Abstract

We report a pulsed Raman laser at 1193nm based on synthetic diamond crystals with a record output power of 24.5 W and a slope efficiency of 57%. We compared the performance of an anti-reflection coated crystal at normal incidence with a Brewster cut sample. Raman oscillation was achieved at both room temperature and under cryogenic operation at 77 K. Modeling of these experiments allowed us to confirm the value of Raman gain coefficient of diamond, which was found to be 13.5 ± 2.0 cm/GW for a pump wavelength of 1030 nm.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Reintjes, R. H. Lehmberg, R. S. F. Chang, M. T. Duignan, and G. Calame, “Beam cleanup with stimulated Raman scattering in the intensity-averaging regime,” J. Opt. Soc. Am. B 3(10), 1408–1427 (1986).
    [CrossRef]
  2. G. Eckhardt, D. P. Bortfeld, and M. Geller, “Stimulated emission of Stokes and anti-Stokes Raman lines from diamond, calcite, and a-sulfur single crystals,” Appl. Phys. Lett. 3(8), 137–138 (1963).
    [CrossRef]
  3. J. R. Olson, R. Pohl, J. Vandersande, A. Zoltan, T. R. Anthony, and W. F. Banholzer, “Thermal conductivity of diamond between 170 and 1200K and the isotope effect,” Phys. Rev. B 47(22), 14850–14856 (1993).
    [CrossRef]
  4. T. Ruf, M. Cardona, C. S. J. Pickles, and R. Sussmann, “Temperature dependence of the refractive index of diamond up to 925K,” Phys. Rev. B 62(24), 16578–16581 (2000).
    [CrossRef]
  5. I. Friel, S. L. Clewes, H. K. Dhillon, N. Perkins, D. J. Twitchen, and G. A. Scarsbrook, “Control of surface and bulk crystalline quality in single crystal diamond grown by chemical vapour deposition,” Diamond Related Materials 18(5-8), 808–815 (2009).
    [CrossRef]
  6. G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064μm,” Opt. Eng. 46(6), 064002 (2007).
    [CrossRef]
  7. R. P. Mildren, J. E. Butler, and J. R. Rabeau, “CVD-diamond external cavity Raman laser at 573 nm,” Opt. Express 16(23), 18950–18955 (2008).
    [CrossRef]
  8. A. Sabella, J.A. Piper, and R.P. Mildren, “1240nm diamond Raman laser operating near the quantum limit,” Opt. Lett. 35(23), 3874–3876 (2010).
    [CrossRef] [PubMed]
  9. R. P. Mildren and A. Sabella, “Highly efficient diamond Raman laser,” Opt. Lett. 34(18), 2811–2813 (2009).
    [CrossRef] [PubMed]
  10. W. Lubeigt, G. M. Bonner, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “An intra-cavity Raman laser using synthetic single-crystal diamond,” Opt. Express 18(16), 16765–16770 (2010).
    [CrossRef] [PubMed]
  11. W. Lubeigt, G. M. Bonner, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Continuous-wave diamond Raman laser,” Opt. Lett. 35(17), 2994–2996 (2010).
    [CrossRef] [PubMed]
  12. D. J. Spence, E. Granados, and R. P. Mildren, “Mode-locked picosecond diamond Raman laser,” Opt. Lett. 35(4), 556–558 (2010).
    [CrossRef] [PubMed]
  13. A. A. Kaminskii, R. J. Hemley, J. Lai, C. S. Yan, H. K. Mao, V. G. Ralchenko, H. J. Eichler, and H. Rhee, “High-order stimulated Raman scattering in CVD single crystal diamond,” Laser Phys. Lett. 4(5), 350–353 (2007).
    [CrossRef]
  14. T. T. Basiev, A. A. Sobol, P. G. Zverev, V. V. Osiko, and R. C. Powell, “Comparative spontaneous Raman spectroscopy of crystals for Raman lasers,” Appl. Opt. 38(3), 594–598 (1999).
    [CrossRef]
  15. D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300-W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 41(10), 1274–1277 (2005).
    [CrossRef]
  16. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
    [CrossRef]
  17. J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, and D. K. Neumann, “2.3-kW continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L, 69520L-8 (2008).
    [CrossRef]
  18. J. Fontanella, R. L. Johnston, J. H. Colwell, and C. Andeen, “Temperature and pressure variation of the refractive index of diamond,” Appl. Opt. 16(11), 2949–2951 (1977).
    [CrossRef] [PubMed]
  19. V. A. Lisinetskii, T. Riesbeck, H. Rhee, H. J. Eichler, and V. A. Orlovich, “High average power generation in barium nitrate Raman laser,” Appl. Phys. B 99(1-2), 127–134 (2010).
    [CrossRef]
  20. J. G. Manni, J. D. Hybl, D. Rand, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “100-W Q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46(1), 95–98 (2010).
    [CrossRef]
  21. J. Mossbrucker and T. Grotjohn, “Determination of local crystal orientation of diamond using polarized Raman spectra,” Diamond Related Materials 5(11), 1333–1343 (1996).
    [CrossRef]
  22. R. Radebaugh, “Thermal conductance of indium solder joints at low temperature,” Rev. Sci. Instrum. 48(1), 93–94 (1977).
    [CrossRef]
  23. J. C. Diels, and W. Rudolph, Ultrashort Laser Pulse Phenomena (Elsevier, 2006, 2nd edition), pp 328–332.
  24. J. K. Brasseur, P. A. Roos, K. S. Repasky, and J. L. Carlsten, “Characterization of a continuous-wave Raman laser in H2,” J. Opt. Soc. Am. B 16(8), 1305–1312 (1999).
    [CrossRef]
  25. G. Boyd, W. Johnston, and I. Kaminow, “Optimization of the stimulated Raman scattering threshold,” IEEE J. Quantum Electron. 5(4), 203–206 (1969).
    [CrossRef]
  26. N. Bloembergen, Nonlinear Optics (Benjamin, 1965) Chap. 5.
  27. A. A. Kaminskii, V. G. Ralchenko, and V. I. Konov, “Observation of stimulated Raman scattering in CVD-diamond,” JETP Lett. 80(4), 267–270 (2004).
    [CrossRef]
  28. S. A. Solin and A. K. Ramdas, “Raman spectrum of diamond,” Phys. Rev. B 1(4), 1687–1698 (1970).
    [CrossRef]
  29. The CVD diamond booklet, available at http://www.diamond-materials.com/download
  30. W. Koechner, Solid-State Laser Engineering (Springer, 1999) Chap. 7.

2010 (6)

2009 (2)

R. P. Mildren and A. Sabella, “Highly efficient diamond Raman laser,” Opt. Lett. 34(18), 2811–2813 (2009).
[CrossRef] [PubMed]

I. Friel, S. L. Clewes, H. K. Dhillon, N. Perkins, D. J. Twitchen, and G. A. Scarsbrook, “Control of surface and bulk crystalline quality in single crystal diamond grown by chemical vapour deposition,” Diamond Related Materials 18(5-8), 808–815 (2009).
[CrossRef]

2008 (2)

R. P. Mildren, J. E. Butler, and J. R. Rabeau, “CVD-diamond external cavity Raman laser at 573 nm,” Opt. Express 16(23), 18950–18955 (2008).
[CrossRef]

J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, and D. K. Neumann, “2.3-kW continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L, 69520L-8 (2008).
[CrossRef]

2007 (3)

A. A. Kaminskii, R. J. Hemley, J. Lai, C. S. Yan, H. K. Mao, V. G. Ralchenko, H. J. Eichler, and H. Rhee, “High-order stimulated Raman scattering in CVD single crystal diamond,” Laser Phys. Lett. 4(5), 350–353 (2007).
[CrossRef]

G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064μm,” Opt. Eng. 46(6), 064002 (2007).
[CrossRef]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

2005 (1)

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300-W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 41(10), 1274–1277 (2005).
[CrossRef]

2004 (1)

A. A. Kaminskii, V. G. Ralchenko, and V. I. Konov, “Observation of stimulated Raman scattering in CVD-diamond,” JETP Lett. 80(4), 267–270 (2004).
[CrossRef]

2000 (1)

T. Ruf, M. Cardona, C. S. J. Pickles, and R. Sussmann, “Temperature dependence of the refractive index of diamond up to 925K,” Phys. Rev. B 62(24), 16578–16581 (2000).
[CrossRef]

1999 (2)

1996 (1)

J. Mossbrucker and T. Grotjohn, “Determination of local crystal orientation of diamond using polarized Raman spectra,” Diamond Related Materials 5(11), 1333–1343 (1996).
[CrossRef]

1993 (1)

J. R. Olson, R. Pohl, J. Vandersande, A. Zoltan, T. R. Anthony, and W. F. Banholzer, “Thermal conductivity of diamond between 170 and 1200K and the isotope effect,” Phys. Rev. B 47(22), 14850–14856 (1993).
[CrossRef]

1986 (1)

1977 (2)

1970 (1)

S. A. Solin and A. K. Ramdas, “Raman spectrum of diamond,” Phys. Rev. B 1(4), 1687–1698 (1970).
[CrossRef]

1969 (1)

G. Boyd, W. Johnston, and I. Kaminow, “Optimization of the stimulated Raman scattering threshold,” IEEE J. Quantum Electron. 5(4), 203–206 (1969).
[CrossRef]

1963 (1)

G. Eckhardt, D. P. Bortfeld, and M. Geller, “Stimulated emission of Stokes and anti-Stokes Raman lines from diamond, calcite, and a-sulfur single crystals,” Appl. Phys. Lett. 3(8), 137–138 (1963).
[CrossRef]

Abeeluck, A. K.

J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, and D. K. Neumann, “2.3-kW continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L, 69520L-8 (2008).
[CrossRef]

Aggarwal, R. L.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300-W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 41(10), 1274–1277 (2005).
[CrossRef]

Andeen, C.

Anthony, T. R.

J. R. Olson, R. Pohl, J. Vandersande, A. Zoltan, T. R. Anthony, and W. F. Banholzer, “Thermal conductivity of diamond between 170 and 1200K and the isotope effect,” Phys. Rev. B 47(22), 14850–14856 (1993).
[CrossRef]

Awtry, A. R.

J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, and D. K. Neumann, “2.3-kW continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L, 69520L-8 (2008).
[CrossRef]

Banholzer, W. F.

J. R. Olson, R. Pohl, J. Vandersande, A. Zoltan, T. R. Anthony, and W. F. Banholzer, “Thermal conductivity of diamond between 170 and 1200K and the isotope effect,” Phys. Rev. B 47(22), 14850–14856 (1993).
[CrossRef]

Baronowski, M.

G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064μm,” Opt. Eng. 46(6), 064002 (2007).
[CrossRef]

Basiev, T. T.

Bass, M.

G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064μm,” Opt. Eng. 46(6), 064002 (2007).
[CrossRef]

Bennett, J. M.

G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064μm,” Opt. Eng. 46(6), 064002 (2007).
[CrossRef]

Bonner, G. M.

Bortfeld, D. P.

G. Eckhardt, D. P. Bortfeld, and M. Geller, “Stimulated emission of Stokes and anti-Stokes Raman lines from diamond, calcite, and a-sulfur single crystals,” Appl. Phys. Lett. 3(8), 137–138 (1963).
[CrossRef]

Boyd, G.

G. Boyd, W. Johnston, and I. Kaminow, “Optimization of the stimulated Raman scattering threshold,” IEEE J. Quantum Electron. 5(4), 203–206 (1969).
[CrossRef]

Brasseur, J. K.

J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, and D. K. Neumann, “2.3-kW continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L, 69520L-8 (2008).
[CrossRef]

J. K. Brasseur, P. A. Roos, K. S. Repasky, and J. L. Carlsten, “Characterization of a continuous-wave Raman laser in H2,” J. Opt. Soc. Am. B 16(8), 1305–1312 (1999).
[CrossRef]

Burns, D.

Butler, J. E.

R. P. Mildren, J. E. Butler, and J. R. Rabeau, “CVD-diamond external cavity Raman laser at 573 nm,” Opt. Express 16(23), 18950–18955 (2008).
[CrossRef]

G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064μm,” Opt. Eng. 46(6), 064002 (2007).
[CrossRef]

Calame, G.

Cardona, M.

T. Ruf, M. Cardona, C. S. J. Pickles, and R. Sussmann, “Temperature dependence of the refractive index of diamond up to 925K,” Phys. Rev. B 62(24), 16578–16581 (2000).
[CrossRef]

Carlsten, J. L.

Chang, R. S. F.

Chann, B.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

Chen, Y.

G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064μm,” Opt. Eng. 46(6), 064002 (2007).
[CrossRef]

Clewes, S. L.

I. Friel, S. L. Clewes, H. K. Dhillon, N. Perkins, D. J. Twitchen, and G. A. Scarsbrook, “Control of surface and bulk crystalline quality in single crystal diamond grown by chemical vapour deposition,” Diamond Related Materials 18(5-8), 808–815 (2009).
[CrossRef]

Colwell, J. H.

Cuchiara, M. H.

J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, and D. K. Neumann, “2.3-kW continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L, 69520L-8 (2008).
[CrossRef]

Dawson, M. D.

Dewees, R. V.

G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064μm,” Opt. Eng. 46(6), 064002 (2007).
[CrossRef]

Dhillon, H. K.

I. Friel, S. L. Clewes, H. K. Dhillon, N. Perkins, D. J. Twitchen, and G. A. Scarsbrook, “Control of surface and bulk crystalline quality in single crystal diamond grown by chemical vapour deposition,” Diamond Related Materials 18(5-8), 808–815 (2009).
[CrossRef]

Duignan, M. T.

Eckhardt, G.

G. Eckhardt, D. P. Bortfeld, and M. Geller, “Stimulated emission of Stokes and anti-Stokes Raman lines from diamond, calcite, and a-sulfur single crystals,” Appl. Phys. Lett. 3(8), 137–138 (1963).
[CrossRef]

Eichler, H. J.

V. A. Lisinetskii, T. Riesbeck, H. Rhee, H. J. Eichler, and V. A. Orlovich, “High average power generation in barium nitrate Raman laser,” Appl. Phys. B 99(1-2), 127–134 (2010).
[CrossRef]

A. A. Kaminskii, R. J. Hemley, J. Lai, C. S. Yan, H. K. Mao, V. G. Ralchenko, H. J. Eichler, and H. Rhee, “High-order stimulated Raman scattering in CVD single crystal diamond,” Laser Phys. Lett. 4(5), 350–353 (2007).
[CrossRef]

Fan, T. Y.

J. G. Manni, J. D. Hybl, D. Rand, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “100-W Q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46(1), 95–98 (2010).
[CrossRef]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300-W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 41(10), 1274–1277 (2005).
[CrossRef]

Feygelson, T.

G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064μm,” Opt. Eng. 46(6), 064002 (2007).
[CrossRef]

Fontanella, J.

Fourspring, K.

G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064μm,” Opt. Eng. 46(6), 064002 (2007).
[CrossRef]

Friel, I.

I. Friel, S. L. Clewes, H. K. Dhillon, N. Perkins, D. J. Twitchen, and G. A. Scarsbrook, “Control of surface and bulk crystalline quality in single crystal diamond grown by chemical vapour deposition,” Diamond Related Materials 18(5-8), 808–815 (2009).
[CrossRef]

Geller, M.

G. Eckhardt, D. P. Bortfeld, and M. Geller, “Stimulated emission of Stokes and anti-Stokes Raman lines from diamond, calcite, and a-sulfur single crystals,” Appl. Phys. Lett. 3(8), 137–138 (1963).
[CrossRef]

Granados, E.

Grotjohn, T.

J. Mossbrucker and T. Grotjohn, “Determination of local crystal orientation of diamond using polarized Raman spectra,” Diamond Related Materials 5(11), 1333–1343 (1996).
[CrossRef]

Guenthner, A.

G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064μm,” Opt. Eng. 46(6), 064002 (2007).
[CrossRef]

Hampton, R. K.

J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, and D. K. Neumann, “2.3-kW continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L, 69520L-8 (2008).
[CrossRef]

Harris, D. C.

G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064μm,” Opt. Eng. 46(6), 064002 (2007).
[CrossRef]

Hastie, J. E.

Hawkins, S.

G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064μm,” Opt. Eng. 46(6), 064002 (2007).
[CrossRef]

Hemley, R. J.

A. A. Kaminskii, R. J. Hemley, J. Lai, C. S. Yan, H. K. Mao, V. G. Ralchenko, H. J. Eichler, and H. Rhee, “High-order stimulated Raman scattering in CVD single crystal diamond,” Laser Phys. Lett. 4(5), 350–353 (2007).
[CrossRef]

Hybl, J. D.

J. G. Manni, J. D. Hybl, D. Rand, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “100-W Q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46(1), 95–98 (2010).
[CrossRef]

Johnston, R. L.

Johnston, W.

G. Boyd, W. Johnston, and I. Kaminow, “Optimization of the stimulated Raman scattering threshold,” IEEE J. Quantum Electron. 5(4), 203–206 (1969).
[CrossRef]

Kaminow, I.

G. Boyd, W. Johnston, and I. Kaminow, “Optimization of the stimulated Raman scattering threshold,” IEEE J. Quantum Electron. 5(4), 203–206 (1969).
[CrossRef]

Kaminskii, A. A.

A. A. Kaminskii, R. J. Hemley, J. Lai, C. S. Yan, H. K. Mao, V. G. Ralchenko, H. J. Eichler, and H. Rhee, “High-order stimulated Raman scattering in CVD single crystal diamond,” Laser Phys. Lett. 4(5), 350–353 (2007).
[CrossRef]

A. A. Kaminskii, V. G. Ralchenko, and V. I. Konov, “Observation of stimulated Raman scattering in CVD-diamond,” JETP Lett. 80(4), 267–270 (2004).
[CrossRef]

Kemp, A. J.

Konov, V. I.

A. A. Kaminskii, V. G. Ralchenko, and V. I. Konov, “Observation of stimulated Raman scattering in CVD-diamond,” JETP Lett. 80(4), 267–270 (2004).
[CrossRef]

Lai, J.

A. A. Kaminskii, R. J. Hemley, J. Lai, C. S. Yan, H. K. Mao, V. G. Ralchenko, H. J. Eichler, and H. Rhee, “High-order stimulated Raman scattering in CVD single crystal diamond,” Laser Phys. Lett. 4(5), 350–353 (2007).
[CrossRef]

Lehmberg, R. H.

Lisinetskii, V. A.

V. A. Lisinetskii, T. Riesbeck, H. Rhee, H. J. Eichler, and V. A. Orlovich, “High average power generation in barium nitrate Raman laser,” Appl. Phys. B 99(1-2), 127–134 (2010).
[CrossRef]

Lubeigt, W.

Magana, S.

G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064μm,” Opt. Eng. 46(6), 064002 (2007).
[CrossRef]

Manni, J. G.

J. G. Manni, J. D. Hybl, D. Rand, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “100-W Q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46(1), 95–98 (2010).
[CrossRef]

Mao, H. K.

A. A. Kaminskii, R. J. Hemley, J. Lai, C. S. Yan, H. K. Mao, V. G. Ralchenko, H. J. Eichler, and H. Rhee, “High-order stimulated Raman scattering in CVD single crystal diamond,” Laser Phys. Lett. 4(5), 350–353 (2007).
[CrossRef]

Meng, L. S.

J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, and D. K. Neumann, “2.3-kW continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L, 69520L-8 (2008).
[CrossRef]

Mildren, R. P.

Mildren, R.P.

Miller, N. J.

J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, and D. K. Neumann, “2.3-kW continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L, 69520L-8 (2008).
[CrossRef]

Mossbrucker, J.

J. Mossbrucker and T. Grotjohn, “Determination of local crystal orientation of diamond using polarized Raman spectra,” Diamond Related Materials 5(11), 1333–1343 (1996).
[CrossRef]

Neumann, D. K.

J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, and D. K. Neumann, “2.3-kW continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L, 69520L-8 (2008).
[CrossRef]

Ochoa, J. R.

J. G. Manni, J. D. Hybl, D. Rand, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “100-W Q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46(1), 95–98 (2010).
[CrossRef]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300-W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 41(10), 1274–1277 (2005).
[CrossRef]

Olson, J. R.

J. R. Olson, R. Pohl, J. Vandersande, A. Zoltan, T. R. Anthony, and W. F. Banholzer, “Thermal conductivity of diamond between 170 and 1200K and the isotope effect,” Phys. Rev. B 47(22), 14850–14856 (1993).
[CrossRef]

Orchard, D.

G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064μm,” Opt. Eng. 46(6), 064002 (2007).
[CrossRef]

Orlovich, V. A.

V. A. Lisinetskii, T. Riesbeck, H. Rhee, H. J. Eichler, and V. A. Orlovich, “High average power generation in barium nitrate Raman laser,” Appl. Phys. B 99(1-2), 127–134 (2010).
[CrossRef]

Osiko, V. V.

Pentony, J.

G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064μm,” Opt. Eng. 46(6), 064002 (2007).
[CrossRef]

Perkins, N.

I. Friel, S. L. Clewes, H. K. Dhillon, N. Perkins, D. J. Twitchen, and G. A. Scarsbrook, “Control of surface and bulk crystalline quality in single crystal diamond grown by chemical vapour deposition,” Diamond Related Materials 18(5-8), 808–815 (2009).
[CrossRef]

Pickles, C. S. J.

T. Ruf, M. Cardona, C. S. J. Pickles, and R. Sussmann, “Temperature dependence of the refractive index of diamond up to 925K,” Phys. Rev. B 62(24), 16578–16581 (2000).
[CrossRef]

Piper, J.A.

Pohl, R.

J. R. Olson, R. Pohl, J. Vandersande, A. Zoltan, T. R. Anthony, and W. F. Banholzer, “Thermal conductivity of diamond between 170 and 1200K and the isotope effect,” Phys. Rev. B 47(22), 14850–14856 (1993).
[CrossRef]

Powell, R. C.

Rabeau, J. R.

Radebaugh, R.

R. Radebaugh, “Thermal conductance of indium solder joints at low temperature,” Rev. Sci. Instrum. 48(1), 93–94 (1977).
[CrossRef]

Ralchenko, V. G.

A. A. Kaminskii, R. J. Hemley, J. Lai, C. S. Yan, H. K. Mao, V. G. Ralchenko, H. J. Eichler, and H. Rhee, “High-order stimulated Raman scattering in CVD single crystal diamond,” Laser Phys. Lett. 4(5), 350–353 (2007).
[CrossRef]

A. A. Kaminskii, V. G. Ralchenko, and V. I. Konov, “Observation of stimulated Raman scattering in CVD-diamond,” JETP Lett. 80(4), 267–270 (2004).
[CrossRef]

Ramdas, A. K.

S. A. Solin and A. K. Ramdas, “Raman spectrum of diamond,” Phys. Rev. B 1(4), 1687–1698 (1970).
[CrossRef]

Rand, D.

J. G. Manni, J. D. Hybl, D. Rand, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “100-W Q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46(1), 95–98 (2010).
[CrossRef]

Reintjes, J.

Repasky, K. S.

Rhee, H.

V. A. Lisinetskii, T. Riesbeck, H. Rhee, H. J. Eichler, and V. A. Orlovich, “High average power generation in barium nitrate Raman laser,” Appl. Phys. B 99(1-2), 127–134 (2010).
[CrossRef]

A. A. Kaminskii, R. J. Hemley, J. Lai, C. S. Yan, H. K. Mao, V. G. Ralchenko, H. J. Eichler, and H. Rhee, “High-order stimulated Raman scattering in CVD single crystal diamond,” Laser Phys. Lett. 4(5), 350–353 (2007).
[CrossRef]

Riesbeck, T.

V. A. Lisinetskii, T. Riesbeck, H. Rhee, H. J. Eichler, and V. A. Orlovich, “High average power generation in barium nitrate Raman laser,” Appl. Phys. B 99(1-2), 127–134 (2010).
[CrossRef]

Ripin, D. J.

J. G. Manni, J. D. Hybl, D. Rand, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “100-W Q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46(1), 95–98 (2010).
[CrossRef]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300-W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 41(10), 1274–1277 (2005).
[CrossRef]

Roos, P. A.

Ruf, T.

T. Ruf, M. Cardona, C. S. J. Pickles, and R. Sussmann, “Temperature dependence of the refractive index of diamond up to 925K,” Phys. Rev. B 62(24), 16578–16581 (2000).
[CrossRef]

Sabella, A.

Scarsbrook, G. A.

I. Friel, S. L. Clewes, H. K. Dhillon, N. Perkins, D. J. Twitchen, and G. A. Scarsbrook, “Control of surface and bulk crystalline quality in single crystal diamond grown by chemical vapour deposition,” Diamond Related Materials 18(5-8), 808–815 (2009).
[CrossRef]

Seltzer, M. D.

G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064μm,” Opt. Eng. 46(6), 064002 (2007).
[CrossRef]

Shortoff, K. E.

J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, and D. K. Neumann, “2.3-kW continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L, 69520L-8 (2008).
[CrossRef]

Sobol, A. A.

Solin, S. A.

S. A. Solin and A. K. Ramdas, “Raman spectrum of diamond,” Phys. Rev. B 1(4), 1687–1698 (1970).
[CrossRef]

Spence, D. J.

Spitzberg, J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

Stickley, C. M.

G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064μm,” Opt. Eng. 46(6), 064002 (2007).
[CrossRef]

Sussmann, R.

T. Ruf, M. Cardona, C. S. J. Pickles, and R. Sussmann, “Temperature dependence of the refractive index of diamond up to 925K,” Phys. Rev. B 62(24), 16578–16581 (2000).
[CrossRef]

Thiel, D.

G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064μm,” Opt. Eng. 46(6), 064002 (2007).
[CrossRef]

Tilleman, M.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

Turri, G.

G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064μm,” Opt. Eng. 46(6), 064002 (2007).
[CrossRef]

Twitchen, D. J.

I. Friel, S. L. Clewes, H. K. Dhillon, N. Perkins, D. J. Twitchen, and G. A. Scarsbrook, “Control of surface and bulk crystalline quality in single crystal diamond grown by chemical vapour deposition,” Diamond Related Materials 18(5-8), 808–815 (2009).
[CrossRef]

Vandersande, J.

J. R. Olson, R. Pohl, J. Vandersande, A. Zoltan, T. R. Anthony, and W. F. Banholzer, “Thermal conductivity of diamond between 170 and 1200K and the isotope effect,” Phys. Rev. B 47(22), 14850–14856 (1993).
[CrossRef]

Yan, C. S.

A. A. Kaminskii, R. J. Hemley, J. Lai, C. S. Yan, H. K. Mao, V. G. Ralchenko, H. J. Eichler, and H. Rhee, “High-order stimulated Raman scattering in CVD single crystal diamond,” Laser Phys. Lett. 4(5), 350–353 (2007).
[CrossRef]

Zoltan, A.

J. R. Olson, R. Pohl, J. Vandersande, A. Zoltan, T. R. Anthony, and W. F. Banholzer, “Thermal conductivity of diamond between 170 and 1200K and the isotope effect,” Phys. Rev. B 47(22), 14850–14856 (1993).
[CrossRef]

Zverev, P. G.

Appl. Opt. (2)

Appl. Phys. B (1)

V. A. Lisinetskii, T. Riesbeck, H. Rhee, H. J. Eichler, and V. A. Orlovich, “High average power generation in barium nitrate Raman laser,” Appl. Phys. B 99(1-2), 127–134 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

G. Eckhardt, D. P. Bortfeld, and M. Geller, “Stimulated emission of Stokes and anti-Stokes Raman lines from diamond, calcite, and a-sulfur single crystals,” Appl. Phys. Lett. 3(8), 137–138 (1963).
[CrossRef]

Diamond Related Materials (2)

I. Friel, S. L. Clewes, H. K. Dhillon, N. Perkins, D. J. Twitchen, and G. A. Scarsbrook, “Control of surface and bulk crystalline quality in single crystal diamond grown by chemical vapour deposition,” Diamond Related Materials 18(5-8), 808–815 (2009).
[CrossRef]

J. Mossbrucker and T. Grotjohn, “Determination of local crystal orientation of diamond using polarized Raman spectra,” Diamond Related Materials 5(11), 1333–1343 (1996).
[CrossRef]

IEEE J. Quantum Electron. (3)

G. Boyd, W. Johnston, and I. Kaminow, “Optimization of the stimulated Raman scattering threshold,” IEEE J. Quantum Electron. 5(4), 203–206 (1969).
[CrossRef]

J. G. Manni, J. D. Hybl, D. Rand, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “100-W Q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46(1), 95–98 (2010).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300-W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 41(10), 1274–1277 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

J. Opt. Soc. Am. B (2)

JETP Lett. (1)

A. A. Kaminskii, V. G. Ralchenko, and V. I. Konov, “Observation of stimulated Raman scattering in CVD-diamond,” JETP Lett. 80(4), 267–270 (2004).
[CrossRef]

Laser Phys. Lett. (1)

A. A. Kaminskii, R. J. Hemley, J. Lai, C. S. Yan, H. K. Mao, V. G. Ralchenko, H. J. Eichler, and H. Rhee, “High-order stimulated Raman scattering in CVD single crystal diamond,” Laser Phys. Lett. 4(5), 350–353 (2007).
[CrossRef]

Opt. Eng. (1)

G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064μm,” Opt. Eng. 46(6), 064002 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. B (3)

J. R. Olson, R. Pohl, J. Vandersande, A. Zoltan, T. R. Anthony, and W. F. Banholzer, “Thermal conductivity of diamond between 170 and 1200K and the isotope effect,” Phys. Rev. B 47(22), 14850–14856 (1993).
[CrossRef]

T. Ruf, M. Cardona, C. S. J. Pickles, and R. Sussmann, “Temperature dependence of the refractive index of diamond up to 925K,” Phys. Rev. B 62(24), 16578–16581 (2000).
[CrossRef]

S. A. Solin and A. K. Ramdas, “Raman spectrum of diamond,” Phys. Rev. B 1(4), 1687–1698 (1970).
[CrossRef]

Proc. SPIE (1)

J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, and D. K. Neumann, “2.3-kW continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L, 69520L-8 (2008).
[CrossRef]

Rev. Sci. Instrum. (1)

R. Radebaugh, “Thermal conductance of indium solder joints at low temperature,” Rev. Sci. Instrum. 48(1), 93–94 (1977).
[CrossRef]

Other (4)

J. C. Diels, and W. Rudolph, Ultrashort Laser Pulse Phenomena (Elsevier, 2006, 2nd edition), pp 328–332.

N. Bloembergen, Nonlinear Optics (Benjamin, 1965) Chap. 5.

The CVD diamond booklet, available at http://www.diamond-materials.com/download

W. Koechner, Solid-State Laser Engineering (Springer, 1999) Chap. 7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the experimental setup. VE: vacuum enclosures, VP: vacuum pumps, LN2: liquid nitrogen flow, PD: photodiodes, PM: power meters, M1-M6: mirrors (reflectivities detailed in text). The left part is the pump laser. AOM: acousto-optic Q-switch, HWP: half-waveplate, PBS: polarizing beam-splitter, BWs: Brewster windows. The right part is the Raman setup. CVD: diamond crystal, LPF: long-pass filters, L1: focusing lens, CCD: camera.

Fig. 2
Fig. 2

Photograph of the diamond crystal assembly in the Raman laser cavity. CVD: single crystal diamond. DH: polycrystalline diamond heat-spreader. HS: ceramic heat-sink. TS: temperature sensors (one on the top surface of the single crystal, one on the heat-spreader). M: mirrors. PZM: mirror mounts with piezo-electric actuators. CL: cooler.

Fig. 3
Fig. 3

Stokes output power (blue symbols, measured at PM3 on Fig. 1) and transmitted pump power (red symbols, measured by PM2 on Fig. 1) as a function of the pump power incident on the crystal. Results from 3 data sets are shown as different symbols. The dashed lines are calculated from the model in section 4 with a Raman gain coefficient g R = 15cm/GW.

Fig. 4
Fig. 4

Measured temporal profiles: incident pump (left, blue, photodiode PD1 in Fig. 1), transmitted depleted pump (center, red, photodiode PD2) and output Stokes (right, green, photodiode PD3). The total output Stokes power was 24.5W.

Fig. 5
Fig. 5

Measured temperature on the top surface of the diamond crystal (red) and temperature difference between the diamond crystal and heat-spreader (blue), as a function of the calculated heat load in the crystal.

Fig. 6
Fig. 6

Calculated temporal profiles averaged over 3ns: incident pump (left, blue), transmitted depleted pump (center, red) and output Stokes (right, green). The total output Stokes power was 25W.

Fig. 7
Fig. 7

Measured Stokes output power (blue symbols) and transmitted pump power (open red symbols) as a function of the pump power incident on the crystal at cryogenic temperature. The dashed lines are calculated from the model in section 4 with a gain coefficient g R = 15cm/GW.

Tables (1)

Tables Icon

Table 1 Thermal properties of diamond at room temperature and at 80K. Figures of merit for pulsed and c.w. regimes are normalized to their values at room temperature

Metrics