Abstract

The performance of infrared (IR) dual-band detector can be substantially improved by simultaneously increasing IR absorptions for both sensor bands. Currently available methods only provide absorption enhancement for single spectral band, but not for the dual-band. The Fabry-Perot (FP) cavity generates a series of resonances in multispectral bands. With this flexibility, we introduced a novel type of dual-band detector structure containing a multilayer FP cavity with two absorbing layers and a subwavelength-period grating mirror, which is capable of simultaneously enhancing the middle wave infrared (MWIR) and the long wave infrared (LWIR) detection. Compared with the bare-absorption-layer detector (common dual-band detector), the optimized FP cavity can provide about 13 times and 17 times absorption enhancement in LWIR and MWIR bands respectively.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Scholl, E. L. Dereniak, M. R. Descour, C. P. Tebow, and C. E. Volin, “Phase grating design for a dual-band snapshot imaging spectrometer,” Appl. Opt. 42(1), 18–29 (2003).
    [CrossRef] [PubMed]
  2. G. G. Kang, Q. F. Tan, X. L. Wang, and G. F. Jin, “Achromatic phase retarder applied to MWIR & LWIR dual-band,” Opt. Express 18(2), 1695–1703 (2010).
    [CrossRef] [PubMed]
  3. G. Parish, C. A. Musca, J. F. Siliquini, J. Antoszewki, J. M. Dell, B. D. Nener, L. Faraone, and G. J. Gouws, “A Monolithic Dual-Band HgCdTe Infrared Detector Structure,” IEEE Electron Device Lett. 18(7), 352–354 (1997).
    [CrossRef]
  4. Y. Tamagawa and T. Tajime, “Dual-band optical systems with a projective athermal chart: design,” Appl. Opt. 36(1), 297–301 (1997).
    [CrossRef] [PubMed]
  5. K. T. Posani, V. Tripathi, S. Annamalai, N. R. Weisse-Bernstein, and S. Krishna, “Nanoscale quantum dot infrared sensors with photonic crystal cavity,” Appl. Phys. Lett. 88(151104), 1–3 (2006).
    [CrossRef]
  6. J. K. Yang, M. K. Seo, I. K. Hwang, S. B. Kim, and Y. H. Lee, “Polarization-selective resonant photonic crystal photodetector,” Appl. Phys. Lett. 93(211103), 1–3 (2008).
    [CrossRef]
  7. R. V. Shenoi, D. A. Ramirez, Y. Sharma, R. S. Attaluri, J. Rosenberg, O. J. Painter, and S. Krishna, “Plasmon assisted photonic crystal quantum dot sensors,” Proc. SPIE 6713, 67130P, 67130P-6 (2007).
    [CrossRef]
  8. R. S. Attaluri, J. Shao, K. T. Posani, S. J. Lee, J. S. Brown, A. Stintz, and S. Krishna, “Resonant cavity enhanced InAs/ In0.15Ga0.85As dots-in-a-well quantum dot infrared photodetector,” J. Vac. Sci. Technol. B 25(4), 1186–1190 (2007).
    [CrossRef]
  9. N. Neumann, M. Ebermann, K. Hiller, and S. Kurth, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” Proc. SPIE 6466, 646606, 646606-12 (2007).
    [CrossRef]
  10. C. Fabry and A. Perot, “Théorie et applications d’une nouvelle méthode de spectroscopie interférentielle,” Ann. Chim. Phys. 16, 115–146 (1899).
  11. J. H. Xie, D. Z. Zhao, and J. X. Yan, Physical Optics (Academic, 2005).
  12. J. L. Adams and L. C. Botten, “Double gratings and their applications as Fabry-Perot interferometer,” J. Opt (Paris) 10(3), 109–117 (1979).
  13. A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43(3-5), 187–210 (2002).
    [CrossRef]
  14. G. Ariyawansa, M. B. M. Rinzan, S. G. Matsik, G. Hastings, and A. G. U. Perera, “Characteristics of a Si dual-band detector responding in both near- and very-long-wavelength-infrared regions,” Appl. Phys. Lett. 89(061112), 1–3 (2006).
    [CrossRef]
  15. I. Richter, P. C. Sun, F. Xu, and Y. Fainman, “Design considerations of form birefringent microstructures,” Appl. Opt. 34(14), 2421–2429 (1995).
    [CrossRef] [PubMed]
  16. N. M. Lyndin, O. Parriaux, and A. V. Tishchenko, “Modal analysis and suppression of the Fourier modal method instabilities in highly conductive gratings,” J. Opt. Soc. Am. A 24(12), 3781–3788 (2007).
    [CrossRef]
  17. Ioffe Physico-Technical Institute Website, “Semiconductor on NSM” (Electronic Archive, 2001) http://www.ioffe.ru/SVA/NSM/Semicond/

2010 (1)

2008 (1)

J. K. Yang, M. K. Seo, I. K. Hwang, S. B. Kim, and Y. H. Lee, “Polarization-selective resonant photonic crystal photodetector,” Appl. Phys. Lett. 93(211103), 1–3 (2008).
[CrossRef]

2007 (4)

R. V. Shenoi, D. A. Ramirez, Y. Sharma, R. S. Attaluri, J. Rosenberg, O. J. Painter, and S. Krishna, “Plasmon assisted photonic crystal quantum dot sensors,” Proc. SPIE 6713, 67130P, 67130P-6 (2007).
[CrossRef]

R. S. Attaluri, J. Shao, K. T. Posani, S. J. Lee, J. S. Brown, A. Stintz, and S. Krishna, “Resonant cavity enhanced InAs/ In0.15Ga0.85As dots-in-a-well quantum dot infrared photodetector,” J. Vac. Sci. Technol. B 25(4), 1186–1190 (2007).
[CrossRef]

N. Neumann, M. Ebermann, K. Hiller, and S. Kurth, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” Proc. SPIE 6466, 646606, 646606-12 (2007).
[CrossRef]

N. M. Lyndin, O. Parriaux, and A. V. Tishchenko, “Modal analysis and suppression of the Fourier modal method instabilities in highly conductive gratings,” J. Opt. Soc. Am. A 24(12), 3781–3788 (2007).
[CrossRef]

2006 (2)

K. T. Posani, V. Tripathi, S. Annamalai, N. R. Weisse-Bernstein, and S. Krishna, “Nanoscale quantum dot infrared sensors with photonic crystal cavity,” Appl. Phys. Lett. 88(151104), 1–3 (2006).
[CrossRef]

G. Ariyawansa, M. B. M. Rinzan, S. G. Matsik, G. Hastings, and A. G. U. Perera, “Characteristics of a Si dual-band detector responding in both near- and very-long-wavelength-infrared regions,” Appl. Phys. Lett. 89(061112), 1–3 (2006).
[CrossRef]

2003 (1)

2002 (1)

A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43(3-5), 187–210 (2002).
[CrossRef]

1997 (2)

G. Parish, C. A. Musca, J. F. Siliquini, J. Antoszewki, J. M. Dell, B. D. Nener, L. Faraone, and G. J. Gouws, “A Monolithic Dual-Band HgCdTe Infrared Detector Structure,” IEEE Electron Device Lett. 18(7), 352–354 (1997).
[CrossRef]

Y. Tamagawa and T. Tajime, “Dual-band optical systems with a projective athermal chart: design,” Appl. Opt. 36(1), 297–301 (1997).
[CrossRef] [PubMed]

1995 (1)

1979 (1)

J. L. Adams and L. C. Botten, “Double gratings and their applications as Fabry-Perot interferometer,” J. Opt (Paris) 10(3), 109–117 (1979).

1899 (1)

C. Fabry and A. Perot, “Théorie et applications d’une nouvelle méthode de spectroscopie interférentielle,” Ann. Chim. Phys. 16, 115–146 (1899).

Adams, J. L.

J. L. Adams and L. C. Botten, “Double gratings and their applications as Fabry-Perot interferometer,” J. Opt (Paris) 10(3), 109–117 (1979).

Annamalai, S.

K. T. Posani, V. Tripathi, S. Annamalai, N. R. Weisse-Bernstein, and S. Krishna, “Nanoscale quantum dot infrared sensors with photonic crystal cavity,” Appl. Phys. Lett. 88(151104), 1–3 (2006).
[CrossRef]

Antoszewki, J.

G. Parish, C. A. Musca, J. F. Siliquini, J. Antoszewki, J. M. Dell, B. D. Nener, L. Faraone, and G. J. Gouws, “A Monolithic Dual-Band HgCdTe Infrared Detector Structure,” IEEE Electron Device Lett. 18(7), 352–354 (1997).
[CrossRef]

Ariyawansa, G.

G. Ariyawansa, M. B. M. Rinzan, S. G. Matsik, G. Hastings, and A. G. U. Perera, “Characteristics of a Si dual-band detector responding in both near- and very-long-wavelength-infrared regions,” Appl. Phys. Lett. 89(061112), 1–3 (2006).
[CrossRef]

Attaluri, R. S.

R. V. Shenoi, D. A. Ramirez, Y. Sharma, R. S. Attaluri, J. Rosenberg, O. J. Painter, and S. Krishna, “Plasmon assisted photonic crystal quantum dot sensors,” Proc. SPIE 6713, 67130P, 67130P-6 (2007).
[CrossRef]

R. S. Attaluri, J. Shao, K. T. Posani, S. J. Lee, J. S. Brown, A. Stintz, and S. Krishna, “Resonant cavity enhanced InAs/ In0.15Ga0.85As dots-in-a-well quantum dot infrared photodetector,” J. Vac. Sci. Technol. B 25(4), 1186–1190 (2007).
[CrossRef]

Botten, L. C.

J. L. Adams and L. C. Botten, “Double gratings and their applications as Fabry-Perot interferometer,” J. Opt (Paris) 10(3), 109–117 (1979).

Brown, J. S.

R. S. Attaluri, J. Shao, K. T. Posani, S. J. Lee, J. S. Brown, A. Stintz, and S. Krishna, “Resonant cavity enhanced InAs/ In0.15Ga0.85As dots-in-a-well quantum dot infrared photodetector,” J. Vac. Sci. Technol. B 25(4), 1186–1190 (2007).
[CrossRef]

Dell, J. M.

G. Parish, C. A. Musca, J. F. Siliquini, J. Antoszewki, J. M. Dell, B. D. Nener, L. Faraone, and G. J. Gouws, “A Monolithic Dual-Band HgCdTe Infrared Detector Structure,” IEEE Electron Device Lett. 18(7), 352–354 (1997).
[CrossRef]

Dereniak, E. L.

Descour, M. R.

Ebermann, M.

N. Neumann, M. Ebermann, K. Hiller, and S. Kurth, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” Proc. SPIE 6466, 646606, 646606-12 (2007).
[CrossRef]

Fabry, C.

C. Fabry and A. Perot, “Théorie et applications d’une nouvelle méthode de spectroscopie interférentielle,” Ann. Chim. Phys. 16, 115–146 (1899).

Fainman, Y.

Faraone, L.

G. Parish, C. A. Musca, J. F. Siliquini, J. Antoszewki, J. M. Dell, B. D. Nener, L. Faraone, and G. J. Gouws, “A Monolithic Dual-Band HgCdTe Infrared Detector Structure,” IEEE Electron Device Lett. 18(7), 352–354 (1997).
[CrossRef]

Gouws, G. J.

G. Parish, C. A. Musca, J. F. Siliquini, J. Antoszewki, J. M. Dell, B. D. Nener, L. Faraone, and G. J. Gouws, “A Monolithic Dual-Band HgCdTe Infrared Detector Structure,” IEEE Electron Device Lett. 18(7), 352–354 (1997).
[CrossRef]

Hastings, G.

G. Ariyawansa, M. B. M. Rinzan, S. G. Matsik, G. Hastings, and A. G. U. Perera, “Characteristics of a Si dual-band detector responding in both near- and very-long-wavelength-infrared regions,” Appl. Phys. Lett. 89(061112), 1–3 (2006).
[CrossRef]

Hiller, K.

N. Neumann, M. Ebermann, K. Hiller, and S. Kurth, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” Proc. SPIE 6466, 646606, 646606-12 (2007).
[CrossRef]

Hwang, I. K.

J. K. Yang, M. K. Seo, I. K. Hwang, S. B. Kim, and Y. H. Lee, “Polarization-selective resonant photonic crystal photodetector,” Appl. Phys. Lett. 93(211103), 1–3 (2008).
[CrossRef]

Jin, G. F.

Kang, G. G.

Kim, S. B.

J. K. Yang, M. K. Seo, I. K. Hwang, S. B. Kim, and Y. H. Lee, “Polarization-selective resonant photonic crystal photodetector,” Appl. Phys. Lett. 93(211103), 1–3 (2008).
[CrossRef]

Krishna, S.

R. V. Shenoi, D. A. Ramirez, Y. Sharma, R. S. Attaluri, J. Rosenberg, O. J. Painter, and S. Krishna, “Plasmon assisted photonic crystal quantum dot sensors,” Proc. SPIE 6713, 67130P, 67130P-6 (2007).
[CrossRef]

R. S. Attaluri, J. Shao, K. T. Posani, S. J. Lee, J. S. Brown, A. Stintz, and S. Krishna, “Resonant cavity enhanced InAs/ In0.15Ga0.85As dots-in-a-well quantum dot infrared photodetector,” J. Vac. Sci. Technol. B 25(4), 1186–1190 (2007).
[CrossRef]

K. T. Posani, V. Tripathi, S. Annamalai, N. R. Weisse-Bernstein, and S. Krishna, “Nanoscale quantum dot infrared sensors with photonic crystal cavity,” Appl. Phys. Lett. 88(151104), 1–3 (2006).
[CrossRef]

Kurth, S.

N. Neumann, M. Ebermann, K. Hiller, and S. Kurth, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” Proc. SPIE 6466, 646606, 646606-12 (2007).
[CrossRef]

Lee, S. J.

R. S. Attaluri, J. Shao, K. T. Posani, S. J. Lee, J. S. Brown, A. Stintz, and S. Krishna, “Resonant cavity enhanced InAs/ In0.15Ga0.85As dots-in-a-well quantum dot infrared photodetector,” J. Vac. Sci. Technol. B 25(4), 1186–1190 (2007).
[CrossRef]

Lee, Y. H.

J. K. Yang, M. K. Seo, I. K. Hwang, S. B. Kim, and Y. H. Lee, “Polarization-selective resonant photonic crystal photodetector,” Appl. Phys. Lett. 93(211103), 1–3 (2008).
[CrossRef]

Lyndin, N. M.

Matsik, S. G.

G. Ariyawansa, M. B. M. Rinzan, S. G. Matsik, G. Hastings, and A. G. U. Perera, “Characteristics of a Si dual-band detector responding in both near- and very-long-wavelength-infrared regions,” Appl. Phys. Lett. 89(061112), 1–3 (2006).
[CrossRef]

Musca, C. A.

G. Parish, C. A. Musca, J. F. Siliquini, J. Antoszewki, J. M. Dell, B. D. Nener, L. Faraone, and G. J. Gouws, “A Monolithic Dual-Band HgCdTe Infrared Detector Structure,” IEEE Electron Device Lett. 18(7), 352–354 (1997).
[CrossRef]

Nener, B. D.

G. Parish, C. A. Musca, J. F. Siliquini, J. Antoszewki, J. M. Dell, B. D. Nener, L. Faraone, and G. J. Gouws, “A Monolithic Dual-Band HgCdTe Infrared Detector Structure,” IEEE Electron Device Lett. 18(7), 352–354 (1997).
[CrossRef]

Neumann, N.

N. Neumann, M. Ebermann, K. Hiller, and S. Kurth, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” Proc. SPIE 6466, 646606, 646606-12 (2007).
[CrossRef]

Painter, O. J.

R. V. Shenoi, D. A. Ramirez, Y. Sharma, R. S. Attaluri, J. Rosenberg, O. J. Painter, and S. Krishna, “Plasmon assisted photonic crystal quantum dot sensors,” Proc. SPIE 6713, 67130P, 67130P-6 (2007).
[CrossRef]

Parish, G.

G. Parish, C. A. Musca, J. F. Siliquini, J. Antoszewki, J. M. Dell, B. D. Nener, L. Faraone, and G. J. Gouws, “A Monolithic Dual-Band HgCdTe Infrared Detector Structure,” IEEE Electron Device Lett. 18(7), 352–354 (1997).
[CrossRef]

Parriaux, O.

Perera, A. G. U.

G. Ariyawansa, M. B. M. Rinzan, S. G. Matsik, G. Hastings, and A. G. U. Perera, “Characteristics of a Si dual-band detector responding in both near- and very-long-wavelength-infrared regions,” Appl. Phys. Lett. 89(061112), 1–3 (2006).
[CrossRef]

Perot, A.

C. Fabry and A. Perot, “Théorie et applications d’une nouvelle méthode de spectroscopie interférentielle,” Ann. Chim. Phys. 16, 115–146 (1899).

Posani, K. T.

R. S. Attaluri, J. Shao, K. T. Posani, S. J. Lee, J. S. Brown, A. Stintz, and S. Krishna, “Resonant cavity enhanced InAs/ In0.15Ga0.85As dots-in-a-well quantum dot infrared photodetector,” J. Vac. Sci. Technol. B 25(4), 1186–1190 (2007).
[CrossRef]

K. T. Posani, V. Tripathi, S. Annamalai, N. R. Weisse-Bernstein, and S. Krishna, “Nanoscale quantum dot infrared sensors with photonic crystal cavity,” Appl. Phys. Lett. 88(151104), 1–3 (2006).
[CrossRef]

Ramirez, D. A.

R. V. Shenoi, D. A. Ramirez, Y. Sharma, R. S. Attaluri, J. Rosenberg, O. J. Painter, and S. Krishna, “Plasmon assisted photonic crystal quantum dot sensors,” Proc. SPIE 6713, 67130P, 67130P-6 (2007).
[CrossRef]

Richter, I.

Rinzan, M. B. M.

G. Ariyawansa, M. B. M. Rinzan, S. G. Matsik, G. Hastings, and A. G. U. Perera, “Characteristics of a Si dual-band detector responding in both near- and very-long-wavelength-infrared regions,” Appl. Phys. Lett. 89(061112), 1–3 (2006).
[CrossRef]

Rogalski, A.

A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43(3-5), 187–210 (2002).
[CrossRef]

Rosenberg, J.

R. V. Shenoi, D. A. Ramirez, Y. Sharma, R. S. Attaluri, J. Rosenberg, O. J. Painter, and S. Krishna, “Plasmon assisted photonic crystal quantum dot sensors,” Proc. SPIE 6713, 67130P, 67130P-6 (2007).
[CrossRef]

Scholl, J. F.

Seo, M. K.

J. K. Yang, M. K. Seo, I. K. Hwang, S. B. Kim, and Y. H. Lee, “Polarization-selective resonant photonic crystal photodetector,” Appl. Phys. Lett. 93(211103), 1–3 (2008).
[CrossRef]

Shao, J.

R. S. Attaluri, J. Shao, K. T. Posani, S. J. Lee, J. S. Brown, A. Stintz, and S. Krishna, “Resonant cavity enhanced InAs/ In0.15Ga0.85As dots-in-a-well quantum dot infrared photodetector,” J. Vac. Sci. Technol. B 25(4), 1186–1190 (2007).
[CrossRef]

Sharma, Y.

R. V. Shenoi, D. A. Ramirez, Y. Sharma, R. S. Attaluri, J. Rosenberg, O. J. Painter, and S. Krishna, “Plasmon assisted photonic crystal quantum dot sensors,” Proc. SPIE 6713, 67130P, 67130P-6 (2007).
[CrossRef]

Shenoi, R. V.

R. V. Shenoi, D. A. Ramirez, Y. Sharma, R. S. Attaluri, J. Rosenberg, O. J. Painter, and S. Krishna, “Plasmon assisted photonic crystal quantum dot sensors,” Proc. SPIE 6713, 67130P, 67130P-6 (2007).
[CrossRef]

Siliquini, J. F.

G. Parish, C. A. Musca, J. F. Siliquini, J. Antoszewki, J. M. Dell, B. D. Nener, L. Faraone, and G. J. Gouws, “A Monolithic Dual-Band HgCdTe Infrared Detector Structure,” IEEE Electron Device Lett. 18(7), 352–354 (1997).
[CrossRef]

Stintz, A.

R. S. Attaluri, J. Shao, K. T. Posani, S. J. Lee, J. S. Brown, A. Stintz, and S. Krishna, “Resonant cavity enhanced InAs/ In0.15Ga0.85As dots-in-a-well quantum dot infrared photodetector,” J. Vac. Sci. Technol. B 25(4), 1186–1190 (2007).
[CrossRef]

Sun, P. C.

Tajime, T.

Tamagawa, Y.

Tan, Q. F.

Tebow, C. P.

Tishchenko, A. V.

Tripathi, V.

K. T. Posani, V. Tripathi, S. Annamalai, N. R. Weisse-Bernstein, and S. Krishna, “Nanoscale quantum dot infrared sensors with photonic crystal cavity,” Appl. Phys. Lett. 88(151104), 1–3 (2006).
[CrossRef]

Volin, C. E.

Wang, X. L.

Weisse-Bernstein, N. R.

K. T. Posani, V. Tripathi, S. Annamalai, N. R. Weisse-Bernstein, and S. Krishna, “Nanoscale quantum dot infrared sensors with photonic crystal cavity,” Appl. Phys. Lett. 88(151104), 1–3 (2006).
[CrossRef]

Xu, F.

Yang, J. K.

J. K. Yang, M. K. Seo, I. K. Hwang, S. B. Kim, and Y. H. Lee, “Polarization-selective resonant photonic crystal photodetector,” Appl. Phys. Lett. 93(211103), 1–3 (2008).
[CrossRef]

Ann. Chim. Phys. (1)

C. Fabry and A. Perot, “Théorie et applications d’une nouvelle méthode de spectroscopie interférentielle,” Ann. Chim. Phys. 16, 115–146 (1899).

Appl. Opt. (3)

Appl. Phys. Lett. (3)

G. Ariyawansa, M. B. M. Rinzan, S. G. Matsik, G. Hastings, and A. G. U. Perera, “Characteristics of a Si dual-band detector responding in both near- and very-long-wavelength-infrared regions,” Appl. Phys. Lett. 89(061112), 1–3 (2006).
[CrossRef]

K. T. Posani, V. Tripathi, S. Annamalai, N. R. Weisse-Bernstein, and S. Krishna, “Nanoscale quantum dot infrared sensors with photonic crystal cavity,” Appl. Phys. Lett. 88(151104), 1–3 (2006).
[CrossRef]

J. K. Yang, M. K. Seo, I. K. Hwang, S. B. Kim, and Y. H. Lee, “Polarization-selective resonant photonic crystal photodetector,” Appl. Phys. Lett. 93(211103), 1–3 (2008).
[CrossRef]

IEEE Electron Device Lett. (1)

G. Parish, C. A. Musca, J. F. Siliquini, J. Antoszewki, J. M. Dell, B. D. Nener, L. Faraone, and G. J. Gouws, “A Monolithic Dual-Band HgCdTe Infrared Detector Structure,” IEEE Electron Device Lett. 18(7), 352–354 (1997).
[CrossRef]

Infrared Phys. Technol. (1)

A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43(3-5), 187–210 (2002).
[CrossRef]

J. Opt (Paris) (1)

J. L. Adams and L. C. Botten, “Double gratings and their applications as Fabry-Perot interferometer,” J. Opt (Paris) 10(3), 109–117 (1979).

J. Opt. Soc. Am. A (1)

J. Vac. Sci. Technol. B (1)

R. S. Attaluri, J. Shao, K. T. Posani, S. J. Lee, J. S. Brown, A. Stintz, and S. Krishna, “Resonant cavity enhanced InAs/ In0.15Ga0.85As dots-in-a-well quantum dot infrared photodetector,” J. Vac. Sci. Technol. B 25(4), 1186–1190 (2007).
[CrossRef]

Opt. Express (1)

Proc. SPIE (2)

N. Neumann, M. Ebermann, K. Hiller, and S. Kurth, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” Proc. SPIE 6466, 646606, 646606-12 (2007).
[CrossRef]

R. V. Shenoi, D. A. Ramirez, Y. Sharma, R. S. Attaluri, J. Rosenberg, O. J. Painter, and S. Krishna, “Plasmon assisted photonic crystal quantum dot sensors,” Proc. SPIE 6713, 67130P, 67130P-6 (2007).
[CrossRef]

Other (2)

J. H. Xie, D. Z. Zhao, and J. X. Yan, Physical Optics (Academic, 2005).

Ioffe Physico-Technical Institute Website, “Semiconductor on NSM” (Electronic Archive, 2001) http://www.ioffe.ru/SVA/NSM/Semicond/

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the F-P multiple interference. The F-P cavity has a cavity length of l, two identical metal films of thickness of t. and a dielectric slab with refractive index n sandwiched between the two metal films.

Fig. 2
Fig. 2

Numerically calculated (a) spectral transmittance of the FP cavity and the Ey field distribution of the (b) fundamental, (c) second-order and (d) third-order resonance modes.

Fig. 3
Fig. 3

(a) Schematic of the designed F-P cavity and (b) its spectral response under normal incidence

Fig. 5
Fig. 5

Absorption pie for (a) LWIR resonant wavelength (λ1 = 9.9μm) and (b) MWIR resonant wavelength (λ4 = 3.77μm).

Fig. 4
Fig. 4

The field distribution of (a) the fundamental resonance with λ1 = 9.9μm and the fourth resonance with λ4 = 3.77μm inside the FP cavity. The white color pillars stand for metallic ridges and the dotted grey lines mark the areas where LWIR or MWIR absorption layer is placed.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

λ N = 2 n l N ( N = 1 , 2 , 3 , )
{ E 1 ¯ ( z , t ) = E 1 exp [ j ( k z ω t ) ] y ^ E 2 ¯ ( z , t ) = E 2 exp [ j ( k z ω t + π ) ] y ^
E ¯ ( z , t ) = E 1 ¯ + E 2 ¯ = 2 E 2 cos ( k z π 2 ) exp [ j ( ω t π 2 ) ] y ^ + Δ E exp [ j ( k z ω t ) ] y ^
k z π 2 = m π ( m = 0 , 1 , 2 , )
I = I _ { L W } + I _ { M W }
S _ 1 = F _ { 1 L W } I _ { L W } + F _ { 1 M W } I _ { M W }
S _ 2 = F _ { 2 L W } I _ { L W } + F { 2 M W } I _ { M W }

Metrics