Abstract

Temperature-dependent picosecond non-degenerate four-wave-mixing experiments were performed to explore the carrier dynamics in an InGaN/GaN multiple quantum well sample, in which light emission enhancement with surface plasmon (SP) coupling has been identified. In the time-resolved photoluminescence results, we can identify the faster carrier decay time of the sample with surface plasmon coupling. The faster decay time is due to this sample’s ability to create additional channels for effective carrier recombination. In the four-wave-mixing results, a slower grating decay time of the sample with surface plasmon coupling was measured. The diffusion coefficients and surface recombination velocities of photo-created carriers were estimated by modeling the decay rate of transient grating signals. For the sample for which surface plasmon coupling exists, smaller diffusion coefficients and slower surface recombination velocities can be estimated when the temperatures are above 150 K. The carriers coupling with some SP modes is not the only mechanism contributing to emission enhancement. In the InGaN/GaN multiple quantum well sample, surface recombination suppressed by SP coupling is another factor for increased light emission efficiency.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).
  2. S. A. Maier and H. A. Atwater, “Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
    [CrossRef]
  3. H. L. Chen, J. Y. Wang, W. H. Chuang, Y. W. Kiang, and C. C. Yang, “Characteristics of light emitter coupling with surface plasmons in air/metal/dielectric grating structures,” J. Opt. Soc. Am. B 26(5), 923 (2009).
    [CrossRef]
  4. V. V. Klimov and D. V. Guzatov, “Strongly localized plasmon oscillations in a cluster of two metallic nanospheres and their influence on spontaneous emission of an atom,” Phys. Rev. B 75(2), 024303 (2007).
    [CrossRef]
  5. I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
    [CrossRef]
  6. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
    [CrossRef] [PubMed]
  7. A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonvitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66(15), 153305 (2002).
    [CrossRef]
  8. J. B. Khurgin and G. Sun, “Enhancement of light absorption in a quantum well by surface plasmon polariton,” Appl. Phys. Lett. 94(19), 191106 (2009).
    [CrossRef]
  9. K. Jarasiunas, R. Aleksiejunas, T. Malinauskas, V. Gudelis, T. Tamulevicius, S. Tamulevicius, A. Guobiene, A. Usikov, V. Dmitriev, and H. J. Gerritsen, “Implementation of diffractive optical element in four-wave mixing scheme for ex situ characterization of hydride vapor phase epitaxy-grown GaN layers,” Rev. Sci. Instrum. 78(3), 033901 (2007).
    [CrossRef] [PubMed]
  10. H.-C. Wang, S.-W. Feng, T. Malinauskas, K. Jarasiunas, C.-C. Ting, S. Liu, and C.-Y. Tsai, “Carrier dynamics in InGaN/GaN multiple quantum wells based on different polishing processes of sapphire substrate,” Thin Solid Films 518(24), 7291–7294 (2010).
    [CrossRef]
  11. W. C. Liu and D. P. Tsai, “Optical tunneling effect of surface plasmon polaritons and localized surface plasmon resonance,” Phys. Rev. B 65(15), 155423 (2002).
    [CrossRef]
  12. T. S. Oh, H. Jeong, Y. S. Lee, J. D. Kim, T. H. Seo, H. Kim, A. H. Park, K. J. Lee, and E.-K. Suh, “Coupling of InGaN/GaN multiquantum-wells photoluminescence to surface plasmons in platinum nanocluster,” Appl. Phys. Lett. 95(11), 111112 (2009).
    [CrossRef]
  13. D. B. Tran Thoai, R. Zimmermann, M. Grundmann, and D. Bimberg, “Image charges in semiconductor quantum wells: Effect on exciton binding energy,” Phys. Rev. B Condens. Matter 42(9), 5906–5909 (1990).
    [CrossRef] [PubMed]
  14. D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
    [CrossRef] [PubMed]
  15. H. C. Wang, S. J. Lin, Y. C. Lu, Y. C. Cheng, C. C. Yang, and K. J. Ma, “Carrier relaxation in InGaN/GaN quantum wells with nanometer-scale cluster structures,” Appl. Phys. Lett. 85(8), 1371 (2004).
    [CrossRef]
  16. M. Syvajarvi and R. Yakimova, Wide Band Gap Materials and New Developments (Research Signpost, 2007).
  17. H. C. Wang, Y. C. Lu, C. Y. Chen, and C. C. Yang, “Carrier capture times of the localized states in an InGaN thin film with indium-rich nanocluster structures,” Appl. Phys. Lett. 89(1), 011906 (2006).
    [CrossRef]
  18. S. Nargelas, T. Malinauskas, A. Kadys, E. Dimakis, T. D. Moustakas, and K. Jarašiuūnas, “Nonlinear carrier recombination and transport features in highly excited InN layer,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(S2), S735–S738 (2009).
    [CrossRef]
  19. T. Malinauskas, K. Jarasiunas, S. Miasojedovas, S. Jursenas, B. Beaumont, and P. Gibart, “Optical monitoring of nonequilibrium carrier lifetime in freestanding GaN by time-resolved four-wave mixing and photoluminescence techniques,” Appl. Phys. Lett. 88(20), 202109 (2006).
    [CrossRef]
  20. K. Binder and D. W. Heermann, Monte Carlo Simulation in Statistical Physics, 2nd edn. (Springer, Berlin, Heidelberg 1992).
  21. I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” J. Appl. Phys. 94(6), 3675 (2003).
    [CrossRef]
  22. T. Malinauskas, K. Jarasiunas, M. Heuken, F. Scholz, and P. Bruckner, “Diffusion and recombination of degenerate carrier plasma in GaN,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(S2), S743–S746 (2009).
    [CrossRef]

2010 (1)

H.-C. Wang, S.-W. Feng, T. Malinauskas, K. Jarasiunas, C.-C. Ting, S. Liu, and C.-Y. Tsai, “Carrier dynamics in InGaN/GaN multiple quantum wells based on different polishing processes of sapphire substrate,” Thin Solid Films 518(24), 7291–7294 (2010).
[CrossRef]

2009 (5)

J. B. Khurgin and G. Sun, “Enhancement of light absorption in a quantum well by surface plasmon polariton,” Appl. Phys. Lett. 94(19), 191106 (2009).
[CrossRef]

T. S. Oh, H. Jeong, Y. S. Lee, J. D. Kim, T. H. Seo, H. Kim, A. H. Park, K. J. Lee, and E.-K. Suh, “Coupling of InGaN/GaN multiquantum-wells photoluminescence to surface plasmons in platinum nanocluster,” Appl. Phys. Lett. 95(11), 111112 (2009).
[CrossRef]

S. Nargelas, T. Malinauskas, A. Kadys, E. Dimakis, T. D. Moustakas, and K. Jarašiuūnas, “Nonlinear carrier recombination and transport features in highly excited InN layer,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(S2), S735–S738 (2009).
[CrossRef]

T. Malinauskas, K. Jarasiunas, M. Heuken, F. Scholz, and P. Bruckner, “Diffusion and recombination of degenerate carrier plasma in GaN,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(S2), S743–S746 (2009).
[CrossRef]

H. L. Chen, J. Y. Wang, W. H. Chuang, Y. W. Kiang, and C. C. Yang, “Characteristics of light emitter coupling with surface plasmons in air/metal/dielectric grating structures,” J. Opt. Soc. Am. B 26(5), 923 (2009).
[CrossRef]

2008 (1)

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
[CrossRef] [PubMed]

2007 (2)

K. Jarasiunas, R. Aleksiejunas, T. Malinauskas, V. Gudelis, T. Tamulevicius, S. Tamulevicius, A. Guobiene, A. Usikov, V. Dmitriev, and H. J. Gerritsen, “Implementation of diffractive optical element in four-wave mixing scheme for ex situ characterization of hydride vapor phase epitaxy-grown GaN layers,” Rev. Sci. Instrum. 78(3), 033901 (2007).
[CrossRef] [PubMed]

V. V. Klimov and D. V. Guzatov, “Strongly localized plasmon oscillations in a cluster of two metallic nanospheres and their influence on spontaneous emission of an atom,” Phys. Rev. B 75(2), 024303 (2007).
[CrossRef]

2006 (2)

T. Malinauskas, K. Jarasiunas, S. Miasojedovas, S. Jursenas, B. Beaumont, and P. Gibart, “Optical monitoring of nonequilibrium carrier lifetime in freestanding GaN by time-resolved four-wave mixing and photoluminescence techniques,” Appl. Phys. Lett. 88(20), 202109 (2006).
[CrossRef]

H. C. Wang, Y. C. Lu, C. Y. Chen, and C. C. Yang, “Carrier capture times of the localized states in an InGaN thin film with indium-rich nanocluster structures,” Appl. Phys. Lett. 89(1), 011906 (2006).
[CrossRef]

2005 (1)

S. A. Maier and H. A. Atwater, “Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[CrossRef]

2004 (2)

H. C. Wang, S. J. Lin, Y. C. Lu, Y. C. Cheng, C. C. Yang, and K. J. Ma, “Carrier relaxation in InGaN/GaN quantum wells with nanometer-scale cluster structures,” Appl. Phys. Lett. 85(8), 1371 (2004).
[CrossRef]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

2003 (1)

I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” J. Appl. Phys. 94(6), 3675 (2003).
[CrossRef]

2002 (2)

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonvitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66(15), 153305 (2002).
[CrossRef]

W. C. Liu and D. P. Tsai, “Optical tunneling effect of surface plasmon polaritons and localized surface plasmon resonance,” Phys. Rev. B 65(15), 155423 (2002).
[CrossRef]

1999 (1)

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[CrossRef]

1990 (1)

D. B. Tran Thoai, R. Zimmermann, M. Grundmann, and D. Bimberg, “Image charges in semiconductor quantum wells: Effect on exciton binding energy,” Phys. Rev. B Condens. Matter 42(9), 5906–5909 (1990).
[CrossRef] [PubMed]

Aleksiejunas, R.

K. Jarasiunas, R. Aleksiejunas, T. Malinauskas, V. Gudelis, T. Tamulevicius, S. Tamulevicius, A. Guobiene, A. Usikov, V. Dmitriev, and H. J. Gerritsen, “Implementation of diffractive optical element in four-wave mixing scheme for ex situ characterization of hydride vapor phase epitaxy-grown GaN layers,” Rev. Sci. Instrum. 78(3), 033901 (2007).
[CrossRef] [PubMed]

Atwater, H. A.

S. A. Maier and H. A. Atwater, “Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[CrossRef]

Beaumont, B.

T. Malinauskas, K. Jarasiunas, S. Miasojedovas, S. Jursenas, B. Beaumont, and P. Gibart, “Optical monitoring of nonequilibrium carrier lifetime in freestanding GaN by time-resolved four-wave mixing and photoluminescence techniques,” Appl. Phys. Lett. 88(20), 202109 (2006).
[CrossRef]

Bimberg, D.

D. B. Tran Thoai, R. Zimmermann, M. Grundmann, and D. Bimberg, “Image charges in semiconductor quantum wells: Effect on exciton binding energy,” Phys. Rev. B Condens. Matter 42(9), 5906–5909 (1990).
[CrossRef] [PubMed]

Boroditsky, M.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[CrossRef]

Bruckner, P.

T. Malinauskas, K. Jarasiunas, M. Heuken, F. Scholz, and P. Bruckner, “Diffusion and recombination of degenerate carrier plasma in GaN,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(S2), S743–S746 (2009).
[CrossRef]

Chen, C. Y.

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
[CrossRef] [PubMed]

H. C. Wang, Y. C. Lu, C. Y. Chen, and C. C. Yang, “Carrier capture times of the localized states in an InGaN thin film with indium-rich nanocluster structures,” Appl. Phys. Lett. 89(1), 011906 (2006).
[CrossRef]

Chen, H. L.

Cheng, Y. C.

H. C. Wang, S. J. Lin, Y. C. Lu, Y. C. Cheng, C. C. Yang, and K. J. Ma, “Carrier relaxation in InGaN/GaN quantum wells with nanometer-scale cluster structures,” Appl. Phys. Lett. 85(8), 1371 (2004).
[CrossRef]

Chuang, W. H.

DenBaars, S. P.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[CrossRef]

Dimakis, E.

S. Nargelas, T. Malinauskas, A. Kadys, E. Dimakis, T. D. Moustakas, and K. Jarašiuūnas, “Nonlinear carrier recombination and transport features in highly excited InN layer,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(S2), S735–S738 (2009).
[CrossRef]

Dmitriev, V.

K. Jarasiunas, R. Aleksiejunas, T. Malinauskas, V. Gudelis, T. Tamulevicius, S. Tamulevicius, A. Guobiene, A. Usikov, V. Dmitriev, and H. J. Gerritsen, “Implementation of diffractive optical element in four-wave mixing scheme for ex situ characterization of hydride vapor phase epitaxy-grown GaN layers,” Rev. Sci. Instrum. 78(3), 033901 (2007).
[CrossRef] [PubMed]

Everitt, H. O.

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonvitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66(15), 153305 (2002).
[CrossRef]

Feng, S.-W.

H.-C. Wang, S.-W. Feng, T. Malinauskas, K. Jarasiunas, C.-C. Ting, S. Liu, and C.-Y. Tsai, “Carrier dynamics in InGaN/GaN multiple quantum wells based on different polishing processes of sapphire substrate,” Thin Solid Films 518(24), 7291–7294 (2010).
[CrossRef]

Gerritsen, H. J.

K. Jarasiunas, R. Aleksiejunas, T. Malinauskas, V. Gudelis, T. Tamulevicius, S. Tamulevicius, A. Guobiene, A. Usikov, V. Dmitriev, and H. J. Gerritsen, “Implementation of diffractive optical element in four-wave mixing scheme for ex situ characterization of hydride vapor phase epitaxy-grown GaN layers,” Rev. Sci. Instrum. 78(3), 033901 (2007).
[CrossRef] [PubMed]

Gibart, P.

T. Malinauskas, K. Jarasiunas, S. Miasojedovas, S. Jursenas, B. Beaumont, and P. Gibart, “Optical monitoring of nonequilibrium carrier lifetime in freestanding GaN by time-resolved four-wave mixing and photoluminescence techniques,” Appl. Phys. Lett. 88(20), 202109 (2006).
[CrossRef]

Gontijo, I.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[CrossRef]

Grundmann, M.

D. B. Tran Thoai, R. Zimmermann, M. Grundmann, and D. Bimberg, “Image charges in semiconductor quantum wells: Effect on exciton binding energy,” Phys. Rev. B Condens. Matter 42(9), 5906–5909 (1990).
[CrossRef] [PubMed]

Gudelis, V.

K. Jarasiunas, R. Aleksiejunas, T. Malinauskas, V. Gudelis, T. Tamulevicius, S. Tamulevicius, A. Guobiene, A. Usikov, V. Dmitriev, and H. J. Gerritsen, “Implementation of diffractive optical element in four-wave mixing scheme for ex situ characterization of hydride vapor phase epitaxy-grown GaN layers,” Rev. Sci. Instrum. 78(3), 033901 (2007).
[CrossRef] [PubMed]

Guobiene, A.

K. Jarasiunas, R. Aleksiejunas, T. Malinauskas, V. Gudelis, T. Tamulevicius, S. Tamulevicius, A. Guobiene, A. Usikov, V. Dmitriev, and H. J. Gerritsen, “Implementation of diffractive optical element in four-wave mixing scheme for ex situ characterization of hydride vapor phase epitaxy-grown GaN layers,” Rev. Sci. Instrum. 78(3), 033901 (2007).
[CrossRef] [PubMed]

Guzatov, D. V.

V. V. Klimov and D. V. Guzatov, “Strongly localized plasmon oscillations in a cluster of two metallic nanospheres and their influence on spontaneous emission of an atom,” Phys. Rev. B 75(2), 024303 (2007).
[CrossRef]

Heuken, M.

T. Malinauskas, K. Jarasiunas, M. Heuken, F. Scholz, and P. Bruckner, “Diffusion and recombination of degenerate carrier plasma in GaN,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(S2), S743–S746 (2009).
[CrossRef]

Huang, C. F.

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
[CrossRef] [PubMed]

Jarasiunas, K.

H.-C. Wang, S.-W. Feng, T. Malinauskas, K. Jarasiunas, C.-C. Ting, S. Liu, and C.-Y. Tsai, “Carrier dynamics in InGaN/GaN multiple quantum wells based on different polishing processes of sapphire substrate,” Thin Solid Films 518(24), 7291–7294 (2010).
[CrossRef]

T. Malinauskas, K. Jarasiunas, M. Heuken, F. Scholz, and P. Bruckner, “Diffusion and recombination of degenerate carrier plasma in GaN,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(S2), S743–S746 (2009).
[CrossRef]

K. Jarasiunas, R. Aleksiejunas, T. Malinauskas, V. Gudelis, T. Tamulevicius, S. Tamulevicius, A. Guobiene, A. Usikov, V. Dmitriev, and H. J. Gerritsen, “Implementation of diffractive optical element in four-wave mixing scheme for ex situ characterization of hydride vapor phase epitaxy-grown GaN layers,” Rev. Sci. Instrum. 78(3), 033901 (2007).
[CrossRef] [PubMed]

T. Malinauskas, K. Jarasiunas, S. Miasojedovas, S. Jursenas, B. Beaumont, and P. Gibart, “Optical monitoring of nonequilibrium carrier lifetime in freestanding GaN by time-resolved four-wave mixing and photoluminescence techniques,” Appl. Phys. Lett. 88(20), 202109 (2006).
[CrossRef]

Jarašiuunas, K.

S. Nargelas, T. Malinauskas, A. Kadys, E. Dimakis, T. D. Moustakas, and K. Jarašiuūnas, “Nonlinear carrier recombination and transport features in highly excited InN layer,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(S2), S735–S738 (2009).
[CrossRef]

Jeong, H.

T. S. Oh, H. Jeong, Y. S. Lee, J. D. Kim, T. H. Seo, H. Kim, A. H. Park, K. J. Lee, and E.-K. Suh, “Coupling of InGaN/GaN multiquantum-wells photoluminescence to surface plasmons in platinum nanocluster,” Appl. Phys. Lett. 95(11), 111112 (2009).
[CrossRef]

Jursenas, S.

T. Malinauskas, K. Jarasiunas, S. Miasojedovas, S. Jursenas, B. Beaumont, and P. Gibart, “Optical monitoring of nonequilibrium carrier lifetime in freestanding GaN by time-resolved four-wave mixing and photoluminescence techniques,” Appl. Phys. Lett. 88(20), 202109 (2006).
[CrossRef]

Kadys, A.

S. Nargelas, T. Malinauskas, A. Kadys, E. Dimakis, T. D. Moustakas, and K. Jarašiuūnas, “Nonlinear carrier recombination and transport features in highly excited InN layer,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(S2), S735–S738 (2009).
[CrossRef]

Keller, S.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[CrossRef]

Khurgin, J. B.

J. B. Khurgin and G. Sun, “Enhancement of light absorption in a quantum well by surface plasmon polariton,” Appl. Phys. Lett. 94(19), 191106 (2009).
[CrossRef]

Kiang, Y. W.

Kim, H.

T. S. Oh, H. Jeong, Y. S. Lee, J. D. Kim, T. H. Seo, H. Kim, A. H. Park, K. J. Lee, and E.-K. Suh, “Coupling of InGaN/GaN multiquantum-wells photoluminescence to surface plasmons in platinum nanocluster,” Appl. Phys. Lett. 95(11), 111112 (2009).
[CrossRef]

Kim, J. D.

T. S. Oh, H. Jeong, Y. S. Lee, J. D. Kim, T. H. Seo, H. Kim, A. H. Park, K. J. Lee, and E.-K. Suh, “Coupling of InGaN/GaN multiquantum-wells photoluminescence to surface plasmons in platinum nanocluster,” Appl. Phys. Lett. 95(11), 111112 (2009).
[CrossRef]

Klimov, V. V.

V. V. Klimov and D. V. Guzatov, “Strongly localized plasmon oscillations in a cluster of two metallic nanospheres and their influence on spontaneous emission of an atom,” Phys. Rev. B 75(2), 024303 (2007).
[CrossRef]

Kuroda, T.

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonvitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66(15), 153305 (2002).
[CrossRef]

Lee, C.-W.

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonvitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66(15), 153305 (2002).
[CrossRef]

Lee, K. J.

T. S. Oh, H. Jeong, Y. S. Lee, J. D. Kim, T. H. Seo, H. Kim, A. H. Park, K. J. Lee, and E.-K. Suh, “Coupling of InGaN/GaN multiquantum-wells photoluminescence to surface plasmons in platinum nanocluster,” Appl. Phys. Lett. 95(11), 111112 (2009).
[CrossRef]

Lee, Y. S.

T. S. Oh, H. Jeong, Y. S. Lee, J. D. Kim, T. H. Seo, H. Kim, A. H. Park, K. J. Lee, and E.-K. Suh, “Coupling of InGaN/GaN multiquantum-wells photoluminescence to surface plasmons in platinum nanocluster,” Appl. Phys. Lett. 95(11), 111112 (2009).
[CrossRef]

Lin, S. J.

H. C. Wang, S. J. Lin, Y. C. Lu, Y. C. Cheng, C. C. Yang, and K. J. Ma, “Carrier relaxation in InGaN/GaN quantum wells with nanometer-scale cluster structures,” Appl. Phys. Lett. 85(8), 1371 (2004).
[CrossRef]

Liu, S.

H.-C. Wang, S.-W. Feng, T. Malinauskas, K. Jarasiunas, C.-C. Ting, S. Liu, and C.-Y. Tsai, “Carrier dynamics in InGaN/GaN multiple quantum wells based on different polishing processes of sapphire substrate,” Thin Solid Films 518(24), 7291–7294 (2010).
[CrossRef]

Liu, W. C.

W. C. Liu and D. P. Tsai, “Optical tunneling effect of surface plasmon polaritons and localized surface plasmon resonance,” Phys. Rev. B 65(15), 155423 (2002).
[CrossRef]

Lu, Y. C.

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
[CrossRef] [PubMed]

H. C. Wang, Y. C. Lu, C. Y. Chen, and C. C. Yang, “Carrier capture times of the localized states in an InGaN thin film with indium-rich nanocluster structures,” Appl. Phys. Lett. 89(1), 011906 (2006).
[CrossRef]

H. C. Wang, S. J. Lin, Y. C. Lu, Y. C. Cheng, C. C. Yang, and K. J. Ma, “Carrier relaxation in InGaN/GaN quantum wells with nanometer-scale cluster structures,” Appl. Phys. Lett. 85(8), 1371 (2004).
[CrossRef]

Ma, K. J.

H. C. Wang, S. J. Lin, Y. C. Lu, Y. C. Cheng, C. C. Yang, and K. J. Ma, “Carrier relaxation in InGaN/GaN quantum wells with nanometer-scale cluster structures,” Appl. Phys. Lett. 85(8), 1371 (2004).
[CrossRef]

Maier, S. A.

S. A. Maier and H. A. Atwater, “Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[CrossRef]

Malinauskas, T.

H.-C. Wang, S.-W. Feng, T. Malinauskas, K. Jarasiunas, C.-C. Ting, S. Liu, and C.-Y. Tsai, “Carrier dynamics in InGaN/GaN multiple quantum wells based on different polishing processes of sapphire substrate,” Thin Solid Films 518(24), 7291–7294 (2010).
[CrossRef]

S. Nargelas, T. Malinauskas, A. Kadys, E. Dimakis, T. D. Moustakas, and K. Jarašiuūnas, “Nonlinear carrier recombination and transport features in highly excited InN layer,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(S2), S735–S738 (2009).
[CrossRef]

T. Malinauskas, K. Jarasiunas, M. Heuken, F. Scholz, and P. Bruckner, “Diffusion and recombination of degenerate carrier plasma in GaN,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(S2), S743–S746 (2009).
[CrossRef]

K. Jarasiunas, R. Aleksiejunas, T. Malinauskas, V. Gudelis, T. Tamulevicius, S. Tamulevicius, A. Guobiene, A. Usikov, V. Dmitriev, and H. J. Gerritsen, “Implementation of diffractive optical element in four-wave mixing scheme for ex situ characterization of hydride vapor phase epitaxy-grown GaN layers,” Rev. Sci. Instrum. 78(3), 033901 (2007).
[CrossRef] [PubMed]

T. Malinauskas, K. Jarasiunas, S. Miasojedovas, S. Jursenas, B. Beaumont, and P. Gibart, “Optical monitoring of nonequilibrium carrier lifetime in freestanding GaN by time-resolved four-wave mixing and photoluminescence techniques,” Appl. Phys. Lett. 88(20), 202109 (2006).
[CrossRef]

Meyer, J. R.

I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” J. Appl. Phys. 94(6), 3675 (2003).
[CrossRef]

Miasojedovas, S.

T. Malinauskas, K. Jarasiunas, S. Miasojedovas, S. Jursenas, B. Beaumont, and P. Gibart, “Optical monitoring of nonequilibrium carrier lifetime in freestanding GaN by time-resolved four-wave mixing and photoluminescence techniques,” Appl. Phys. Lett. 88(20), 202109 (2006).
[CrossRef]

Mishra, U. K.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[CrossRef]

Moustakas, T. D.

S. Nargelas, T. Malinauskas, A. Kadys, E. Dimakis, T. D. Moustakas, and K. Jarašiuūnas, “Nonlinear carrier recombination and transport features in highly excited InN layer,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(S2), S735–S738 (2009).
[CrossRef]

Mukai, T.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Nargelas, S.

S. Nargelas, T. Malinauskas, A. Kadys, E. Dimakis, T. D. Moustakas, and K. Jarašiuūnas, “Nonlinear carrier recombination and transport features in highly excited InN layer,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(S2), S735–S738 (2009).
[CrossRef]

Narukawa, Y.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Neogi, A.

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonvitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66(15), 153305 (2002).
[CrossRef]

Niki, I.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Oh, T. S.

T. S. Oh, H. Jeong, Y. S. Lee, J. D. Kim, T. H. Seo, H. Kim, A. H. Park, K. J. Lee, and E.-K. Suh, “Coupling of InGaN/GaN multiquantum-wells photoluminescence to surface plasmons in platinum nanocluster,” Appl. Phys. Lett. 95(11), 111112 (2009).
[CrossRef]

Okamoto, K.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Park, A. H.

T. S. Oh, H. Jeong, Y. S. Lee, J. D. Kim, T. H. Seo, H. Kim, A. H. Park, K. J. Lee, and E.-K. Suh, “Coupling of InGaN/GaN multiquantum-wells photoluminescence to surface plasmons in platinum nanocluster,” Appl. Phys. Lett. 95(11), 111112 (2009).
[CrossRef]

Scherer, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Scholz, F.

T. Malinauskas, K. Jarasiunas, M. Heuken, F. Scholz, and P. Bruckner, “Diffusion and recombination of degenerate carrier plasma in GaN,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(S2), S743–S746 (2009).
[CrossRef]

Seo, T. H.

T. S. Oh, H. Jeong, Y. S. Lee, J. D. Kim, T. H. Seo, H. Kim, A. H. Park, K. J. Lee, and E.-K. Suh, “Coupling of InGaN/GaN multiquantum-wells photoluminescence to surface plasmons in platinum nanocluster,” Appl. Phys. Lett. 95(11), 111112 (2009).
[CrossRef]

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Suh, E.-K.

T. S. Oh, H. Jeong, Y. S. Lee, J. D. Kim, T. H. Seo, H. Kim, A. H. Park, K. J. Lee, and E.-K. Suh, “Coupling of InGaN/GaN multiquantum-wells photoluminescence to surface plasmons in platinum nanocluster,” Appl. Phys. Lett. 95(11), 111112 (2009).
[CrossRef]

Sun, G.

J. B. Khurgin and G. Sun, “Enhancement of light absorption in a quantum well by surface plasmon polariton,” Appl. Phys. Lett. 94(19), 191106 (2009).
[CrossRef]

Tackeuchi, A.

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonvitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66(15), 153305 (2002).
[CrossRef]

Tamulevicius, S.

K. Jarasiunas, R. Aleksiejunas, T. Malinauskas, V. Gudelis, T. Tamulevicius, S. Tamulevicius, A. Guobiene, A. Usikov, V. Dmitriev, and H. J. Gerritsen, “Implementation of diffractive optical element in four-wave mixing scheme for ex situ characterization of hydride vapor phase epitaxy-grown GaN layers,” Rev. Sci. Instrum. 78(3), 033901 (2007).
[CrossRef] [PubMed]

Tamulevicius, T.

K. Jarasiunas, R. Aleksiejunas, T. Malinauskas, V. Gudelis, T. Tamulevicius, S. Tamulevicius, A. Guobiene, A. Usikov, V. Dmitriev, and H. J. Gerritsen, “Implementation of diffractive optical element in four-wave mixing scheme for ex situ characterization of hydride vapor phase epitaxy-grown GaN layers,” Rev. Sci. Instrum. 78(3), 033901 (2007).
[CrossRef] [PubMed]

Ting, C.-C.

H.-C. Wang, S.-W. Feng, T. Malinauskas, K. Jarasiunas, C.-C. Ting, S. Liu, and C.-Y. Tsai, “Carrier dynamics in InGaN/GaN multiple quantum wells based on different polishing processes of sapphire substrate,” Thin Solid Films 518(24), 7291–7294 (2010).
[CrossRef]

Tran Thoai, D. B.

D. B. Tran Thoai, R. Zimmermann, M. Grundmann, and D. Bimberg, “Image charges in semiconductor quantum wells: Effect on exciton binding energy,” Phys. Rev. B Condens. Matter 42(9), 5906–5909 (1990).
[CrossRef] [PubMed]

Tsai, C.-Y.

H.-C. Wang, S.-W. Feng, T. Malinauskas, K. Jarasiunas, C.-C. Ting, S. Liu, and C.-Y. Tsai, “Carrier dynamics in InGaN/GaN multiple quantum wells based on different polishing processes of sapphire substrate,” Thin Solid Films 518(24), 7291–7294 (2010).
[CrossRef]

Tsai, D. P.

W. C. Liu and D. P. Tsai, “Optical tunneling effect of surface plasmon polaritons and localized surface plasmon resonance,” Phys. Rev. B 65(15), 155423 (2002).
[CrossRef]

Usikov, A.

K. Jarasiunas, R. Aleksiejunas, T. Malinauskas, V. Gudelis, T. Tamulevicius, S. Tamulevicius, A. Guobiene, A. Usikov, V. Dmitriev, and H. J. Gerritsen, “Implementation of diffractive optical element in four-wave mixing scheme for ex situ characterization of hydride vapor phase epitaxy-grown GaN layers,” Rev. Sci. Instrum. 78(3), 033901 (2007).
[CrossRef] [PubMed]

Vurgaftman, I.

I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” J. Appl. Phys. 94(6), 3675 (2003).
[CrossRef]

Wang, H. C.

H. C. Wang, Y. C. Lu, C. Y. Chen, and C. C. Yang, “Carrier capture times of the localized states in an InGaN thin film with indium-rich nanocluster structures,” Appl. Phys. Lett. 89(1), 011906 (2006).
[CrossRef]

H. C. Wang, S. J. Lin, Y. C. Lu, Y. C. Cheng, C. C. Yang, and K. J. Ma, “Carrier relaxation in InGaN/GaN quantum wells with nanometer-scale cluster structures,” Appl. Phys. Lett. 85(8), 1371 (2004).
[CrossRef]

Wang, H.-C.

H.-C. Wang, S.-W. Feng, T. Malinauskas, K. Jarasiunas, C.-C. Ting, S. Liu, and C.-Y. Tsai, “Carrier dynamics in InGaN/GaN multiple quantum wells based on different polishing processes of sapphire substrate,” Thin Solid Films 518(24), 7291–7294 (2010).
[CrossRef]

Wang, J. Y.

Yablonovitch, E.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[CrossRef]

Yablonvitch, E.

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonvitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66(15), 153305 (2002).
[CrossRef]

Yang, C. C.

H. L. Chen, J. Y. Wang, W. H. Chuang, Y. W. Kiang, and C. C. Yang, “Characteristics of light emitter coupling with surface plasmons in air/metal/dielectric grating structures,” J. Opt. Soc. Am. B 26(5), 923 (2009).
[CrossRef]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
[CrossRef] [PubMed]

H. C. Wang, Y. C. Lu, C. Y. Chen, and C. C. Yang, “Carrier capture times of the localized states in an InGaN thin film with indium-rich nanocluster structures,” Appl. Phys. Lett. 89(1), 011906 (2006).
[CrossRef]

H. C. Wang, S. J. Lin, Y. C. Lu, Y. C. Cheng, C. C. Yang, and K. J. Ma, “Carrier relaxation in InGaN/GaN quantum wells with nanometer-scale cluster structures,” Appl. Phys. Lett. 85(8), 1371 (2004).
[CrossRef]

Yeh, D. M.

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
[CrossRef] [PubMed]

Zimmermann, R.

D. B. Tran Thoai, R. Zimmermann, M. Grundmann, and D. Bimberg, “Image charges in semiconductor quantum wells: Effect on exciton binding energy,” Phys. Rev. B Condens. Matter 42(9), 5906–5909 (1990).
[CrossRef] [PubMed]

Appl. Phys. Lett. (5)

J. B. Khurgin and G. Sun, “Enhancement of light absorption in a quantum well by surface plasmon polariton,” Appl. Phys. Lett. 94(19), 191106 (2009).
[CrossRef]

T. S. Oh, H. Jeong, Y. S. Lee, J. D. Kim, T. H. Seo, H. Kim, A. H. Park, K. J. Lee, and E.-K. Suh, “Coupling of InGaN/GaN multiquantum-wells photoluminescence to surface plasmons in platinum nanocluster,” Appl. Phys. Lett. 95(11), 111112 (2009).
[CrossRef]

H. C. Wang, S. J. Lin, Y. C. Lu, Y. C. Cheng, C. C. Yang, and K. J. Ma, “Carrier relaxation in InGaN/GaN quantum wells with nanometer-scale cluster structures,” Appl. Phys. Lett. 85(8), 1371 (2004).
[CrossRef]

H. C. Wang, Y. C. Lu, C. Y. Chen, and C. C. Yang, “Carrier capture times of the localized states in an InGaN thin film with indium-rich nanocluster structures,” Appl. Phys. Lett. 89(1), 011906 (2006).
[CrossRef]

T. Malinauskas, K. Jarasiunas, S. Miasojedovas, S. Jursenas, B. Beaumont, and P. Gibart, “Optical monitoring of nonequilibrium carrier lifetime in freestanding GaN by time-resolved four-wave mixing and photoluminescence techniques,” Appl. Phys. Lett. 88(20), 202109 (2006).
[CrossRef]

J. Appl. Phys. (2)

I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” J. Appl. Phys. 94(6), 3675 (2003).
[CrossRef]

S. A. Maier and H. A. Atwater, “Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nanotechnology (1)

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
[CrossRef] [PubMed]

Nat. Mater. (1)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Phys. Rev. B (4)

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonvitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66(15), 153305 (2002).
[CrossRef]

V. V. Klimov and D. V. Guzatov, “Strongly localized plasmon oscillations in a cluster of two metallic nanospheres and their influence on spontaneous emission of an atom,” Phys. Rev. B 75(2), 024303 (2007).
[CrossRef]

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[CrossRef]

W. C. Liu and D. P. Tsai, “Optical tunneling effect of surface plasmon polaritons and localized surface plasmon resonance,” Phys. Rev. B 65(15), 155423 (2002).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

D. B. Tran Thoai, R. Zimmermann, M. Grundmann, and D. Bimberg, “Image charges in semiconductor quantum wells: Effect on exciton binding energy,” Phys. Rev. B Condens. Matter 42(9), 5906–5909 (1990).
[CrossRef] [PubMed]

Phys. Status Solidi., C Curr. Top. Solid State Phys. (2)

S. Nargelas, T. Malinauskas, A. Kadys, E. Dimakis, T. D. Moustakas, and K. Jarašiuūnas, “Nonlinear carrier recombination and transport features in highly excited InN layer,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(S2), S735–S738 (2009).
[CrossRef]

T. Malinauskas, K. Jarasiunas, M. Heuken, F. Scholz, and P. Bruckner, “Diffusion and recombination of degenerate carrier plasma in GaN,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(S2), S743–S746 (2009).
[CrossRef]

Rev. Sci. Instrum. (1)

K. Jarasiunas, R. Aleksiejunas, T. Malinauskas, V. Gudelis, T. Tamulevicius, S. Tamulevicius, A. Guobiene, A. Usikov, V. Dmitriev, and H. J. Gerritsen, “Implementation of diffractive optical element in four-wave mixing scheme for ex situ characterization of hydride vapor phase epitaxy-grown GaN layers,” Rev. Sci. Instrum. 78(3), 033901 (2007).
[CrossRef] [PubMed]

Thin Solid Films (1)

H.-C. Wang, S.-W. Feng, T. Malinauskas, K. Jarasiunas, C.-C. Ting, S. Liu, and C.-Y. Tsai, “Carrier dynamics in InGaN/GaN multiple quantum wells based on different polishing processes of sapphire substrate,” Thin Solid Films 518(24), 7291–7294 (2010).
[CrossRef]

Other (3)

K. Binder and D. W. Heermann, Monte Carlo Simulation in Statistical Physics, 2nd edn. (Springer, Berlin, Heidelberg 1992).

M. Syvajarvi and R. Yakimova, Wide Band Gap Materials and New Developments (Research Signpost, 2007).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

An SEM image of the 10 nm Ag coating on the top of the bare MQW sample after 60 min of thermal annealing at 200°C.

Fig. 2
Fig. 2

(a) An AFM image of the Ag-coated sample. (b) An AFM line-scan profile of the Ag-coated sample.

Fig. 3
Fig. 3

(a) Room temperature PL spectra (right ordinate) of the two samples showing their relative intensities. Transmission ratio spectrum of the samples (left ordinate). (b) Temperature-dependent PL peak position of the bare MQW sample (green square) and Ag-coated sample (red circle).

Fig. 4
Fig. 4

Optical scheme of nondegenerate four-wave mixing with HBS as the beam splitter.

Fig. 5
Fig. 5

(a) Time-resolved PL decay profiles of the two samples at room temperature. (b) Time-resolved FWM decay profiles of the two samples at room temperature.

Fig. 6
Fig. 6

Carrier lifetime (left ordinate) and grating decay time (right ordinate) as functions of temperature for TRPL and FWM measurements, respectively.

Fig. 7
Fig. 7

Carrier diffusion coefficient (left ordinate) and surface recombination velocity (right ordinate) as functions of temperature from FWM measurements and Monte Carlo calculations, respectively.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

1 τ G = 1 τ R + 1 τ D
N ( x , z , t ) t = [ D ( N ) N ( x , z , t ) ] A N ( x , z , t ) B N 2 ( x , z , t ) C N 3 + G ( x , z , t )
N ( x , z , t ) t | z = 0 = S 1 D ( N ) N ( x , 0 , t )
N ( x , , t ) = 0
N ( x , z , t ) z | z = d = S 2 D ( N ) N ( x , d , t )
η ( t ) = ( 0 d π Δ n ( z , t ) d z λ ) 2 ( π Δ n d e f f λ ) 2 = ( π n e n Δ N d e f f λ ) 2

Metrics