Abstract

Taking advantage of the high impermeability property of graphene and the sharp surface plasmon resonance (SPR) curve of silver, we numerically demonstrate that SPR imaging biosensors with a graphene-on-silver substrate can be used to achieve the dramatically high sensitivity as well as to prevent silver oxidation. Results of our numerical study show that a silver substrate with a few graphene layers can significantly increase the imaging sensitivity, compared to the conventional gold-film-based SPR imaging biosensor. In particular, single layered graphene deposited on the 60-nm thick silver film amplifies the SPR imaging signal more than three times. Therefore, the proposed SPR substrate could potentially open a new possibility of SPR imaging detection for sensitive and high-throughput assessment of multiple biomolecular interactions.

© 2011 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
    [CrossRef]
  2. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
    [CrossRef] [PubMed]
  3. N. Blow, “Proteins and proteomics: life on the surface,” Nat. Methods 6(5), 389–393 (2009).
    [CrossRef]
  4. H. J. Lee, D. Nedelkov, and R. M. Corn, “Surface plasmon resonance imaging measurements of antibody arrays for the multiplexed detection of low molecular weight protein biomarkers,” Anal. Chem. 78(18), 6504–6510 (2006).
    [CrossRef] [PubMed]
  5. K. M. Byun, M. L. Shuler, S. J. Kim, S. J. Yoon, and D. Kim, “Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires,” J. Lightwave Technol. 26(11), 1472–1478 (2008).
    [CrossRef]
  6. B. H. Ong, X. Yuan, S. C. Tjin, J. Zhang, and H. M. Ng, “Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor,” Sens. Actuators B Chem. 114(2), 1028–1034 (2006).
    [CrossRef]
  7. X.-M. Zhu, P.-H. Lin, P. Ao, and L. B. Sorensen, “Surface treatments for surface plasmon resonance biosensors,” Sens. Actuators B Chem. 84(2-3), 106–112 (2002).
    [CrossRef]
  8. S. H. Choi and K. M. Byun, “Investigation on an application of silver substrates for sensitive surface plasmon resonance imaging detection,” J. Opt. Soc. Am. A 27(10), 2229–2236 (2010).
    [CrossRef] [PubMed]
  9. P. Avouris, Z. Chen, and V. Perebeinos, “Carbon-based electronics,” Nat. Nanotechnol. 2(10), 605–615 (2007).
    [CrossRef] [PubMed]
  10. C. W. J. Beenakker, “Colloquium: Andreev reflection and Klein tunneling in graphene,” Rev. Mod. Phys. 80(4), 1337–1354 (2008).
    [CrossRef]
  11. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
    [CrossRef] [PubMed]
  12. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [CrossRef] [PubMed]
  13. J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Impermeable atomic membranes from graphene sheets,” Nano Lett. 8(8), 2458–2462 (2008).
    [CrossRef] [PubMed]
  14. D. E. Jiang, V. R. Cooper, and S. Dai, “Porous graphene as the ultimate membrane for gas separation,” Nano Lett. 9(12), 4019–4024 (2009).
    [CrossRef] [PubMed]
  15. L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express 18(14), 14395–14400 (2010).
    [CrossRef] [PubMed]
  16. D. E. Gray, S. C. Case-Green, T. S. Fell, P. J. Dobson, and E. M. Southern, “Ellipsometric and interferometric characterization of DNA probes immobilized on a combinatorial array,” Langmuir 13(10), 2833–2842 (1997).
    [CrossRef]
  17. S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20(13), 5539–5543 (2004).
    [CrossRef] [PubMed]
  18. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  19. M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94(3), 031901 (2009).
    [CrossRef]
  20. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, 1984).
  21. I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72(3), 577–588 (1978).
    [CrossRef]
  22. X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, “Chemically derived, ultrasmooth graphene nanoribbon semiconductors,” Science 319(5867), 1229–1232 (2008).
    [CrossRef] [PubMed]
  23. X. Liang, Z. Fu, and S. Y. Chou, “Graphene transistors fabricated via transfer-printing in device active-areas on large wafer,” Nano Lett. 7(12), 3840–3844 (2007).
    [CrossRef]
  24. J. Wintterlin and M.-L. Bocquet, “Graphene on metal surfaces,” Surf. Sci. 603(10-12), 1841–1852 (2009).
    [CrossRef]
  25. L. Song, L. Ci, W. Gao, and P. M. Ajayan, “Transfer printing of graphene using gold film,” ACS Nano 3(6), 1353–1356 (2009).
    [CrossRef] [PubMed]
  26. J. C. Shelton, H. R. Patil, and J. M. Blakely, “Equilibrium segregation of carbon to a nickel (111) surface: A surface phase transition,” Surf. Sci. 43(2), 493–520 (1974).
    [CrossRef]
  27. M. Eizenberg and J. M. Blakely, “Carbon monolayer phase condensation on Ni(111),” Surf. Sci. 82(1), 228–236 (1979).
    [CrossRef]
  28. A. I. Stognij, N. N. Novitskii, S. D. Tushina, and S. V. Kalinnikov, “Preparation of ultrathin gold films by oxygen-ion sputtering and their optical properties,” Tech. Phys. 48(6), 745–748 (2003).
    [CrossRef]
  29. Z. M. Qi, S. Xia, and H. Zou, “Slow spontaneous transformation of the morphology of ultrathin gold films characterized by localized surface plasmon resonance spectroscopy,” Nanotechnology 20(25), 255702 (2009).
    [CrossRef] [PubMed]
  30. B. Song, D. Li, W. Qi, M. Elstner, C. Fan, and H. Fang, “Graphene on Au(111): a highly conductive material with excellent adsorption properties for high-resolution bio/nanodetection and identification,” ChemPhysChem 11(3), 585–589 (2010).
    [CrossRef] [PubMed]
  31. C. Leung, H. Kinns, B. W. Hoogenboom, S. Howorka, and P. Mesquida, “Imaging surface charges of individual biomolecules,” Nano Lett. 9(7), 2769–2773 (2009).
    [CrossRef] [PubMed]

2010 (3)

S. H. Choi and K. M. Byun, “Investigation on an application of silver substrates for sensitive surface plasmon resonance imaging detection,” J. Opt. Soc. Am. A 27(10), 2229–2236 (2010).
[CrossRef] [PubMed]

L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express 18(14), 14395–14400 (2010).
[CrossRef] [PubMed]

B. Song, D. Li, W. Qi, M. Elstner, C. Fan, and H. Fang, “Graphene on Au(111): a highly conductive material with excellent adsorption properties for high-resolution bio/nanodetection and identification,” ChemPhysChem 11(3), 585–589 (2010).
[CrossRef] [PubMed]

2009 (7)

C. Leung, H. Kinns, B. W. Hoogenboom, S. Howorka, and P. Mesquida, “Imaging surface charges of individual biomolecules,” Nano Lett. 9(7), 2769–2773 (2009).
[CrossRef] [PubMed]

J. Wintterlin and M.-L. Bocquet, “Graphene on metal surfaces,” Surf. Sci. 603(10-12), 1841–1852 (2009).
[CrossRef]

L. Song, L. Ci, W. Gao, and P. M. Ajayan, “Transfer printing of graphene using gold film,” ACS Nano 3(6), 1353–1356 (2009).
[CrossRef] [PubMed]

Z. M. Qi, S. Xia, and H. Zou, “Slow spontaneous transformation of the morphology of ultrathin gold films characterized by localized surface plasmon resonance spectroscopy,” Nanotechnology 20(25), 255702 (2009).
[CrossRef] [PubMed]

M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94(3), 031901 (2009).
[CrossRef]

D. E. Jiang, V. R. Cooper, and S. Dai, “Porous graphene as the ultimate membrane for gas separation,” Nano Lett. 9(12), 4019–4024 (2009).
[CrossRef] [PubMed]

N. Blow, “Proteins and proteomics: life on the surface,” Nat. Methods 6(5), 389–393 (2009).
[CrossRef]

2008 (4)

K. M. Byun, M. L. Shuler, S. J. Kim, S. J. Yoon, and D. Kim, “Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires,” J. Lightwave Technol. 26(11), 1472–1478 (2008).
[CrossRef]

J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Impermeable atomic membranes from graphene sheets,” Nano Lett. 8(8), 2458–2462 (2008).
[CrossRef] [PubMed]

C. W. J. Beenakker, “Colloquium: Andreev reflection and Klein tunneling in graphene,” Rev. Mod. Phys. 80(4), 1337–1354 (2008).
[CrossRef]

X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, “Chemically derived, ultrasmooth graphene nanoribbon semiconductors,” Science 319(5867), 1229–1232 (2008).
[CrossRef] [PubMed]

2007 (3)

X. Liang, Z. Fu, and S. Y. Chou, “Graphene transistors fabricated via transfer-printing in device active-areas on large wafer,” Nano Lett. 7(12), 3840–3844 (2007).
[CrossRef]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[CrossRef] [PubMed]

P. Avouris, Z. Chen, and V. Perebeinos, “Carbon-based electronics,” Nat. Nanotechnol. 2(10), 605–615 (2007).
[CrossRef] [PubMed]

2006 (2)

B. H. Ong, X. Yuan, S. C. Tjin, J. Zhang, and H. M. Ng, “Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor,” Sens. Actuators B Chem. 114(2), 1028–1034 (2006).
[CrossRef]

H. J. Lee, D. Nedelkov, and R. M. Corn, “Surface plasmon resonance imaging measurements of antibody arrays for the multiplexed detection of low molecular weight protein biomarkers,” Anal. Chem. 78(18), 6504–6510 (2006).
[CrossRef] [PubMed]

2004 (2)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20(13), 5539–5543 (2004).
[CrossRef] [PubMed]

2003 (2)

A. I. Stognij, N. N. Novitskii, S. D. Tushina, and S. V. Kalinnikov, “Preparation of ultrathin gold films by oxygen-ion sputtering and their optical properties,” Tech. Phys. 48(6), 745–748 (2003).
[CrossRef]

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[CrossRef] [PubMed]

2002 (1)

X.-M. Zhu, P.-H. Lin, P. Ao, and L. B. Sorensen, “Surface treatments for surface plasmon resonance biosensors,” Sens. Actuators B Chem. 84(2-3), 106–112 (2002).
[CrossRef]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

1997 (1)

D. E. Gray, S. C. Case-Green, T. S. Fell, P. J. Dobson, and E. M. Southern, “Ellipsometric and interferometric characterization of DNA probes immobilized on a combinatorial array,” Langmuir 13(10), 2833–2842 (1997).
[CrossRef]

1979 (1)

M. Eizenberg and J. M. Blakely, “Carbon monolayer phase condensation on Ni(111),” Surf. Sci. 82(1), 228–236 (1979).
[CrossRef]

1978 (1)

I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72(3), 577–588 (1978).
[CrossRef]

1974 (1)

J. C. Shelton, H. R. Patil, and J. M. Blakely, “Equilibrium segregation of carbon to a nickel (111) surface: A surface phase transition,” Surf. Sci. 43(2), 493–520 (1974).
[CrossRef]

Ajayan, P. M.

L. Song, L. Ci, W. Gao, and P. M. Ajayan, “Transfer printing of graphene using gold film,” ACS Nano 3(6), 1353–1356 (2009).
[CrossRef] [PubMed]

Alden, J. S.

J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Impermeable atomic membranes from graphene sheets,” Nano Lett. 8(8), 2458–2462 (2008).
[CrossRef] [PubMed]

Ao, P.

X.-M. Zhu, P.-H. Lin, P. Ao, and L. B. Sorensen, “Surface treatments for surface plasmon resonance biosensors,” Sens. Actuators B Chem. 84(2-3), 106–112 (2002).
[CrossRef]

Avouris, P.

P. Avouris, Z. Chen, and V. Perebeinos, “Carbon-based electronics,” Nat. Nanotechnol. 2(10), 605–615 (2007).
[CrossRef] [PubMed]

Beenakker, C. W. J.

C. W. J. Beenakker, “Colloquium: Andreev reflection and Klein tunneling in graphene,” Rev. Mod. Phys. 80(4), 1337–1354 (2008).
[CrossRef]

Blakely, J. M.

M. Eizenberg and J. M. Blakely, “Carbon monolayer phase condensation on Ni(111),” Surf. Sci. 82(1), 228–236 (1979).
[CrossRef]

J. C. Shelton, H. R. Patil, and J. M. Blakely, “Equilibrium segregation of carbon to a nickel (111) surface: A surface phase transition,” Surf. Sci. 43(2), 493–520 (1974).
[CrossRef]

Blow, N.

N. Blow, “Proteins and proteomics: life on the surface,” Nat. Methods 6(5), 389–393 (2009).
[CrossRef]

Bocquet, M.-L.

J. Wintterlin and M.-L. Bocquet, “Graphene on metal surfaces,” Surf. Sci. 603(10-12), 1841–1852 (2009).
[CrossRef]

Borini, S.

M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94(3), 031901 (2009).
[CrossRef]

Bruna, M.

M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94(3), 031901 (2009).
[CrossRef]

Bunch, J. S.

J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Impermeable atomic membranes from graphene sheets,” Nano Lett. 8(8), 2458–2462 (2008).
[CrossRef] [PubMed]

Byun, K. M.

S. H. Choi and K. M. Byun, “Investigation on an application of silver substrates for sensitive surface plasmon resonance imaging detection,” J. Opt. Soc. Am. A 27(10), 2229–2236 (2010).
[CrossRef] [PubMed]

K. M. Byun, M. L. Shuler, S. J. Kim, S. J. Yoon, and D. Kim, “Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires,” J. Lightwave Technol. 26(11), 1472–1478 (2008).
[CrossRef]

Case-Green, S. C.

D. E. Gray, S. C. Case-Green, T. S. Fell, P. J. Dobson, and E. M. Southern, “Ellipsometric and interferometric characterization of DNA probes immobilized on a combinatorial array,” Langmuir 13(10), 2833–2842 (1997).
[CrossRef]

Chen, Z.

P. Avouris, Z. Chen, and V. Perebeinos, “Carbon-based electronics,” Nat. Nanotechnol. 2(10), 605–615 (2007).
[CrossRef] [PubMed]

Choi, S. H.

S. H. Choi and K. M. Byun, “Investigation on an application of silver substrates for sensitive surface plasmon resonance imaging detection,” J. Opt. Soc. Am. A 27(10), 2229–2236 (2010).
[CrossRef] [PubMed]

Chou, S. Y.

X. Liang, Z. Fu, and S. Y. Chou, “Graphene transistors fabricated via transfer-printing in device active-areas on large wafer,” Nano Lett. 7(12), 3840–3844 (2007).
[CrossRef]

Chu, H. S.

L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express 18(14), 14395–14400 (2010).
[CrossRef] [PubMed]

Ci, L.

L. Song, L. Ci, W. Gao, and P. M. Ajayan, “Transfer printing of graphene using gold film,” ACS Nano 3(6), 1353–1356 (2009).
[CrossRef] [PubMed]

Cooper, V. R.

D. E. Jiang, V. R. Cooper, and S. Dai, “Porous graphene as the ultimate membrane for gas separation,” Nano Lett. 9(12), 4019–4024 (2009).
[CrossRef] [PubMed]

Corn, R. M.

H. J. Lee, D. Nedelkov, and R. M. Corn, “Surface plasmon resonance imaging measurements of antibody arrays for the multiplexed detection of low molecular weight protein biomarkers,” Anal. Chem. 78(18), 6504–6510 (2006).
[CrossRef] [PubMed]

Craighead, H. G.

J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Impermeable atomic membranes from graphene sheets,” Nano Lett. 8(8), 2458–2462 (2008).
[CrossRef] [PubMed]

Dai, H.

X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, “Chemically derived, ultrasmooth graphene nanoribbon semiconductors,” Science 319(5867), 1229–1232 (2008).
[CrossRef] [PubMed]

Dai, S.

D. E. Jiang, V. R. Cooper, and S. Dai, “Porous graphene as the ultimate membrane for gas separation,” Nano Lett. 9(12), 4019–4024 (2009).
[CrossRef] [PubMed]

Dobson, P. J.

D. E. Gray, S. C. Case-Green, T. S. Fell, P. J. Dobson, and E. M. Southern, “Ellipsometric and interferometric characterization of DNA probes immobilized on a combinatorial array,” Langmuir 13(10), 2833–2842 (1997).
[CrossRef]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Eizenberg, M.

M. Eizenberg and J. M. Blakely, “Carbon monolayer phase condensation on Ni(111),” Surf. Sci. 82(1), 228–236 (1979).
[CrossRef]

Elhadj, S.

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20(13), 5539–5543 (2004).
[CrossRef] [PubMed]

Elstner, M.

B. Song, D. Li, W. Qi, M. Elstner, C. Fan, and H. Fang, “Graphene on Au(111): a highly conductive material with excellent adsorption properties for high-resolution bio/nanodetection and identification,” ChemPhysChem 11(3), 585–589 (2010).
[CrossRef] [PubMed]

Fan, C.

B. Song, D. Li, W. Qi, M. Elstner, C. Fan, and H. Fang, “Graphene on Au(111): a highly conductive material with excellent adsorption properties for high-resolution bio/nanodetection and identification,” ChemPhysChem 11(3), 585–589 (2010).
[CrossRef] [PubMed]

Fang, H.

B. Song, D. Li, W. Qi, M. Elstner, C. Fan, and H. Fang, “Graphene on Au(111): a highly conductive material with excellent adsorption properties for high-resolution bio/nanodetection and identification,” ChemPhysChem 11(3), 585–589 (2010).
[CrossRef] [PubMed]

Fell, T. S.

D. E. Gray, S. C. Case-Green, T. S. Fell, P. J. Dobson, and E. M. Southern, “Ellipsometric and interferometric characterization of DNA probes immobilized on a combinatorial array,” Langmuir 13(10), 2833–2842 (1997).
[CrossRef]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Fu, Z.

X. Liang, Z. Fu, and S. Y. Chou, “Graphene transistors fabricated via transfer-printing in device active-areas on large wafer,” Nano Lett. 7(12), 3840–3844 (2007).
[CrossRef]

Gao, W.

L. Song, L. Ci, W. Gao, and P. M. Ajayan, “Transfer printing of graphene using gold film,” ACS Nano 3(6), 1353–1356 (2009).
[CrossRef] [PubMed]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Geim, A. K.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Gray, D. E.

D. E. Gray, S. C. Case-Green, T. S. Fell, P. J. Dobson, and E. M. Southern, “Ellipsometric and interferometric characterization of DNA probes immobilized on a combinatorial array,” Langmuir 13(10), 2833–2842 (1997).
[CrossRef]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Homola, J.

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[CrossRef] [PubMed]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Hoogenboom, B. W.

C. Leung, H. Kinns, B. W. Hoogenboom, S. Howorka, and P. Mesquida, “Imaging surface charges of individual biomolecules,” Nano Lett. 9(7), 2769–2773 (2009).
[CrossRef] [PubMed]

Howorka, S.

C. Leung, H. Kinns, B. W. Hoogenboom, S. Howorka, and P. Mesquida, “Imaging surface charges of individual biomolecules,” Nano Lett. 9(7), 2769–2773 (2009).
[CrossRef] [PubMed]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Jiang, D. E.

D. E. Jiang, V. R. Cooper, and S. Dai, “Porous graphene as the ultimate membrane for gas separation,” Nano Lett. 9(12), 4019–4024 (2009).
[CrossRef] [PubMed]

Kalinnikov, S. V.

A. I. Stognij, N. N. Novitskii, S. D. Tushina, and S. V. Kalinnikov, “Preparation of ultrathin gold films by oxygen-ion sputtering and their optical properties,” Tech. Phys. 48(6), 745–748 (2003).
[CrossRef]

Kim, D.

K. M. Byun, M. L. Shuler, S. J. Kim, S. J. Yoon, and D. Kim, “Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires,” J. Lightwave Technol. 26(11), 1472–1478 (2008).
[CrossRef]

Kim, S. J.

K. M. Byun, M. L. Shuler, S. J. Kim, S. J. Yoon, and D. Kim, “Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires,” J. Lightwave Technol. 26(11), 1472–1478 (2008).
[CrossRef]

Kinns, H.

C. Leung, H. Kinns, B. W. Hoogenboom, S. Howorka, and P. Mesquida, “Imaging surface charges of individual biomolecules,” Nano Lett. 9(7), 2769–2773 (2009).
[CrossRef] [PubMed]

Koh, W. S.

L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express 18(14), 14395–14400 (2010).
[CrossRef] [PubMed]

Lee, H. J.

H. J. Lee, D. Nedelkov, and R. M. Corn, “Surface plasmon resonance imaging measurements of antibody arrays for the multiplexed detection of low molecular weight protein biomarkers,” Anal. Chem. 78(18), 6504–6510 (2006).
[CrossRef] [PubMed]

Lee, S.

X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, “Chemically derived, ultrasmooth graphene nanoribbon semiconductors,” Science 319(5867), 1229–1232 (2008).
[CrossRef] [PubMed]

Leung, C.

C. Leung, H. Kinns, B. W. Hoogenboom, S. Howorka, and P. Mesquida, “Imaging surface charges of individual biomolecules,” Nano Lett. 9(7), 2769–2773 (2009).
[CrossRef] [PubMed]

Li, D.

B. Song, D. Li, W. Qi, M. Elstner, C. Fan, and H. Fang, “Graphene on Au(111): a highly conductive material with excellent adsorption properties for high-resolution bio/nanodetection and identification,” ChemPhysChem 11(3), 585–589 (2010).
[CrossRef] [PubMed]

Li, E. P.

L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express 18(14), 14395–14400 (2010).
[CrossRef] [PubMed]

Li, X.

X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, “Chemically derived, ultrasmooth graphene nanoribbon semiconductors,” Science 319(5867), 1229–1232 (2008).
[CrossRef] [PubMed]

Liang, X.

X. Liang, Z. Fu, and S. Y. Chou, “Graphene transistors fabricated via transfer-printing in device active-areas on large wafer,” Nano Lett. 7(12), 3840–3844 (2007).
[CrossRef]

Lin, P.-H.

X.-M. Zhu, P.-H. Lin, P. Ao, and L. B. Sorensen, “Surface treatments for surface plasmon resonance biosensors,” Sens. Actuators B Chem. 84(2-3), 106–112 (2002).
[CrossRef]

McEuen, P. L.

J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Impermeable atomic membranes from graphene sheets,” Nano Lett. 8(8), 2458–2462 (2008).
[CrossRef] [PubMed]

Mesquida, P.

C. Leung, H. Kinns, B. W. Hoogenboom, S. Howorka, and P. Mesquida, “Imaging surface charges of individual biomolecules,” Nano Lett. 9(7), 2769–2773 (2009).
[CrossRef] [PubMed]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Nedelkov, D.

H. J. Lee, D. Nedelkov, and R. M. Corn, “Surface plasmon resonance imaging measurements of antibody arrays for the multiplexed detection of low molecular weight protein biomarkers,” Anal. Chem. 78(18), 6504–6510 (2006).
[CrossRef] [PubMed]

Ng, H. M.

B. H. Ong, X. Yuan, S. C. Tjin, J. Zhang, and H. M. Ng, “Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor,” Sens. Actuators B Chem. 114(2), 1028–1034 (2006).
[CrossRef]

Novitskii, N. N.

A. I. Stognij, N. N. Novitskii, S. D. Tushina, and S. V. Kalinnikov, “Preparation of ultrathin gold films by oxygen-ion sputtering and their optical properties,” Tech. Phys. 48(6), 745–748 (2003).
[CrossRef]

Novoselov, K. S.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Ong, B. H.

B. H. Ong, X. Yuan, S. C. Tjin, J. Zhang, and H. M. Ng, “Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor,” Sens. Actuators B Chem. 114(2), 1028–1034 (2006).
[CrossRef]

Parpia, J. M.

J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Impermeable atomic membranes from graphene sheets,” Nano Lett. 8(8), 2458–2462 (2008).
[CrossRef] [PubMed]

Patil, H. R.

J. C. Shelton, H. R. Patil, and J. M. Blakely, “Equilibrium segregation of carbon to a nickel (111) surface: A surface phase transition,” Surf. Sci. 43(2), 493–520 (1974).
[CrossRef]

Perebeinos, V.

P. Avouris, Z. Chen, and V. Perebeinos, “Carbon-based electronics,” Nat. Nanotechnol. 2(10), 605–615 (2007).
[CrossRef] [PubMed]

Pockrand, I.

I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72(3), 577–588 (1978).
[CrossRef]

Qi, W.

B. Song, D. Li, W. Qi, M. Elstner, C. Fan, and H. Fang, “Graphene on Au(111): a highly conductive material with excellent adsorption properties for high-resolution bio/nanodetection and identification,” ChemPhysChem 11(3), 585–589 (2010).
[CrossRef] [PubMed]

Qi, Z. M.

Z. M. Qi, S. Xia, and H. Zou, “Slow spontaneous transformation of the morphology of ultrathin gold films characterized by localized surface plasmon resonance spectroscopy,” Nanotechnology 20(25), 255702 (2009).
[CrossRef] [PubMed]

Saraf, R. F.

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20(13), 5539–5543 (2004).
[CrossRef] [PubMed]

Shelton, J. C.

J. C. Shelton, H. R. Patil, and J. M. Blakely, “Equilibrium segregation of carbon to a nickel (111) surface: A surface phase transition,” Surf. Sci. 43(2), 493–520 (1974).
[CrossRef]

Shuler, M. L.

K. M. Byun, M. L. Shuler, S. J. Kim, S. J. Yoon, and D. Kim, “Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires,” J. Lightwave Technol. 26(11), 1472–1478 (2008).
[CrossRef]

Singh, G.

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20(13), 5539–5543 (2004).
[CrossRef] [PubMed]

Song, B.

B. Song, D. Li, W. Qi, M. Elstner, C. Fan, and H. Fang, “Graphene on Au(111): a highly conductive material with excellent adsorption properties for high-resolution bio/nanodetection and identification,” ChemPhysChem 11(3), 585–589 (2010).
[CrossRef] [PubMed]

Song, L.

L. Song, L. Ci, W. Gao, and P. M. Ajayan, “Transfer printing of graphene using gold film,” ACS Nano 3(6), 1353–1356 (2009).
[CrossRef] [PubMed]

Sorensen, L. B.

X.-M. Zhu, P.-H. Lin, P. Ao, and L. B. Sorensen, “Surface treatments for surface plasmon resonance biosensors,” Sens. Actuators B Chem. 84(2-3), 106–112 (2002).
[CrossRef]

Southern, E. M.

D. E. Gray, S. C. Case-Green, T. S. Fell, P. J. Dobson, and E. M. Southern, “Ellipsometric and interferometric characterization of DNA probes immobilized on a combinatorial array,” Langmuir 13(10), 2833–2842 (1997).
[CrossRef]

Stognij, A. I.

A. I. Stognij, N. N. Novitskii, S. D. Tushina, and S. V. Kalinnikov, “Preparation of ultrathin gold films by oxygen-ion sputtering and their optical properties,” Tech. Phys. 48(6), 745–748 (2003).
[CrossRef]

Tjin, S. C.

B. H. Ong, X. Yuan, S. C. Tjin, J. Zhang, and H. M. Ng, “Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor,” Sens. Actuators B Chem. 114(2), 1028–1034 (2006).
[CrossRef]

Tushina, S. D.

A. I. Stognij, N. N. Novitskii, S. D. Tushina, and S. V. Kalinnikov, “Preparation of ultrathin gold films by oxygen-ion sputtering and their optical properties,” Tech. Phys. 48(6), 745–748 (2003).
[CrossRef]

van der Zande, A. M.

J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Impermeable atomic membranes from graphene sheets,” Nano Lett. 8(8), 2458–2462 (2008).
[CrossRef] [PubMed]

Verbridge, S. S.

J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Impermeable atomic membranes from graphene sheets,” Nano Lett. 8(8), 2458–2462 (2008).
[CrossRef] [PubMed]

Wang, X.

X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, “Chemically derived, ultrasmooth graphene nanoribbon semiconductors,” Science 319(5867), 1229–1232 (2008).
[CrossRef] [PubMed]

Wintterlin, J.

J. Wintterlin and M.-L. Bocquet, “Graphene on metal surfaces,” Surf. Sci. 603(10-12), 1841–1852 (2009).
[CrossRef]

Wu, L.

L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express 18(14), 14395–14400 (2010).
[CrossRef] [PubMed]

Xia, S.

Z. M. Qi, S. Xia, and H. Zou, “Slow spontaneous transformation of the morphology of ultrathin gold films characterized by localized surface plasmon resonance spectroscopy,” Nanotechnology 20(25), 255702 (2009).
[CrossRef] [PubMed]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Yoon, S. J.

K. M. Byun, M. L. Shuler, S. J. Kim, S. J. Yoon, and D. Kim, “Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires,” J. Lightwave Technol. 26(11), 1472–1478 (2008).
[CrossRef]

Yuan, X.

B. H. Ong, X. Yuan, S. C. Tjin, J. Zhang, and H. M. Ng, “Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor,” Sens. Actuators B Chem. 114(2), 1028–1034 (2006).
[CrossRef]

Zhang, J.

B. H. Ong, X. Yuan, S. C. Tjin, J. Zhang, and H. M. Ng, “Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor,” Sens. Actuators B Chem. 114(2), 1028–1034 (2006).
[CrossRef]

Zhang, L.

X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, “Chemically derived, ultrasmooth graphene nanoribbon semiconductors,” Science 319(5867), 1229–1232 (2008).
[CrossRef] [PubMed]

Zhang, Y.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Zhu, X.-M.

X.-M. Zhu, P.-H. Lin, P. Ao, and L. B. Sorensen, “Surface treatments for surface plasmon resonance biosensors,” Sens. Actuators B Chem. 84(2-3), 106–112 (2002).
[CrossRef]

Zou, H.

Z. M. Qi, S. Xia, and H. Zou, “Slow spontaneous transformation of the morphology of ultrathin gold films characterized by localized surface plasmon resonance spectroscopy,” Nanotechnology 20(25), 255702 (2009).
[CrossRef] [PubMed]

ACS Nano (1)

L. Song, L. Ci, W. Gao, and P. M. Ajayan, “Transfer printing of graphene using gold film,” ACS Nano 3(6), 1353–1356 (2009).
[CrossRef] [PubMed]

Anal. Bioanal. Chem. (1)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[CrossRef] [PubMed]

Anal. Chem. (1)

H. J. Lee, D. Nedelkov, and R. M. Corn, “Surface plasmon resonance imaging measurements of antibody arrays for the multiplexed detection of low molecular weight protein biomarkers,” Anal. Chem. 78(18), 6504–6510 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94(3), 031901 (2009).
[CrossRef]

ChemPhysChem (1)

B. Song, D. Li, W. Qi, M. Elstner, C. Fan, and H. Fang, “Graphene on Au(111): a highly conductive material with excellent adsorption properties for high-resolution bio/nanodetection and identification,” ChemPhysChem 11(3), 585–589 (2010).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

K. M. Byun, M. L. Shuler, S. J. Kim, S. J. Yoon, and D. Kim, “Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires,” J. Lightwave Technol. 26(11), 1472–1478 (2008).
[CrossRef]

J. Opt. Soc. Am. A (1)

S. H. Choi and K. M. Byun, “Investigation on an application of silver substrates for sensitive surface plasmon resonance imaging detection,” J. Opt. Soc. Am. A 27(10), 2229–2236 (2010).
[CrossRef] [PubMed]

Langmuir (2)

D. E. Gray, S. C. Case-Green, T. S. Fell, P. J. Dobson, and E. M. Southern, “Ellipsometric and interferometric characterization of DNA probes immobilized on a combinatorial array,” Langmuir 13(10), 2833–2842 (1997).
[CrossRef]

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20(13), 5539–5543 (2004).
[CrossRef] [PubMed]

Nano Lett. (4)

J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Impermeable atomic membranes from graphene sheets,” Nano Lett. 8(8), 2458–2462 (2008).
[CrossRef] [PubMed]

D. E. Jiang, V. R. Cooper, and S. Dai, “Porous graphene as the ultimate membrane for gas separation,” Nano Lett. 9(12), 4019–4024 (2009).
[CrossRef] [PubMed]

C. Leung, H. Kinns, B. W. Hoogenboom, S. Howorka, and P. Mesquida, “Imaging surface charges of individual biomolecules,” Nano Lett. 9(7), 2769–2773 (2009).
[CrossRef] [PubMed]

X. Liang, Z. Fu, and S. Y. Chou, “Graphene transistors fabricated via transfer-printing in device active-areas on large wafer,” Nano Lett. 7(12), 3840–3844 (2007).
[CrossRef]

Nanotechnology (1)

Z. M. Qi, S. Xia, and H. Zou, “Slow spontaneous transformation of the morphology of ultrathin gold films characterized by localized surface plasmon resonance spectroscopy,” Nanotechnology 20(25), 255702 (2009).
[CrossRef] [PubMed]

Nat. Mater. (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[CrossRef] [PubMed]

Nat. Methods (1)

N. Blow, “Proteins and proteomics: life on the surface,” Nat. Methods 6(5), 389–393 (2009).
[CrossRef]

Nat. Nanotechnol. (1)

P. Avouris, Z. Chen, and V. Perebeinos, “Carbon-based electronics,” Nat. Nanotechnol. 2(10), 605–615 (2007).
[CrossRef] [PubMed]

Opt. Express (1)

L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express 18(14), 14395–14400 (2010).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

C. W. J. Beenakker, “Colloquium: Andreev reflection and Klein tunneling in graphene,” Rev. Mod. Phys. 80(4), 1337–1354 (2008).
[CrossRef]

Science (2)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, “Chemically derived, ultrasmooth graphene nanoribbon semiconductors,” Science 319(5867), 1229–1232 (2008).
[CrossRef] [PubMed]

Sens. Actuators B Chem. (3)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

B. H. Ong, X. Yuan, S. C. Tjin, J. Zhang, and H. M. Ng, “Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor,” Sens. Actuators B Chem. 114(2), 1028–1034 (2006).
[CrossRef]

X.-M. Zhu, P.-H. Lin, P. Ao, and L. B. Sorensen, “Surface treatments for surface plasmon resonance biosensors,” Sens. Actuators B Chem. 84(2-3), 106–112 (2002).
[CrossRef]

Surf. Sci. (4)

I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72(3), 577–588 (1978).
[CrossRef]

J. Wintterlin and M.-L. Bocquet, “Graphene on metal surfaces,” Surf. Sci. 603(10-12), 1841–1852 (2009).
[CrossRef]

J. C. Shelton, H. R. Patil, and J. M. Blakely, “Equilibrium segregation of carbon to a nickel (111) surface: A surface phase transition,” Surf. Sci. 43(2), 493–520 (1974).
[CrossRef]

M. Eizenberg and J. M. Blakely, “Carbon monolayer phase condensation on Ni(111),” Surf. Sci. 82(1), 228–236 (1979).
[CrossRef]

Tech. Phys. (1)

A. I. Stognij, N. N. Novitskii, S. D. Tushina, and S. V. Kalinnikov, “Preparation of ultrathin gold films by oxygen-ion sputtering and their optical properties,” Tech. Phys. 48(6), 745–748 (2003).
[CrossRef]

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics