Abstract

Light beams with helical phase profile correspond to photons having orbital angular momentum (OAM). A Laguerre-Gaussian (LG) beam is an example where its helical phase sets a phase-singularity at the optical axis and forms a ring-shaped transverse amplitude profile. Here, we describe a unique beam where both phase and amplitude express a helical profile as the beam propagates in free space. Such a beam can be accurately referred to as an optical twister. We characterize optical twisters and demonstrate their capacity to induce spiral motion on particles trapped along the twisters’ path. Unlike LG beams, the far field projection of the twisted optical beam maintains a high photon concentration even at higher values of topological charge. Optical twisters have therefore profound applications to fundamental studies of light and atoms such as in quantum entanglement of the OAM, toroidal traps for cold atoms and for optical manipulation of microscopic particles.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [CrossRef] [PubMed]
  2. L. Allen, M. J. Padgett, and M. Babiker, “The orbital angular momentum of light,” Prog. Opt. 39, 291–372 (1999).
    [CrossRef]
  3. K. P. Marzlin, W. Zhang, and E. Wright, “Vortex coupler for atomic Bose-Einstein condensates,” Phys. Rev. Lett. 79(24), 4728–4731 (1997).
    [CrossRef]
  4. M. A. Clifford, J. Arlt, J. Courtial, and K. Dholakia, “High-order Laguerre–Gaussian laser modes for studies of cold atoms,” Opt. Commun. 156(4-6), 300–306 (1998).
    [CrossRef]
  5. M. J. Holland and J. E. Williams, “Preparing topological states of a Bose-Einstein condensate,” Nature 401(6753), 568–572 (1999).
    [CrossRef]
  6. M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
    [CrossRef] [PubMed]
  7. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
    [CrossRef] [PubMed]
  8. H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42(1), 217–223 (1995).
    [CrossRef]
  9. M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54(2), 1593–1596 (1996).
    [CrossRef] [PubMed]
  10. V. Garcés-Chávez, K. Volke-Sepulveda, S. Chavez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66(6), 063402 (2002).
    [CrossRef]
  11. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22(1), 52–54 (1997).
    [CrossRef] [PubMed]
  12. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
    [CrossRef] [PubMed]
  13. S. Franke-Arnold, S. M. Barnett, M. J. Padgett, and M. J. Allen, “Two-photon entanglement of orbital angular momentum states,” Phys. Rev. A 65(3), 033823 (2002).
    [CrossRef]
  14. C. A. Alonzo, P. J. Rodrigo, and J. Glückstad, “Helico-conical optical beams: a product of helical and conical phase fronts,” Opt. Express 13(5), 1749–1760 (2005).
    [CrossRef] [PubMed]
  15. G. Overton, “Optical vortices: phase functions are inseperable in Helico-Conical beams,” Laser Focus World, Optoelectronic world news, May 2005.
  16. Y. Schechner, R. Piestun, and J. Shamir, “Wave propagation with rotating intensity distribution,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(1), 50–53 (1996).
    [CrossRef]
  17. A. S. Desyatnikov and Y. S. Kivshar, “Rotating optical soliton clusters,” Phys. Rev. Lett. 88(5), 053901 (2002).
    [CrossRef] [PubMed]
  18. D. Buccoliero, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Spiraling multivortex solitons in nonlocal nonlinear media,” Opt. Lett. 33(2), 198–200 (2008).
    [CrossRef] [PubMed]
  19. V. Jarutis, A. Matijosius, P. Di Trapani, and A. Piskarskas, “Spiraling zero-order Bessel beam,” Opt. Lett. 34(14), 2129–2131 (2009).
    [CrossRef] [PubMed]
  20. E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974–1977 (1998).
    [CrossRef]
  21. M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24(9), 608–610 (1999).
    [CrossRef]
  22. J. Goodman, Introduction to Fourier Optics (McGraw-Hill 1996).

2009 (1)

V. Jarutis, A. Matijosius, P. Di Trapani, and A. Piskarskas, “Spiraling zero-order Bessel beam,” Opt. Lett. 34(14), 2129–2131 (2009).
[CrossRef] [PubMed]

2008 (1)

D. Buccoliero, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Spiraling multivortex solitons in nonlocal nonlinear media,” Opt. Lett. 33(2), 198–200 (2008).
[CrossRef] [PubMed]

2006 (1)

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
[CrossRef] [PubMed]

2005 (1)

C. A. Alonzo, P. J. Rodrigo, and J. Glückstad, “Helico-conical optical beams: a product of helical and conical phase fronts,” Opt. Express 13(5), 1749–1760 (2005).
[CrossRef] [PubMed]

2002 (3)

A. S. Desyatnikov and Y. S. Kivshar, “Rotating optical soliton clusters,” Phys. Rev. Lett. 88(5), 053901 (2002).
[CrossRef] [PubMed]

V. Garcés-Chávez, K. Volke-Sepulveda, S. Chavez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66(6), 063402 (2002).
[CrossRef]

S. Franke-Arnold, S. M. Barnett, M. J. Padgett, and M. J. Allen, “Two-photon entanglement of orbital angular momentum states,” Phys. Rev. A 65(3), 033823 (2002).
[CrossRef]

2001 (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[CrossRef] [PubMed]

1999 (3)

M. J. Holland and J. E. Williams, “Preparing topological states of a Bose-Einstein condensate,” Nature 401(6753), 568–572 (1999).
[CrossRef]

L. Allen, M. J. Padgett, and M. Babiker, “The orbital angular momentum of light,” Prog. Opt. 39, 291–372 (1999).
[CrossRef]

M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24(9), 608–610 (1999).
[CrossRef]

1998 (2)

E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974–1977 (1998).
[CrossRef]

M. A. Clifford, J. Arlt, J. Courtial, and K. Dholakia, “High-order Laguerre–Gaussian laser modes for studies of cold atoms,” Opt. Commun. 156(4-6), 300–306 (1998).
[CrossRef]

1997 (2)

K. P. Marzlin, W. Zhang, and E. Wright, “Vortex coupler for atomic Bose-Einstein condensates,” Phys. Rev. Lett. 79(24), 4728–4731 (1997).
[CrossRef]

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22(1), 52–54 (1997).
[CrossRef] [PubMed]

1996 (2)

Y. Schechner, R. Piestun, and J. Shamir, “Wave propagation with rotating intensity distribution,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(1), 50–53 (1996).
[CrossRef]

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54(2), 1593–1596 (1996).
[CrossRef] [PubMed]

1995 (2)

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[CrossRef] [PubMed]

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42(1), 217–223 (1995).
[CrossRef]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Allen, L.

L. Allen, M. J. Padgett, and M. Babiker, “The orbital angular momentum of light,” Prog. Opt. 39, 291–372 (1999).
[CrossRef]

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22(1), 52–54 (1997).
[CrossRef] [PubMed]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Allen, M. J.

S. Franke-Arnold, S. M. Barnett, M. J. Padgett, and M. J. Allen, “Two-photon entanglement of orbital angular momentum states,” Phys. Rev. A 65(3), 033823 (2002).
[CrossRef]

Alonzo, C. A.

C. A. Alonzo, P. J. Rodrigo, and J. Glückstad, “Helico-conical optical beams: a product of helical and conical phase fronts,” Opt. Express 13(5), 1749–1760 (2005).
[CrossRef] [PubMed]

Andersen, M. F.

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
[CrossRef] [PubMed]

Arlt, J.

M. A. Clifford, J. Arlt, J. Courtial, and K. Dholakia, “High-order Laguerre–Gaussian laser modes for studies of cold atoms,” Opt. Commun. 156(4-6), 300–306 (1998).
[CrossRef]

Babiker, M.

L. Allen, M. J. Padgett, and M. Babiker, “The orbital angular momentum of light,” Prog. Opt. 39, 291–372 (1999).
[CrossRef]

Barnett, S. M.

S. Franke-Arnold, S. M. Barnett, M. J. Padgett, and M. J. Allen, “Two-photon entanglement of orbital angular momentum states,” Phys. Rev. A 65(3), 033823 (2002).
[CrossRef]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Buccoliero, D.

D. Buccoliero, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Spiraling multivortex solitons in nonlocal nonlinear media,” Opt. Lett. 33(2), 198–200 (2008).
[CrossRef] [PubMed]

Chavez-Cerda, S.

V. Garcés-Chávez, K. Volke-Sepulveda, S. Chavez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66(6), 063402 (2002).
[CrossRef]

Cladé, P.

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
[CrossRef] [PubMed]

Clifford, M. A.

M. A. Clifford, J. Arlt, J. Courtial, and K. Dholakia, “High-order Laguerre–Gaussian laser modes for studies of cold atoms,” Opt. Commun. 156(4-6), 300–306 (1998).
[CrossRef]

Courtial, J.

M. A. Clifford, J. Arlt, J. Courtial, and K. Dholakia, “High-order Laguerre–Gaussian laser modes for studies of cold atoms,” Opt. Commun. 156(4-6), 300–306 (1998).
[CrossRef]

Desyatnikov, A. S.

D. Buccoliero, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Spiraling multivortex solitons in nonlocal nonlinear media,” Opt. Lett. 33(2), 198–200 (2008).
[CrossRef] [PubMed]

A. S. Desyatnikov and Y. S. Kivshar, “Rotating optical soliton clusters,” Phys. Rev. Lett. 88(5), 053901 (2002).
[CrossRef] [PubMed]

Dholakia, K.

V. Garcés-Chávez, K. Volke-Sepulveda, S. Chavez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66(6), 063402 (2002).
[CrossRef]

M. A. Clifford, J. Arlt, J. Courtial, and K. Dholakia, “High-order Laguerre–Gaussian laser modes for studies of cold atoms,” Opt. Commun. 156(4-6), 300–306 (1998).
[CrossRef]

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22(1), 52–54 (1997).
[CrossRef] [PubMed]

Di Trapani, P.

V. Jarutis, A. Matijosius, P. Di Trapani, and A. Piskarskas, “Spiraling zero-order Bessel beam,” Opt. Lett. 34(14), 2129–2131 (2009).
[CrossRef] [PubMed]

Dufresne, E. R.

E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974–1977 (1998).
[CrossRef]

Enger, J.

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54(2), 1593–1596 (1996).
[CrossRef] [PubMed]

Franke-Arnold, S.

S. Franke-Arnold, S. M. Barnett, M. J. Padgett, and M. J. Allen, “Two-photon entanglement of orbital angular momentum states,” Phys. Rev. A 65(3), 033823 (2002).
[CrossRef]

Friese, M. E. J.

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54(2), 1593–1596 (1996).
[CrossRef] [PubMed]

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[CrossRef] [PubMed]

Garcés-Chávez, V.

V. Garcés-Chávez, K. Volke-Sepulveda, S. Chavez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66(6), 063402 (2002).
[CrossRef]

Glückstad, J.

C. A. Alonzo, P. J. Rodrigo, and J. Glückstad, “Helico-conical optical beams: a product of helical and conical phase fronts,” Opt. Express 13(5), 1749–1760 (2005).
[CrossRef] [PubMed]

Grier, D. G.

E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974–1977 (1998).
[CrossRef]

Haist, T.

M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24(9), 608–610 (1999).
[CrossRef]

He, H.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[CrossRef] [PubMed]

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42(1), 217–223 (1995).
[CrossRef]

Heckenberg, N. R.

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54(2), 1593–1596 (1996).
[CrossRef] [PubMed]

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42(1), 217–223 (1995).
[CrossRef]

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[CrossRef] [PubMed]

Helmerson, K.

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
[CrossRef] [PubMed]

Holland, M. J.

M. J. Holland and J. E. Williams, “Preparing topological states of a Bose-Einstein condensate,” Nature 401(6753), 568–572 (1999).
[CrossRef]

Jarutis, V.

V. Jarutis, A. Matijosius, P. Di Trapani, and A. Piskarskas, “Spiraling zero-order Bessel beam,” Opt. Lett. 34(14), 2129–2131 (2009).
[CrossRef] [PubMed]

Kivshar, Y. S.

D. Buccoliero, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Spiraling multivortex solitons in nonlocal nonlinear media,” Opt. Lett. 33(2), 198–200 (2008).
[CrossRef] [PubMed]

A. S. Desyatnikov and Y. S. Kivshar, “Rotating optical soliton clusters,” Phys. Rev. Lett. 88(5), 053901 (2002).
[CrossRef] [PubMed]

Krolikowski, W.

D. Buccoliero, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Spiraling multivortex solitons in nonlocal nonlinear media,” Opt. Lett. 33(2), 198–200 (2008).
[CrossRef] [PubMed]

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[CrossRef] [PubMed]

Marzlin, K. P.

K. P. Marzlin, W. Zhang, and E. Wright, “Vortex coupler for atomic Bose-Einstein condensates,” Phys. Rev. Lett. 79(24), 4728–4731 (1997).
[CrossRef]

Matijosius, A.

V. Jarutis, A. Matijosius, P. Di Trapani, and A. Piskarskas, “Spiraling zero-order Bessel beam,” Opt. Lett. 34(14), 2129–2131 (2009).
[CrossRef] [PubMed]

Natarajan, V.

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
[CrossRef] [PubMed]

Padgett, M. J.

S. Franke-Arnold, S. M. Barnett, M. J. Padgett, and M. J. Allen, “Two-photon entanglement of orbital angular momentum states,” Phys. Rev. A 65(3), 033823 (2002).
[CrossRef]

L. Allen, M. J. Padgett, and M. Babiker, “The orbital angular momentum of light,” Prog. Opt. 39, 291–372 (1999).
[CrossRef]

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22(1), 52–54 (1997).
[CrossRef] [PubMed]

Phillips, W. D.

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
[CrossRef] [PubMed]

Piestun, R.

Y. Schechner, R. Piestun, and J. Shamir, “Wave propagation with rotating intensity distribution,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(1), 50–53 (1996).
[CrossRef]

Piskarskas, A.

V. Jarutis, A. Matijosius, P. Di Trapani, and A. Piskarskas, “Spiraling zero-order Bessel beam,” Opt. Lett. 34(14), 2129–2131 (2009).
[CrossRef] [PubMed]

Reicherter, M.

M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24(9), 608–610 (1999).
[CrossRef]

Rodrigo, P. J.

C. A. Alonzo, P. J. Rodrigo, and J. Glückstad, “Helico-conical optical beams: a product of helical and conical phase fronts,” Opt. Express 13(5), 1749–1760 (2005).
[CrossRef] [PubMed]

Rubinsztein-Dunlop, H.

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54(2), 1593–1596 (1996).
[CrossRef] [PubMed]

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[CrossRef] [PubMed]

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42(1), 217–223 (1995).
[CrossRef]

Ryu, C.

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
[CrossRef] [PubMed]

Schechner, Y.

Y. Schechner, R. Piestun, and J. Shamir, “Wave propagation with rotating intensity distribution,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(1), 50–53 (1996).
[CrossRef]

Shamir, J.

Y. Schechner, R. Piestun, and J. Shamir, “Wave propagation with rotating intensity distribution,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(1), 50–53 (1996).
[CrossRef]

Sibbett, W.

V. Garcés-Chávez, K. Volke-Sepulveda, S. Chavez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66(6), 063402 (2002).
[CrossRef]

Simpson, N. B.

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22(1), 52–54 (1997).
[CrossRef] [PubMed]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Tiziani, H. J.

M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24(9), 608–610 (1999).
[CrossRef]

Vaziri, A.

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
[CrossRef] [PubMed]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[CrossRef] [PubMed]

Volke-Sepulveda, K.

V. Garcés-Chávez, K. Volke-Sepulveda, S. Chavez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66(6), 063402 (2002).
[CrossRef]

Wagemann, E. U.

M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24(9), 608–610 (1999).
[CrossRef]

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[CrossRef] [PubMed]

Williams, J. E.

M. J. Holland and J. E. Williams, “Preparing topological states of a Bose-Einstein condensate,” Nature 401(6753), 568–572 (1999).
[CrossRef]

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Wright, E.

K. P. Marzlin, W. Zhang, and E. Wright, “Vortex coupler for atomic Bose-Einstein condensates,” Phys. Rev. Lett. 79(24), 4728–4731 (1997).
[CrossRef]

Zeilinger, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[CrossRef] [PubMed]

Zhang, W.

K. P. Marzlin, W. Zhang, and E. Wright, “Vortex coupler for atomic Bose-Einstein condensates,” Phys. Rev. Lett. 79(24), 4728–4731 (1997).
[CrossRef]

J. Mod. Opt. (1)

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42(1), 217–223 (1995).
[CrossRef]

Nature (2)

M. J. Holland and J. E. Williams, “Preparing topological states of a Bose-Einstein condensate,” Nature 401(6753), 568–572 (1999).
[CrossRef]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[CrossRef] [PubMed]

Opt. Commun. (1)

M. A. Clifford, J. Arlt, J. Courtial, and K. Dholakia, “High-order Laguerre–Gaussian laser modes for studies of cold atoms,” Opt. Commun. 156(4-6), 300–306 (1998).
[CrossRef]

Opt. Express (1)

C. A. Alonzo, P. J. Rodrigo, and J. Glückstad, “Helico-conical optical beams: a product of helical and conical phase fronts,” Opt. Express 13(5), 1749–1760 (2005).
[CrossRef] [PubMed]

Opt. Lett. (4)

D. Buccoliero, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Spiraling multivortex solitons in nonlocal nonlinear media,” Opt. Lett. 33(2), 198–200 (2008).
[CrossRef] [PubMed]

V. Jarutis, A. Matijosius, P. Di Trapani, and A. Piskarskas, “Spiraling zero-order Bessel beam,” Opt. Lett. 34(14), 2129–2131 (2009).
[CrossRef] [PubMed]

M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24(9), 608–610 (1999).
[CrossRef]

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22(1), 52–54 (1997).
[CrossRef] [PubMed]

Phys. Rev. A (4)

S. Franke-Arnold, S. M. Barnett, M. J. Padgett, and M. J. Allen, “Two-photon entanglement of orbital angular momentum states,” Phys. Rev. A 65(3), 033823 (2002).
[CrossRef]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54(2), 1593–1596 (1996).
[CrossRef] [PubMed]

V. Garcés-Chávez, K. Volke-Sepulveda, S. Chavez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66(6), 063402 (2002).
[CrossRef]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

Y. Schechner, R. Piestun, and J. Shamir, “Wave propagation with rotating intensity distribution,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(1), 50–53 (1996).
[CrossRef]

Phys. Rev. Lett. (4)

A. S. Desyatnikov and Y. S. Kivshar, “Rotating optical soliton clusters,” Phys. Rev. Lett. 88(5), 053901 (2002).
[CrossRef] [PubMed]

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
[CrossRef] [PubMed]

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[CrossRef] [PubMed]

K. P. Marzlin, W. Zhang, and E. Wright, “Vortex coupler for atomic Bose-Einstein condensates,” Phys. Rev. Lett. 79(24), 4728–4731 (1997).
[CrossRef]

Prog. Opt. (1)

L. Allen, M. J. Padgett, and M. Babiker, “The orbital angular momentum of light,” Prog. Opt. 39, 291–372 (1999).
[CrossRef]

Rev. Sci. Instrum. (1)

E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974–1977 (1998).
[CrossRef]

Other (2)

G. Overton, “Optical vortices: phase functions are inseperable in Helico-Conical beams,” Laser Focus World, Optoelectronic world news, May 2005.

J. Goodman, Introduction to Fourier Optics (McGraw-Hill 1996).

Supplementary Material (1)

» Media 1: MPG (3434 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Conceptual overview of the setup for generating an optical twister.

Fig. 2
Fig. 2

Characterization plots for spiral (■) and LG beams (♦) showing: (a) Normalized maximum intensity; (b) radius of the ring. The insets show intensity distributions (top and side view) for the Airy function (l = 0), Laguerre Gaussian beams and optical twisters for l = 10 and l = 20.

Fig. 3
Fig. 3

Multiple optical twisters: (a) disjoint (b) forming a twister-chain (c) multiple chains.

Fig. 4
Fig. 4

Optical setup for generating optical twisters and analyzing its capacity to transfer linear and orbital angular momentum on microscopic dielectric particles.

Fig. 5
Fig. 5

(Media 1) Time lapse images of a microbead trapped and guided along the orbit of an optical twister. Radiation pressure propels the particle towards the direction of the beam. However, the particle follows the spiral motion via the transfer of orbital angular momentum. Illustration on the left describes the motion of a particle in an optical twister.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

e ( ρ , ϕ ) = A ( ρ ) exp [ i ( l ϕ ρ ρ o ) ] ,
e ( ρ , ϕ ) = A ( ρ ) n = 0 N exp [ i 2 π λ f ( ρ r n cos ( θ n φ ) ρ 2 z n ) i l ϕ ρ ρ o ] ,

Metrics