Optical study of GaAs/AlAs pillar microcavities with elliptical cross section,” Appl. Phys. Lett. 72, 1421–1423, (1998).
[CrossRef]

Gérard, J.

J. Gérard, “Solid-state cavity-quantum electrodynamics with self-assembled quantum dots,” in Single Quantum Dots, P. Michler, ed. (Springer, 2003), p. 269.
[CrossRef]

Gérard, J. M.

I. C. Robin, R. André, A. Balocchi, S. Carayon, S. Moehl, J. M. Gérard, and L. Ferlazzo, “Purcell effect for CdSe/ZnSe quantum dots placed into hybrid micropillars,” Appl. Phys. Lett. 87, 233114 (2005).
[CrossRef]

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865–2867 (2001).
[CrossRef]

T. Rivera, J.-P. Debray, J. M. Gérard, B. Legrand, L. Manin-Ferlazzo, and J. L. Oudar, “Optical losses in plasma-etched AlGaAs microresonators using reflection spectroscopy,” Appl. Phys. Lett. 74, 911–913 (1999).
[CrossRef]

B. Gayral, J. M. Gérard, B. Legrand, E. Costard, and V. Thierry-Mieg, “Optical study of GaAs/AlAs pillar microcavities with elliptical cross section,” Appl. Phys. Lett. 72, 1421–1423, (1998).
[CrossRef]

Gerardino, A.

S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett. 94, 151103 (2009).
[CrossRef]

S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett. 94, 151103 (2009).
[CrossRef]

Gershoni, D.

V. Zhuk, D. Regelman, D. Gershoni, M. Bayer, J. Reithmaier, A. Forchel, P. Knipp, and T. Reinecke, “Near-field mapping of the electromagnetic field in confined photon geometries,” Phys. Rev. B 66, 115302 (2002).
[CrossRef]

Gorbunov, A.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Guimaraes, P.

D. Whittaker, P. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Darai, Y.-L. D. Ho, J. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” App. Phys. Lett. 90, 161105 (2007).
[CrossRef]

Guimaraes, P. S. S.

A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimaraes, H. Vinck, D. M. Whittaker, M. S. Skolnick, and A. M. Fox, “Control of polarized single quantum dot emission in high-quality-factor microcavity pillars,” Appl. Phys. Lett. 88, 051113 (2006).
[CrossRef]

Guimarães, P. S. S.

A. Daraei, D. Sanvitto, J. A. Timpson, A. M. Fox, D. M. Whittaker, M. S. Skolnick, P. S. S. Guimarães, H. Vinck, A. Tahraoui, P. W. Fry, S. L. Liew, and M. Hopkinson, “Control of polarization and mode mapping of small volume high Q micropillars,” J. Appl. Phys. 102, 043105 (2007).
[CrossRef]

Gurioli, M.

S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett. 94, 151103 (2009).
[CrossRef]

S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett. 94, 151103 (2009).
[CrossRef]

Gust, A.

M. Seyfried, J. Kalden, K. Sebald, C. Kruse, S. Figge, A. Gust, C. Tessarek, H. Dartsch, D. Hommel, M. Florian, F. Jahnke, and J. Gutowski, “Optical properties of wide-bandgap monolithic pillar microcavities with different geometries,” Phys. Status Solidi C 8, 1246–1249 (2011).
[CrossRef]

R. Arians, T. Kümmel, G. Bacher, A. Gust, C. Kruse, and D. Hommel, “Room temperature emission from CdSe/ZnSSe/MgS single quantum dots,” Appl. Phys. Lett. 90, 101114 (2007).
[CrossRef]

A. Gust, C. Kruse, and D. Hommel, “Investigation of CdSe quantum dots in MgS barriers as active region in light emitting diodes,” J. Crys. Growth 301–302, 789–792 (2007).
[CrossRef]

Gutbrod, T.

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett. 81, 2582–2585 (1998).
[CrossRef]

Gutowski, J.

M. Seyfried, J. Kalden, K. Sebald, C. Kruse, S. Figge, A. Gust, C. Tessarek, H. Dartsch, D. Hommel, M. Florian, F. Jahnke, and J. Gutowski, “Optical properties of wide-bandgap monolithic pillar microcavities with different geometries,” Phys. Status Solidi C 8, 1246–1249 (2011).
[CrossRef]

C. Kruse, H. Lohmeyer, K. Sebald, J. Gutowski, D. Hommel, J. Wiersig, and F. Jahnke, “Green laser emission from monolithic II–VI-based pillar microcavities near room temperature,” Appl. Phys. Lett. 92, 031101 (2008).
[CrossRef]

H. Lohmeyer, K. Sebald, C. Kruse, R. Kröger, J. Gutowski, D. Hommel, J. Wiersig, N. Baer, and F. Jahnke, “Confined optical modes in monolithic II–VI pillar microcavities,” Appl. Phys. Lett. 88, 051101 (2006).
[CrossRef]

H. Lohmeyer, C. Kruse, K. Sebald, J. Gutowski, and D. Hommel, “Enhanced spontaneous emission of CdSe quantum dots in monolithic II–VI pillar microcavities,” Appl. Phys. Lett. 89, 091107 (2006).
[CrossRef]

C. Kruse, S. M. Ulrich, G. Alexe, E. Roventa, R. Kröger, B. Brendemühl, P. Michler, J. Gutowski, and D. Hommel, “Green monolithic IIVI vertical-cavity surface-emitting laser operating at room temperature,” Phys. Status Solidi B 241, 731–738 (2004).
[CrossRef]

Hetterich, M.

Ho, Y.-L. D.

D. Whittaker, P. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Darai, Y.-L. D. Ho, J. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” App. Phys. Lett. 90, 161105 (2007).
[CrossRef]

Höfling, S.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Hofmann, C.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Hommel, D.

M. Seyfried, J. Kalden, K. Sebald, C. Kruse, S. Figge, A. Gust, C. Tessarek, H. Dartsch, D. Hommel, M. Florian, F. Jahnke, and J. Gutowski, “Optical properties of wide-bandgap monolithic pillar microcavities with different geometries,” Phys. Status Solidi C 8, 1246–1249 (2011).
[CrossRef]

C. Kruse, H. Lohmeyer, K. Sebald, J. Gutowski, D. Hommel, J. Wiersig, and F. Jahnke, “Green laser emission from monolithic II–VI-based pillar microcavities near room temperature,” Appl. Phys. Lett. 92, 031101 (2008).
[CrossRef]

A. Gust, C. Kruse, and D. Hommel, “Investigation of CdSe quantum dots in MgS barriers as active region in light emitting diodes,” J. Crys. Growth 301–302, 789–792 (2007).
[CrossRef]

R. Arians, T. Kümmel, G. Bacher, A. Gust, C. Kruse, and D. Hommel, “Room temperature emission from CdSe/ZnSSe/MgS single quantum dots,” Appl. Phys. Lett. 90, 101114 (2007).
[CrossRef]

H. Lohmeyer, K. Sebald, C. Kruse, R. Kröger, J. Gutowski, D. Hommel, J. Wiersig, N. Baer, and F. Jahnke, “Confined optical modes in monolithic II–VI pillar microcavities,” Appl. Phys. Lett. 88, 051101 (2006).
[CrossRef]

H. Lohmeyer, C. Kruse, K. Sebald, J. Gutowski, and D. Hommel, “Enhanced spontaneous emission of CdSe quantum dots in monolithic II–VI pillar microcavities,” Appl. Phys. Lett. 89, 091107 (2006).
[CrossRef]

C. Kruse, S. M. Ulrich, G. Alexe, E. Roventa, R. Kröger, B. Brendemühl, P. Michler, J. Gutowski, and D. Hommel, “Green monolithic IIVI vertical-cavity surface-emitting laser operating at room temperature,” Phys. Status Solidi B 241, 731–738 (2004).
[CrossRef]

K. Sebald, P. Michler, T. Passow, D. Hommel, G. Bacher, and A. Forchel, “Single-photon emission of CdSe quantum dots at temperatures up to 200 K,” Appl. Phys. Lett. 81, 2920–2922 (2002).
[CrossRef]

Hopkinson, M.

D. Whittaker, P. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Darai, Y.-L. D. Ho, J. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” App. Phys. Lett. 90, 161105 (2007).
[CrossRef]

A. Daraei, D. Sanvitto, J. A. Timpson, A. M. Fox, D. M. Whittaker, M. S. Skolnick, P. S. S. Guimarães, H. Vinck, A. Tahraoui, P. W. Fry, S. L. Liew, and M. Hopkinson, “Control of polarization and mode mapping of small volume high Q micropillars,” J. Appl. Phys. 102, 043105 (2007).
[CrossRef]

A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimaraes, H. Vinck, D. M. Whittaker, M. S. Skolnick, and A. M. Fox, “Control of polarized single quantum dot emission in high-quality-factor microcavity pillars,” Appl. Phys. Lett. 88, 051113 (2006).
[CrossRef]

Intonti, F.

S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett. 94, 151103 (2009).
[CrossRef]

S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett. 94, 151103 (2009).
[CrossRef]

Jahnke, F.

M. Seyfried, J. Kalden, K. Sebald, C. Kruse, S. Figge, A. Gust, C. Tessarek, H. Dartsch, D. Hommel, M. Florian, F. Jahnke, and J. Gutowski, “Optical properties of wide-bandgap monolithic pillar microcavities with different geometries,” Phys. Status Solidi C 8, 1246–1249 (2011).
[CrossRef]

C. Kruse, H. Lohmeyer, K. Sebald, J. Gutowski, D. Hommel, J. Wiersig, and F. Jahnke, “Green laser emission from monolithic II–VI-based pillar microcavities near room temperature,” Appl. Phys. Lett. 92, 031101 (2008).
[CrossRef]

H. Lohmeyer, K. Sebald, C. Kruse, R. Kröger, J. Gutowski, D. Hommel, J. Wiersig, N. Baer, and F. Jahnke, “Confined optical modes in monolithic II–VI pillar microcavities,” Appl. Phys. Lett. 88, 051101 (2006).
[CrossRef]

Joannopoulos, J.

Johnson, S.

Kalden, J.

M. Seyfried, J. Kalden, K. Sebald, C. Kruse, S. Figge, A. Gust, C. Tessarek, H. Dartsch, D. Hommel, M. Florian, F. Jahnke, and J. Gutowski, “Optical properties of wide-bandgap monolithic pillar microcavities with different geometries,” Phys. Status Solidi C 8, 1246–1249 (2011).
[CrossRef]

Kalt, H.

Kamp, M.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Kapon, E.

Karl, M.

Karlsson, K. F.

Kiravittaya, S.

M. Benyoucef, S. Kiravittaya, Y. F. Mei, A. Rastelli, and O. G. Schmidt, “Strongly coupled semiconductor microcavities: A route to couple artificial atoms over micrometric distances,” Phys. Rev. B 77, 035108 (2008).
[CrossRef]

Knipp, P.

V. Zhuk, D. Regelman, D. Gershoni, M. Bayer, J. Reithmaier, A. Forchel, P. Knipp, and T. Reinecke, “Near-field mapping of the electromagnetic field in confined photon geometries,” Phys. Rev. B 66, 115302 (2002).
[CrossRef]

Knipp, P. A.

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett. 81, 2582–2585 (1998).
[CrossRef]

Krebs, O.

A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[CrossRef] [PubMed]

Kröger, R.

H. Lohmeyer, K. Sebald, C. Kruse, R. Kröger, J. Gutowski, D. Hommel, J. Wiersig, N. Baer, and F. Jahnke, “Confined optical modes in monolithic II–VI pillar microcavities,” Appl. Phys. Lett. 88, 051101 (2006).
[CrossRef]

C. Kruse, S. M. Ulrich, G. Alexe, E. Roventa, R. Kröger, B. Brendemühl, P. Michler, J. Gutowski, and D. Hommel, “Green monolithic IIVI vertical-cavity surface-emitting laser operating at room temperature,” Phys. Status Solidi B 241, 731–738 (2004).
[CrossRef]

Kruse, C.

M. Seyfried, J. Kalden, K. Sebald, C. Kruse, S. Figge, A. Gust, C. Tessarek, H. Dartsch, D. Hommel, M. Florian, F. Jahnke, and J. Gutowski, “Optical properties of wide-bandgap monolithic pillar microcavities with different geometries,” Phys. Status Solidi C 8, 1246–1249 (2011).
[CrossRef]

K. Sebald, C. Kruse, and J. Wiersig, “Properties and prospects of bluegreen emitting IIVI-based monolithic microcavities,” Phys. Status Solidi B 246, 255–271 (2009).
[CrossRef]

C. Kruse, H. Lohmeyer, K. Sebald, J. Gutowski, D. Hommel, J. Wiersig, and F. Jahnke, “Green laser emission from monolithic II–VI-based pillar microcavities near room temperature,” Appl. Phys. Lett. 92, 031101 (2008).
[CrossRef]

A. Gust, C. Kruse, and D. Hommel, “Investigation of CdSe quantum dots in MgS barriers as active region in light emitting diodes,” J. Crys. Growth 301–302, 789–792 (2007).
[CrossRef]

R. Arians, T. Kümmel, G. Bacher, A. Gust, C. Kruse, and D. Hommel, “Room temperature emission from CdSe/ZnSSe/MgS single quantum dots,” Appl. Phys. Lett. 90, 101114 (2007).
[CrossRef]

H. Lohmeyer, K. Sebald, C. Kruse, R. Kröger, J. Gutowski, D. Hommel, J. Wiersig, N. Baer, and F. Jahnke, “Confined optical modes in monolithic II–VI pillar microcavities,” Appl. Phys. Lett. 88, 051101 (2006).
[CrossRef]

H. Lohmeyer, C. Kruse, K. Sebald, J. Gutowski, and D. Hommel, “Enhanced spontaneous emission of CdSe quantum dots in monolithic II–VI pillar microcavities,” Appl. Phys. Lett. 89, 091107 (2006).
[CrossRef]

C. Kruse, S. M. Ulrich, G. Alexe, E. Roventa, R. Kröger, B. Brendemühl, P. Michler, J. Gutowski, and D. Hommel, “Green monolithic IIVI vertical-cavity surface-emitting laser operating at room temperature,” Phys. Status Solidi B 241, 731–738 (2004).
[CrossRef]

Kulakovskii, V. D.

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett. 81, 2582–2585 (1998).
[CrossRef]

Kümmel, T.

R. Arians, T. Kümmel, G. Bacher, A. Gust, C. Kruse, and D. Hommel, “Room temperature emission from CdSe/ZnSSe/MgS single quantum dots,” Appl. Phys. Lett. 90, 101114 (2007).
[CrossRef]

Kwon, S. H.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Lam, S.

D. Whittaker, P. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Darai, Y.-L. D. Ho, J. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” App. Phys. Lett. 90, 161105 (2007).
[CrossRef]

Legrand, B.

T. Rivera, J.-P. Debray, J. M. Gérard, B. Legrand, L. Manin-Ferlazzo, and J. L. Oudar, “Optical losses in plasma-etched AlGaAs microresonators using reflection spectroscopy,” Appl. Phys. Lett. 74, 911–913 (1999).
[CrossRef]

B. Gayral, J. M. Gérard, B. Legrand, E. Costard, and V. Thierry-Mieg, “Optical study of GaAs/AlAs pillar microcavities with elliptical cross section,” Appl. Phys. Lett. 72, 1421–1423, (1998).
[CrossRef]

Lemaitre, A.

A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[CrossRef] [PubMed]

Li, L. H.

S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett. 94, 151103 (2009).
[CrossRef]

S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett. 94, 151103 (2009).
[CrossRef]

Li, S.

Liew, S. L.

A. Daraei, D. Sanvitto, J. A. Timpson, A. M. Fox, D. M. Whittaker, M. S. Skolnick, P. S. S. Guimarães, H. Vinck, A. Tahraoui, P. W. Fry, S. L. Liew, and M. Hopkinson, “Control of polarization and mode mapping of small volume high Q micropillars,” J. Appl. Phys. 102, 043105 (2007).
[CrossRef]

Löffler, A.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

S. Ates, S. M. Ulrich, P. Michler, S. Reitzenstein, A. Löffler, and A. Forchel, “Coherence properties of high-beta elliptical semiconductor micropillar lasers,” Appl. Phys. Lett. 90, 161111 (2007).
[CrossRef]

Löffler, W.

Lohmeyer, H.

C. Kruse, H. Lohmeyer, K. Sebald, J. Gutowski, D. Hommel, J. Wiersig, and F. Jahnke, “Green laser emission from monolithic II–VI-based pillar microcavities near room temperature,” Appl. Phys. Lett. 92, 031101 (2008).
[CrossRef]

H. Lohmeyer, K. Sebald, C. Kruse, R. Kröger, J. Gutowski, D. Hommel, J. Wiersig, N. Baer, and F. Jahnke, “Confined optical modes in monolithic II–VI pillar microcavities,” Appl. Phys. Lett. 88, 051101 (2006).
[CrossRef]

H. Lohmeyer, C. Kruse, K. Sebald, J. Gutowski, and D. Hommel, “Enhanced spontaneous emission of CdSe quantum dots in monolithic II–VI pillar microcavities,” Appl. Phys. Lett. 89, 091107 (2006).
[CrossRef]

Mahapatra, S.

J. Renner, L. Worschech, A. Forchel, S. Mahapatra, and K. Brunner, “CdSe quantum dot microdisk laser,” Appl. Phys. Lett. 89, 231104 (2006).
[CrossRef]

Manin, L.

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865–2867 (2001).
[CrossRef]

Manin-Ferlazzo, L.

T. Rivera, J.-P. Debray, J. M. Gérard, B. Legrand, L. Manin-Ferlazzo, and J. L. Oudar, “Optical losses in plasma-etched AlGaAs microresonators using reflection spectroscopy,” Appl. Phys. Lett. 74, 911–913 (1999).
[CrossRef]

Mei, Y. F.

M. Benyoucef, S. Kiravittaya, Y. F. Mei, A. Rastelli, and O. G. Schmidt, “Strongly coupled semiconductor microcavities: A route to couple artificial atoms over micrometric distances,” Phys. Rev. B 77, 035108 (2008).
[CrossRef]

Michler, P.

S. Ates, S. M. Ulrich, P. Michler, S. Reitzenstein, A. Löffler, and A. Forchel, “Coherence properties of high-beta elliptical semiconductor micropillar lasers,” Appl. Phys. Lett. 90, 161111 (2007).
[CrossRef]

C. Kruse, S. M. Ulrich, G. Alexe, E. Roventa, R. Kröger, B. Brendemühl, P. Michler, J. Gutowski, and D. Hommel, “Green monolithic IIVI vertical-cavity surface-emitting laser operating at room temperature,” Phys. Status Solidi B 241, 731–738 (2004).
[CrossRef]

K. Sebald, P. Michler, T. Passow, D. Hommel, G. Bacher, and A. Forchel, “Single-photon emission of CdSe quantum dots at temperatures up to 200 K,” Appl. Phys. Lett. 81, 2920–2922 (2002).
[CrossRef]

Moehl, S.

I. C. Robin, R. André, A. Balocchi, S. Carayon, S. Moehl, J. M. Gérard, and L. Ferlazzo, “Purcell effect for CdSe/ZnSe quantum dots placed into hybrid micropillars,” Appl. Phys. Lett. 87, 233114 (2005).
[CrossRef]

Moreau, E.

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865–2867 (2001).
[CrossRef]

Oudar, J. L.

T. Rivera, J.-P. Debray, J. M. Gérard, B. Legrand, L. Manin-Ferlazzo, and J. L. Oudar, “Optical losses in plasma-etched AlGaAs microresonators using reflection spectroscopy,” Appl. Phys. Lett. 74, 911–913 (1999).
[CrossRef]

Passow, T.

M. Karl, S. Li, T. Passow, W. Löffler, H. Kalt, and M. Hetterich, “Localized and delocalized modes in coupled optical micropillar cavities,” Opt. Express 15, 8191–8196 (2007).
[CrossRef] [PubMed]

K. Sebald, P. Michler, T. Passow, D. Hommel, G. Bacher, and A. Forchel, “Single-photon emission of CdSe quantum dots at temperatures up to 200 K,” Appl. Phys. Lett. 81, 2920–2922 (2002).
[CrossRef]

Pelton, M.

M. Pelton, C. Santori, J. Vuc̆ković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

Plant, J.

M. Pelton, C. Santori, J. Vuc̆ković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

Rarity, J.

D. Whittaker, P. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Darai, Y.-L. D. Ho, J. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” App. Phys. Lett. 90, 161105 (2007).
[CrossRef]

Rastelli, A.

M. Benyoucef, S. Kiravittaya, Y. F. Mei, A. Rastelli, and O. G. Schmidt, “Strongly coupled semiconductor microcavities: A route to couple artificial atoms over micrometric distances,” Phys. Rev. B 77, 035108 (2008).
[CrossRef]

Regelman, D.

V. Zhuk, D. Regelman, D. Gershoni, M. Bayer, J. Reithmaier, A. Forchel, P. Knipp, and T. Reinecke, “Near-field mapping of the electromagnetic field in confined photon geometries,” Phys. Rev. B 66, 115302 (2002).
[CrossRef]

Reinecke, T.

V. Zhuk, D. Regelman, D. Gershoni, M. Bayer, J. Reithmaier, A. Forchel, P. Knipp, and T. Reinecke, “Near-field mapping of the electromagnetic field in confined photon geometries,” Phys. Rev. B 66, 115302 (2002).
[CrossRef]

Reinecke, T. L.

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett. 81, 2582–2585 (1998).
[CrossRef]

Reithmaier, J.

V. Zhuk, D. Regelman, D. Gershoni, M. Bayer, J. Reithmaier, A. Forchel, P. Knipp, and T. Reinecke, “Near-field mapping of the electromagnetic field in confined photon geometries,” Phys. Rev. B 66, 115302 (2002).
[CrossRef]

Reithmaier, J. P.

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett. 81, 2582–2585 (1998).
[CrossRef]

Reitzenstein, S.

S. Ates, S. M. Ulrich, P. Michler, S. Reitzenstein, A. Löffler, and A. Forchel, “Coherence properties of high-beta elliptical semiconductor micropillar lasers,” Appl. Phys. Lett. 90, 161111 (2007).
[CrossRef]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Renner, J.

J. Renner, L. Worschech, A. Forchel, S. Mahapatra, and K. Brunner, “CdSe quantum dot microdisk laser,” Appl. Phys. Lett. 89, 231104 (2006).
[CrossRef]

Riboli, F.

S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett. 94, 151103 (2009).
[CrossRef]

S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett. 94, 151103 (2009).
[CrossRef]

Rivera, T.

T. Rivera, J.-P. Debray, J. M. Gérard, B. Legrand, L. Manin-Ferlazzo, and J. L. Oudar, “Optical losses in plasma-etched AlGaAs microresonators using reflection spectroscopy,” Appl. Phys. Lett. 74, 911–913 (1999).
[CrossRef]

Robert, I.

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865–2867 (2001).
[CrossRef]

Robin, I. C.

I. C. Robin, R. André, A. Balocchi, S. Carayon, S. Moehl, J. M. Gérard, and L. Ferlazzo, “Purcell effect for CdSe/ZnSe quantum dots placed into hybrid micropillars,” Appl. Phys. Lett. 87, 233114 (2005).
[CrossRef]

Roventa, E.

C. Kruse, S. M. Ulrich, G. Alexe, E. Roventa, R. Kröger, B. Brendemühl, P. Michler, J. Gutowski, and D. Hommel, “Green monolithic IIVI vertical-cavity surface-emitting laser operating at room temperature,” Phys. Status Solidi B 241, 731–738 (2004).
[CrossRef]

Rudra, A.

Sagnes, I.

A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[CrossRef] [PubMed]

Santori, C.

M. Pelton, C. Santori, J. Vuc̆ković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

Sanvitto, D.

D. Whittaker, P. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Darai, Y.-L. D. Ho, J. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” App. Phys. Lett. 90, 161105 (2007).
[CrossRef]

A. Daraei, D. Sanvitto, J. A. Timpson, A. M. Fox, D. M. Whittaker, M. S. Skolnick, P. S. S. Guimarães, H. Vinck, A. Tahraoui, P. W. Fry, S. L. Liew, and M. Hopkinson, “Control of polarization and mode mapping of small volume high Q micropillars,” J. Appl. Phys. 102, 043105 (2007).
[CrossRef]

A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimaraes, H. Vinck, D. M. Whittaker, M. S. Skolnick, and A. M. Fox, “Control of polarized single quantum dot emission in high-quality-factor microcavity pillars,” Appl. Phys. Lett. 88, 051113 (2006).
[CrossRef]

Schmidt, O. G.

M. Benyoucef, S. Kiravittaya, Y. F. Mei, A. Rastelli, and O. G. Schmidt, “Strongly coupled semiconductor microcavities: A route to couple artificial atoms over micrometric distances,” Phys. Rev. B 77, 035108 (2008).
[CrossRef]

Schneider, C.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Sebald, K.

M. Seyfried, J. Kalden, K. Sebald, C. Kruse, S. Figge, A. Gust, C. Tessarek, H. Dartsch, D. Hommel, M. Florian, F. Jahnke, and J. Gutowski, “Optical properties of wide-bandgap monolithic pillar microcavities with different geometries,” Phys. Status Solidi C 8, 1246–1249 (2011).
[CrossRef]

K. Sebald, C. Kruse, and J. Wiersig, “Properties and prospects of bluegreen emitting IIVI-based monolithic microcavities,” Phys. Status Solidi B 246, 255–271 (2009).
[CrossRef]

C. Kruse, H. Lohmeyer, K. Sebald, J. Gutowski, D. Hommel, J. Wiersig, and F. Jahnke, “Green laser emission from monolithic II–VI-based pillar microcavities near room temperature,” Appl. Phys. Lett. 92, 031101 (2008).
[CrossRef]

H. Lohmeyer, K. Sebald, C. Kruse, R. Kröger, J. Gutowski, D. Hommel, J. Wiersig, N. Baer, and F. Jahnke, “Confined optical modes in monolithic II–VI pillar microcavities,” Appl. Phys. Lett. 88, 051101 (2006).
[CrossRef]

H. Lohmeyer, C. Kruse, K. Sebald, J. Gutowski, and D. Hommel, “Enhanced spontaneous emission of CdSe quantum dots in monolithic II–VI pillar microcavities,” Appl. Phys. Lett. 89, 091107 (2006).
[CrossRef]

K. Sebald, P. Michler, T. Passow, D. Hommel, G. Bacher, and A. Forchel, “Single-photon emission of CdSe quantum dots at temperatures up to 200 K,” Appl. Phys. Lett. 81, 2920–2922 (2002).
[CrossRef]

Senellart, P.

A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[CrossRef] [PubMed]

Seyfried, M.

M. Seyfried, J. Kalden, K. Sebald, C. Kruse, S. Figge, A. Gust, C. Tessarek, H. Dartsch, D. Hommel, M. Florian, F. Jahnke, and J. Gutowski, “Optical properties of wide-bandgap monolithic pillar microcavities with different geometries,” Phys. Status Solidi C 8, 1246–1249 (2011).
[CrossRef]

Skolnick, M. S.

A. Daraei, D. Sanvitto, J. A. Timpson, A. M. Fox, D. M. Whittaker, M. S. Skolnick, P. S. S. Guimarães, H. Vinck, A. Tahraoui, P. W. Fry, S. L. Liew, and M. Hopkinson, “Control of polarization and mode mapping of small volume high Q micropillars,” J. Appl. Phys. 102, 043105 (2007).
[CrossRef]

A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimaraes, H. Vinck, D. M. Whittaker, M. S. Skolnick, and A. M. Fox, “Control of polarized single quantum dot emission in high-quality-factor microcavity pillars,” Appl. Phys. Lett. 88, 051113 (2006).
[CrossRef]

Solomon, G. S.

M. Pelton, C. Santori, J. Vuc̆ković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

Strauss, M.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Suffczynski, J.

A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[CrossRef] [PubMed]

Tahraoui, A.

D. Whittaker, P. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Darai, Y.-L. D. Ho, J. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” App. Phys. Lett. 90, 161105 (2007).
[CrossRef]

A. Daraei, D. Sanvitto, J. A. Timpson, A. M. Fox, D. M. Whittaker, M. S. Skolnick, P. S. S. Guimarães, H. Vinck, A. Tahraoui, P. W. Fry, S. L. Liew, and M. Hopkinson, “Control of polarization and mode mapping of small volume high Q micropillars,” J. Appl. Phys. 102, 043105 (2007).
[CrossRef]

A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimaraes, H. Vinck, D. M. Whittaker, M. S. Skolnick, and A. M. Fox, “Control of polarized single quantum dot emission in high-quality-factor microcavity pillars,” Appl. Phys. Lett. 88, 051113 (2006).
[CrossRef]

Tessarek, C.

M. Seyfried, J. Kalden, K. Sebald, C. Kruse, S. Figge, A. Gust, C. Tessarek, H. Dartsch, D. Hommel, M. Florian, F. Jahnke, and J. Gutowski, “Optical properties of wide-bandgap monolithic pillar microcavities with different geometries,” Phys. Status Solidi C 8, 1246–1249 (2011).
[CrossRef]

Thierry-Mieg, V.

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865–2867 (2001).
[CrossRef]

B. Gayral, J. M. Gérard, B. Legrand, E. Costard, and V. Thierry-Mieg, “Optical study of GaAs/AlAs pillar microcavities with elliptical cross section,” Appl. Phys. Lett. 72, 1421–1423, (1998).
[CrossRef]

Timpson, J. A.

A. Daraei, D. Sanvitto, J. A. Timpson, A. M. Fox, D. M. Whittaker, M. S. Skolnick, P. S. S. Guimarães, H. Vinck, A. Tahraoui, P. W. Fry, S. L. Liew, and M. Hopkinson, “Control of polarization and mode mapping of small volume high Q micropillars,” J. Appl. Phys. 102, 043105 (2007).
[CrossRef]

A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimaraes, H. Vinck, D. M. Whittaker, M. S. Skolnick, and A. M. Fox, “Control of polarized single quantum dot emission in high-quality-factor microcavity pillars,” Appl. Phys. Lett. 88, 051113 (2006).
[CrossRef]

Ulrich, S. M.

S. Ates, S. M. Ulrich, P. Michler, S. Reitzenstein, A. Löffler, and A. Forchel, “Coherence properties of high-beta elliptical semiconductor micropillar lasers,” Appl. Phys. Lett. 90, 161111 (2007).
[CrossRef]

C. Kruse, S. M. Ulrich, G. Alexe, E. Roventa, R. Kröger, B. Brendemühl, P. Michler, J. Gutowski, and D. Hommel, “Green monolithic IIVI vertical-cavity surface-emitting laser operating at room temperature,” Phys. Status Solidi B 241, 731–738 (2004).
[CrossRef]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef] [PubMed]

Vignolini, S.

S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett. 94, 151103 (2009).
[CrossRef]

S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett. 94, 151103 (2009).
[CrossRef]

Vinck, H.

A. Daraei, D. Sanvitto, J. A. Timpson, A. M. Fox, D. M. Whittaker, M. S. Skolnick, P. S. S. Guimarães, H. Vinck, A. Tahraoui, P. W. Fry, S. L. Liew, and M. Hopkinson, “Control of polarization and mode mapping of small volume high Q micropillars,” J. Appl. Phys. 102, 043105 (2007).
[CrossRef]

D. Whittaker, P. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Darai, Y.-L. D. Ho, J. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” App. Phys. Lett. 90, 161105 (2007).
[CrossRef]

A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimaraes, H. Vinck, D. M. Whittaker, M. S. Skolnick, and A. M. Fox, “Control of polarized single quantum dot emission in high-quality-factor microcavity pillars,” Appl. Phys. Lett. 88, 051113 (2006).
[CrossRef]

Voisin, P.

A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[CrossRef] [PubMed]

Vuc?kovic, J.

M. Pelton, C. Santori, J. Vuc̆ković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

Whittaker, D.

D. Whittaker, P. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Darai, Y.-L. D. Ho, J. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” App. Phys. Lett. 90, 161105 (2007).
[CrossRef]

Whittaker, D. M.

A. Daraei, D. Sanvitto, J. A. Timpson, A. M. Fox, D. M. Whittaker, M. S. Skolnick, P. S. S. Guimarães, H. Vinck, A. Tahraoui, P. W. Fry, S. L. Liew, and M. Hopkinson, “Control of polarization and mode mapping of small volume high Q micropillars,” J. Appl. Phys. 102, 043105 (2007).
[CrossRef]

A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimaraes, H. Vinck, D. M. Whittaker, M. S. Skolnick, and A. M. Fox, “Control of polarized single quantum dot emission in high-quality-factor microcavity pillars,” Appl. Phys. Lett. 88, 051113 (2006).
[CrossRef]

Wiersig, J.

K. Sebald, C. Kruse, and J. Wiersig, “Properties and prospects of bluegreen emitting IIVI-based monolithic microcavities,” Phys. Status Solidi B 246, 255–271 (2009).
[CrossRef]

C. Kruse, H. Lohmeyer, K. Sebald, J. Gutowski, D. Hommel, J. Wiersig, and F. Jahnke, “Green laser emission from monolithic II–VI-based pillar microcavities near room temperature,” Appl. Phys. Lett. 92, 031101 (2008).
[CrossRef]

H. Lohmeyer, K. Sebald, C. Kruse, R. Kröger, J. Gutowski, D. Hommel, J. Wiersig, N. Baer, and F. Jahnke, “Confined optical modes in monolithic II–VI pillar microcavities,” Appl. Phys. Lett. 88, 051101 (2006).
[CrossRef]

Wiersma, D. S.

S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett. 94, 151103 (2009).
[CrossRef]

S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett. 94, 151103 (2009).
[CrossRef]

Worschech, L.

J. Renner, L. Worschech, A. Forchel, S. Mahapatra, and K. Brunner, “CdSe quantum dot microdisk laser,” Appl. Phys. Lett. 89, 231104 (2006).
[CrossRef]

Yamamoto, Y.

M. Pelton, C. Santori, J. Vuc̆ković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

Zani, M.

S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett. 94, 151103 (2009).
[CrossRef]

S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett. 94, 151103 (2009).
[CrossRef]

Zhang, B.

M. Pelton, C. Santori, J. Vuc̆ković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

Zhuk, V.

V. Zhuk, D. Regelman, D. Gershoni, M. Bayer, J. Reithmaier, A. Forchel, P. Knipp, and T. Reinecke, “Near-field mapping of the electromagnetic field in confined photon geometries,” Phys. Rev. B 66, 115302 (2002).
[CrossRef]

App. Phys. Lett. (1)

D. Whittaker, P. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Darai, Y.-L. D. Ho, J. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” App. Phys. Lett. 90, 161105 (2007).
[CrossRef]

Appl. Phys. Lett. (15)

B. Gayral, J. M. Gérard, B. Legrand, E. Costard, and V. Thierry-Mieg, “Optical study of GaAs/AlAs pillar microcavities with elliptical cross section,” Appl. Phys. Lett. 72, 1421–1423, (1998).
[CrossRef]

A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimaraes, H. Vinck, D. M. Whittaker, M. S. Skolnick, and A. M. Fox, “Control of polarized single quantum dot emission in high-quality-factor microcavity pillars,” Appl. Phys. Lett. 88, 051113 (2006).
[CrossRef]

S. Ates, S. M. Ulrich, P. Michler, S. Reitzenstein, A. Löffler, and A. Forchel, “Coherence properties of high-beta elliptical semiconductor micropillar lasers,” Appl. Phys. Lett. 90, 161111 (2007).
[CrossRef]

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865–2867 (2001).
[CrossRef]

S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett. 94, 151103 (2009).
[CrossRef]

K. Sebald, P. Michler, T. Passow, D. Hommel, G. Bacher, and A. Forchel, “Single-photon emission of CdSe quantum dots at temperatures up to 200 K,” Appl. Phys. Lett. 81, 2920–2922 (2002).
[CrossRef]

R. Arians, T. Kümmel, G. Bacher, A. Gust, C. Kruse, and D. Hommel, “Room temperature emission from CdSe/ZnSSe/MgS single quantum dots,” Appl. Phys. Lett. 90, 101114 (2007).
[CrossRef]

C. Kruse, H. Lohmeyer, K. Sebald, J. Gutowski, D. Hommel, J. Wiersig, and F. Jahnke, “Green laser emission from monolithic II–VI-based pillar microcavities near room temperature,” Appl. Phys. Lett. 92, 031101 (2008).
[CrossRef]

I. C. Robin, R. André, A. Balocchi, S. Carayon, S. Moehl, J. M. Gérard, and L. Ferlazzo, “Purcell effect for CdSe/ZnSe quantum dots placed into hybrid micropillars,” Appl. Phys. Lett. 87, 233114 (2005).
[CrossRef]

J. Renner, L. Worschech, A. Forchel, S. Mahapatra, and K. Brunner, “CdSe quantum dot microdisk laser,” Appl. Phys. Lett. 89, 231104 (2006).
[CrossRef]

H. Lohmeyer, K. Sebald, C. Kruse, R. Kröger, J. Gutowski, D. Hommel, J. Wiersig, N. Baer, and F. Jahnke, “Confined optical modes in monolithic II–VI pillar microcavities,” Appl. Phys. Lett. 88, 051101 (2006).
[CrossRef]

H. Lohmeyer, C. Kruse, K. Sebald, J. Gutowski, and D. Hommel, “Enhanced spontaneous emission of CdSe quantum dots in monolithic II–VI pillar microcavities,” Appl. Phys. Lett. 89, 091107 (2006).
[CrossRef]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

T. Rivera, J.-P. Debray, J. M. Gérard, B. Legrand, L. Manin-Ferlazzo, and J. L. Oudar, “Optical losses in plasma-etched AlGaAs microresonators using reflection spectroscopy,” Appl. Phys. Lett. 74, 911–913 (1999).
[CrossRef]

S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett. 94, 151103 (2009).
[CrossRef]

J. Appl. Phys. (1)

A. Daraei, D. Sanvitto, J. A. Timpson, A. M. Fox, D. M. Whittaker, M. S. Skolnick, P. S. S. Guimarães, H. Vinck, A. Tahraoui, P. W. Fry, S. L. Liew, and M. Hopkinson, “Control of polarization and mode mapping of small volume high Q micropillars,” J. Appl. Phys. 102, 043105 (2007).
[CrossRef]

J. Crys. Growth (1)

A. Gust, C. Kruse, and D. Hommel, “Investigation of CdSe quantum dots in MgS barriers as active region in light emitting diodes,” J. Crys. Growth 301–302, 789–792 (2007).
[CrossRef]

Nature (2)

A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[CrossRef] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef] [PubMed]

Opt. Express (3)

Phys. Rev. B (2)

M. Benyoucef, S. Kiravittaya, Y. F. Mei, A. Rastelli, and O. G. Schmidt, “Strongly coupled semiconductor microcavities: A route to couple artificial atoms over micrometric distances,” Phys. Rev. B 77, 035108 (2008).
[CrossRef]

V. Zhuk, D. Regelman, D. Gershoni, M. Bayer, J. Reithmaier, A. Forchel, P. Knipp, and T. Reinecke, “Near-field mapping of the electromagnetic field in confined photon geometries,” Phys. Rev. B 66, 115302 (2002).
[CrossRef]

Phys. Rev. Lett. (2)

M. Pelton, C. Santori, J. Vuc̆ković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett. 81, 2582–2585 (1998).
[CrossRef]

Phys. Status Solidi B (2)

C. Kruse, S. M. Ulrich, G. Alexe, E. Roventa, R. Kröger, B. Brendemühl, P. Michler, J. Gutowski, and D. Hommel, “Green monolithic IIVI vertical-cavity surface-emitting laser operating at room temperature,” Phys. Status Solidi B 241, 731–738 (2004).
[CrossRef]

K. Sebald, C. Kruse, and J. Wiersig, “Properties and prospects of bluegreen emitting IIVI-based monolithic microcavities,” Phys. Status Solidi B 246, 255–271 (2009).
[CrossRef]

Phys. Status Solidi C (1)

M. Seyfried, J. Kalden, K. Sebald, C. Kruse, S. Figge, A. Gust, C. Tessarek, H. Dartsch, D. Hommel, M. Florian, F. Jahnke, and J. Gutowski, “Optical properties of wide-bandgap monolithic pillar microcavities with different geometries,” Phys. Status Solidi C 8, 1246–1249 (2011).
[CrossRef]

Other (1)

J. Gérard, “Solid-state cavity-quantum electrodynamics with self-assembled quantum dots,” in Single Quantum Dots, P. Michler, ed. (Springer, 2003), p. 269.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Spectra of an elliptical pillar for orthogonal polarizer orientations at T=4 K (ε = 0.4) showing the mode splitting. Inset: SEM picture of an elliptical pillar. (b) Measured and calculated fundamental mode splitting for structures with different ellipticity factors. (c) Influence of the ellipticity on the quality factors (Q) for both polarization directions (data points) in comparison to the fitted variation (solid line).

Fig. 2
Fig. 2

(c) and (d) show the PL spectrum of the elliptical MC (polarizer orientation of 90°) and the PM (CC=1.9 μm, unpolarized). In rows (b) and (f) the corresponding measured 2D spatial distribution of the resonator modes is displayed. The emission is detected from the top of the structures and the mode order increases from left to right. The lines (a) and (e) show the calculated transverse electric-field patterns of the modes.

Fig. 3
Fig. 3

(a) SEM picture of a photonic molecule. The circular pillars have a diameter of d=2.8 μm and are connected by a bar (0.64 μm length and 0.53 μm width). (b) PL spectra of PMs with different center-to-center (CC) distances in comparison to a circular pillar all recorded at T=4 K. The dotted lines are guides to the eye. (c) Calculated coupling strength between distinct resonator modes.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ E = 1 E circ r c 2 h ¯ 2 c 2 ε r χ 0 , 1 2 Δ r c .
1 Q = 1 Q intr . + 1 Q scatter

Metrics