Abstract

An optical electrical model which studies the response of Si-based single photon counting arrays, specifically silicon photomultipliers (SiPMs), to scintillation light has been developed and validated with analytically derived and experimental data. The scintillator-photodetector response in terms of relative pulse height, 10%–90% rise/decay times to light stimuli of different rise times (ranging from 0.1 to 5 ns) and decay times (ranging from 1 to 50 ns), as well as for different decay times of the photodetector are compared in theory and simulation. A measured detector response is used as a reference to further validate the model and the results show a mean deviation of simulated over measured values of 1%.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. F. Knoll, Radiation detection and measurement, (Wiley, 2001).
  2. H. Peng, and C. S. Levin, "Design study of a high-resolution breast-dedicated PET system built from cadmium zinc telluride detectors," Phys. Med. Biol. 54, 2761-2788 (2010).
    [CrossRef]
  3. O. Thomas, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, "Efficient photon number detection with silicon avalanche photodiodes," Appl. Phys. Lett. 97, 031102 (2010).
    [CrossRef]
  4. P. Eraerds, M. Legre, A. Rochas, H. Zbinden, and N. Gisin, "SiPM for fast Photon-Counting and Multiphoton Detection," Opt. Express 15, 14539-14549 (2007).
    [CrossRef] [PubMed]
  5. M. Akiba, K. Tsujino, K. Sato, and M. Sasaki, "Multipixel silicon avalanche photodiode with ultralow dark count rate at liquid nitrogen temperature," Opt. Express 17, 16885-16897 (2009).
    [CrossRef] [PubMed]
  6. N. Namekata, S. Adachi, and S. Inoue, "1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode," Opt. Express 17, 6275-6282 (2009).
    [CrossRef] [PubMed]
  7. Z. L. Yuan, A. W. Sharpe, L. F. Dynes, A. R. Dixon, and A. J. Shields, "Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes," Appl. Phys. Lett. 96, 071101 (2010).
    [CrossRef]
  8. D.-U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, and R. Henderson, "Real-time fluorescence lifetime imaging system with a 32×32 0.13μm CMOS low dark-count single-photon avalanche diode array," Opt. Express 18, 10257-10269 (2010).
    [CrossRef] [PubMed]
  9. V. Ch. Spanoudaki, and C. S. Levin, "Investigating the temporal resolution limits of scintillation detection from pixilated elements: comparison between experiment and simulation," Phys. Med. Biol.in press.
    [CrossRef] [PubMed]
  10. F. Corsi, A. Dragone, C. Marzocca, A. Del Guerra, P. Delizia, N. Dinu, C. Piemonte, M. Boscardin, and G. F. Dalla Betta, "Modeling a silicon photomultiplier (SiPM) as a signal source for optimum front-end design," Nucl. Instrum. Methods Phys. Res. A 572, 416-418 (2007).
    [CrossRef]
  11. F. Zappa, A. Tosi, A. Dalls Mora, and S. Tisa, "SPICE modeling of single photon avalanche diodes," Sens. Actuators A Phys. 153, 197-204 (2009).
    [CrossRef]
  12. S. Seifert, H. T. van Dam, J. Huizenga, R. Vinke, P. Dendooven, H. Löhner, and D. Schaart, "Simulation of Silicon Photomultipliers," IEEE Trans. Nucl. Sci. 56, 3726-3733 (2009).
    [CrossRef]
  13. P. J. Hambleton, S. A. Plimmer, J. P. R. David, and G. J. Rees, "Simulated current response in avalanche photodiodes," J. Appl. Opt. 91, 2107-2111 (2002).
  14. V. Ch. Spanoudaki, and C. S. Levin, "Photo-Detectors for Time of Flight Positron Emission Tomography (ToFPET)," Sensors 10, 10484-10505 (2010).
    [CrossRef]
  15. S. Cova, M. Ghioni, A. Lacaita, and F. Zappa, "Avalanche photodiodes and quenching circuits for single-photon detection," Appl. Opt. 35, 1956-1976 (1996).
    [CrossRef] [PubMed]
  16. S. Tisa, F. Guerrieri, and F. Zappa, "Variable-Load Quenching Circuit for single-photon avalanche diodes," Opt. Express 16, 2232-2244 (2008).
    [CrossRef] [PubMed]
  17. R. G. W. Brown, K. D. Ridley, and J. G. Rarity, "Characterization of silicon avalanche photodiodes for photon correlation measurements. 1: Passive quenching," Appl. Opt. 25, 4122-4126 (1986).
    [CrossRef] [PubMed]
  18. R. G. W. Brown, R. Jones, K. D. Ridley, and J. G. Rarity, "Characterization of silicon avalanche photodiodes for photon correlation measurements. 2: Active quenching," Appl. Opt. 26, 2383-2389 (1987).
    [CrossRef] [PubMed]
  19. G. Bonanno, P. Finocchiaro, A. Pappalardo, S. Billotta, L. Cosentino, M. Belluso, S. DiMauro, and G. Occhipinti, "Precision measurements of Photon Detection Efficiency for SiPM detectors," Nucl. Instrum. Methods Phys. Res. A 610, 93-97 (2009).
    [CrossRef]
  20. Linear Technologies, http://www.linear.com/designtools/software/ltspice.jsp.
  21. F. Cayouette, D. Laurendeau, and C. Moisan, "DETECT2000: An Improved Monte-Carlo Simulator for the Computer Aided Design of Photon Sensing Devices," Proc. SPIE 4833, 69 (2003).
    [CrossRef]
  22. J. S. Ng, C. H. Tan, J. P. R. David, and G. J. Rees, "A general method for estimating the duration of avalanche multiplication," Semicond. Sci. Technol. 17, 1067-1071 (2002).
    [CrossRef]
  23. S. M. Sze, Physics of semiconductor devices (Wiley, New York,1981).
  24. T. Szczesniak, M. Moszynski, A. Syntfeld-Kazuch, L. Swiderski, M. A. Spurrier Koschan, and C. L. Melcher, "Timing Resolution and Decay Time of LSO Crystals Co-Doped With Calcium," IEEE Trans. Nucl. Sci. 57, 1329-1334 (2010).
    [CrossRef]
  25. A. Nassalski, M. Moszynski, A. Syntfeld-Kazuch, T. Szczesniak, L. Swiderski, D. Wolski, and J. Baszak, "Multi Pixel Photon Counters (MPPC) as an Alternative to APD in PET Applications," IEEE Trans. Nucl. Sci. 57, 1008-1014 (2010).
    [CrossRef]
  26. A. Syntfeld-Kazuch, M. Moszynski, L. Swiderski, T. Szczesniak, A. Nassalski, C. L. Melcher, M. A. Spurrier, B. Goliszek, P. Kaminski, and M. Nowaczyk, "Energy Resolution of Calcium Co-Doped LSO:Ce Scintillators," IEEE Trans. Nucl. Sci. 56, 2972-2978 (2009).
    [CrossRef]
  27. I. Rech, A. Ingargiola, R. Spinelli, I. Labanca, S. Marangoni, M. Ghioni, and S. Cova, "Optical crosstalk in single photon avalanche diode arrays: a new complete model," Opt. Express 16, 8381-8394 (2008).
    [CrossRef] [PubMed]
  28. Y. Kang, H. X. Lu, and Y.-H. Lo, "Dark count probability and quantum efficiency of avalanche photodiodes for single-photon detection," Appl. Phys. Lett. 83, 2955-2957 (2003).
    [CrossRef]

2010 (7)

H. Peng, and C. S. Levin, "Design study of a high-resolution breast-dedicated PET system built from cadmium zinc telluride detectors," Phys. Med. Biol. 54, 2761-2788 (2010).
[CrossRef]

O. Thomas, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, "Efficient photon number detection with silicon avalanche photodiodes," Appl. Phys. Lett. 97, 031102 (2010).
[CrossRef]

Z. L. Yuan, A. W. Sharpe, L. F. Dynes, A. R. Dixon, and A. J. Shields, "Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes," Appl. Phys. Lett. 96, 071101 (2010).
[CrossRef]

D.-U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, and R. Henderson, "Real-time fluorescence lifetime imaging system with a 32×32 0.13μm CMOS low dark-count single-photon avalanche diode array," Opt. Express 18, 10257-10269 (2010).
[CrossRef] [PubMed]

V. Ch. Spanoudaki, and C. S. Levin, "Photo-Detectors for Time of Flight Positron Emission Tomography (ToFPET)," Sensors 10, 10484-10505 (2010).
[CrossRef]

T. Szczesniak, M. Moszynski, A. Syntfeld-Kazuch, L. Swiderski, M. A. Spurrier Koschan, and C. L. Melcher, "Timing Resolution and Decay Time of LSO Crystals Co-Doped With Calcium," IEEE Trans. Nucl. Sci. 57, 1329-1334 (2010).
[CrossRef]

A. Nassalski, M. Moszynski, A. Syntfeld-Kazuch, T. Szczesniak, L. Swiderski, D. Wolski, and J. Baszak, "Multi Pixel Photon Counters (MPPC) as an Alternative to APD in PET Applications," IEEE Trans. Nucl. Sci. 57, 1008-1014 (2010).
[CrossRef]

2009 (6)

A. Syntfeld-Kazuch, M. Moszynski, L. Swiderski, T. Szczesniak, A. Nassalski, C. L. Melcher, M. A. Spurrier, B. Goliszek, P. Kaminski, and M. Nowaczyk, "Energy Resolution of Calcium Co-Doped LSO:Ce Scintillators," IEEE Trans. Nucl. Sci. 56, 2972-2978 (2009).
[CrossRef]

F. Zappa, A. Tosi, A. Dalls Mora, and S. Tisa, "SPICE modeling of single photon avalanche diodes," Sens. Actuators A Phys. 153, 197-204 (2009).
[CrossRef]

S. Seifert, H. T. van Dam, J. Huizenga, R. Vinke, P. Dendooven, H. Löhner, and D. Schaart, "Simulation of Silicon Photomultipliers," IEEE Trans. Nucl. Sci. 56, 3726-3733 (2009).
[CrossRef]

M. Akiba, K. Tsujino, K. Sato, and M. Sasaki, "Multipixel silicon avalanche photodiode with ultralow dark count rate at liquid nitrogen temperature," Opt. Express 17, 16885-16897 (2009).
[CrossRef] [PubMed]

N. Namekata, S. Adachi, and S. Inoue, "1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode," Opt. Express 17, 6275-6282 (2009).
[CrossRef] [PubMed]

G. Bonanno, P. Finocchiaro, A. Pappalardo, S. Billotta, L. Cosentino, M. Belluso, S. DiMauro, and G. Occhipinti, "Precision measurements of Photon Detection Efficiency for SiPM detectors," Nucl. Instrum. Methods Phys. Res. A 610, 93-97 (2009).
[CrossRef]

2008 (2)

I. Rech, A. Ingargiola, R. Spinelli, I. Labanca, S. Marangoni, M. Ghioni, and S. Cova, "Optical crosstalk in single photon avalanche diode arrays: a new complete model," Opt. Express 16, 8381-8394 (2008).
[CrossRef] [PubMed]

S. Tisa, F. Guerrieri, and F. Zappa, "Variable-Load Quenching Circuit for single-photon avalanche diodes," Opt. Express 16, 2232-2244 (2008).
[CrossRef] [PubMed]

2007 (2)

P. Eraerds, M. Legre, A. Rochas, H. Zbinden, and N. Gisin, "SiPM for fast Photon-Counting and Multiphoton Detection," Opt. Express 15, 14539-14549 (2007).
[CrossRef] [PubMed]

F. Corsi, A. Dragone, C. Marzocca, A. Del Guerra, P. Delizia, N. Dinu, C. Piemonte, M. Boscardin, and G. F. Dalla Betta, "Modeling a silicon photomultiplier (SiPM) as a signal source for optimum front-end design," Nucl. Instrum. Methods Phys. Res. A 572, 416-418 (2007).
[CrossRef]

2003 (2)

Y. Kang, H. X. Lu, and Y.-H. Lo, "Dark count probability and quantum efficiency of avalanche photodiodes for single-photon detection," Appl. Phys. Lett. 83, 2955-2957 (2003).
[CrossRef]

F. Cayouette, D. Laurendeau, and C. Moisan, "DETECT2000: An Improved Monte-Carlo Simulator for the Computer Aided Design of Photon Sensing Devices," Proc. SPIE 4833, 69 (2003).
[CrossRef]

2002 (2)

J. S. Ng, C. H. Tan, J. P. R. David, and G. J. Rees, "A general method for estimating the duration of avalanche multiplication," Semicond. Sci. Technol. 17, 1067-1071 (2002).
[CrossRef]

P. J. Hambleton, S. A. Plimmer, J. P. R. David, and G. J. Rees, "Simulated current response in avalanche photodiodes," J. Appl. Opt. 91, 2107-2111 (2002).

1996 (1)

S. Cova, M. Ghioni, A. Lacaita, and F. Zappa, "Avalanche photodiodes and quenching circuits for single-photon detection," Appl. Opt. 35, 1956-1976 (1996).
[CrossRef] [PubMed]

1987 (1)

R. G. W. Brown, R. Jones, K. D. Ridley, and J. G. Rarity, "Characterization of silicon avalanche photodiodes for photon correlation measurements. 2: Active quenching," Appl. Opt. 26, 2383-2389 (1987).
[CrossRef] [PubMed]

1986 (1)

R. G. W. Brown, K. D. Ridley, and J. G. Rarity, "Characterization of silicon avalanche photodiodes for photon correlation measurements. 1: Passive quenching," Appl. Opt. 25, 4122-4126 (1986).
[CrossRef] [PubMed]

Adachi, S.

N. Namekata, S. Adachi, and S. Inoue, "1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode," Opt. Express 17, 6275-6282 (2009).
[CrossRef] [PubMed]

Akiba, M.

M. Akiba, K. Tsujino, K. Sato, and M. Sasaki, "Multipixel silicon avalanche photodiode with ultralow dark count rate at liquid nitrogen temperature," Opt. Express 17, 16885-16897 (2009).
[CrossRef] [PubMed]

Arlt, J.

D.-U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, and R. Henderson, "Real-time fluorescence lifetime imaging system with a 32×32 0.13μm CMOS low dark-count single-photon avalanche diode array," Opt. Express 18, 10257-10269 (2010).
[CrossRef] [PubMed]

Baszak, J.

A. Nassalski, M. Moszynski, A. Syntfeld-Kazuch, T. Szczesniak, L. Swiderski, D. Wolski, and J. Baszak, "Multi Pixel Photon Counters (MPPC) as an Alternative to APD in PET Applications," IEEE Trans. Nucl. Sci. 57, 1008-1014 (2010).
[CrossRef]

Belluso, M.

G. Bonanno, P. Finocchiaro, A. Pappalardo, S. Billotta, L. Cosentino, M. Belluso, S. DiMauro, and G. Occhipinti, "Precision measurements of Photon Detection Efficiency for SiPM detectors," Nucl. Instrum. Methods Phys. Res. A 610, 93-97 (2009).
[CrossRef]

Billotta, S.

G. Bonanno, P. Finocchiaro, A. Pappalardo, S. Billotta, L. Cosentino, M. Belluso, S. DiMauro, and G. Occhipinti, "Precision measurements of Photon Detection Efficiency for SiPM detectors," Nucl. Instrum. Methods Phys. Res. A 610, 93-97 (2009).
[CrossRef]

Bonanno, G.

G. Bonanno, P. Finocchiaro, A. Pappalardo, S. Billotta, L. Cosentino, M. Belluso, S. DiMauro, and G. Occhipinti, "Precision measurements of Photon Detection Efficiency for SiPM detectors," Nucl. Instrum. Methods Phys. Res. A 610, 93-97 (2009).
[CrossRef]

Boscardin, M.

F. Corsi, A. Dragone, C. Marzocca, A. Del Guerra, P. Delizia, N. Dinu, C. Piemonte, M. Boscardin, and G. F. Dalla Betta, "Modeling a silicon photomultiplier (SiPM) as a signal source for optimum front-end design," Nucl. Instrum. Methods Phys. Res. A 572, 416-418 (2007).
[CrossRef]

Brown, R. G. W.

R. G. W. Brown, R. Jones, K. D. Ridley, and J. G. Rarity, "Characterization of silicon avalanche photodiodes for photon correlation measurements. 2: Active quenching," Appl. Opt. 26, 2383-2389 (1987).
[CrossRef] [PubMed]

R. G. W. Brown, K. D. Ridley, and J. G. Rarity, "Characterization of silicon avalanche photodiodes for photon correlation measurements. 1: Passive quenching," Appl. Opt. 25, 4122-4126 (1986).
[CrossRef] [PubMed]

Buts, A.

D.-U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, and R. Henderson, "Real-time fluorescence lifetime imaging system with a 32×32 0.13μm CMOS low dark-count single-photon avalanche diode array," Opt. Express 18, 10257-10269 (2010).
[CrossRef] [PubMed]

Cayouette, F.

F. Cayouette, D. Laurendeau, and C. Moisan, "DETECT2000: An Improved Monte-Carlo Simulator for the Computer Aided Design of Photon Sensing Devices," Proc. SPIE 4833, 69 (2003).
[CrossRef]

Charbon, E.

D.-U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, and R. Henderson, "Real-time fluorescence lifetime imaging system with a 32×32 0.13μm CMOS low dark-count single-photon avalanche diode array," Opt. Express 18, 10257-10269 (2010).
[CrossRef] [PubMed]

Corsi, F.

F. Corsi, A. Dragone, C. Marzocca, A. Del Guerra, P. Delizia, N. Dinu, C. Piemonte, M. Boscardin, and G. F. Dalla Betta, "Modeling a silicon photomultiplier (SiPM) as a signal source for optimum front-end design," Nucl. Instrum. Methods Phys. Res. A 572, 416-418 (2007).
[CrossRef]

Cosentino, L.

G. Bonanno, P. Finocchiaro, A. Pappalardo, S. Billotta, L. Cosentino, M. Belluso, S. DiMauro, and G. Occhipinti, "Precision measurements of Photon Detection Efficiency for SiPM detectors," Nucl. Instrum. Methods Phys. Res. A 610, 93-97 (2009).
[CrossRef]

Cova, S.

I. Rech, A. Ingargiola, R. Spinelli, I. Labanca, S. Marangoni, M. Ghioni, and S. Cova, "Optical crosstalk in single photon avalanche diode arrays: a new complete model," Opt. Express 16, 8381-8394 (2008).
[CrossRef] [PubMed]

S. Cova, M. Ghioni, A. Lacaita, and F. Zappa, "Avalanche photodiodes and quenching circuits for single-photon detection," Appl. Opt. 35, 1956-1976 (1996).
[CrossRef] [PubMed]

Dalla Betta, G. F.

F. Corsi, A. Dragone, C. Marzocca, A. Del Guerra, P. Delizia, N. Dinu, C. Piemonte, M. Boscardin, and G. F. Dalla Betta, "Modeling a silicon photomultiplier (SiPM) as a signal source for optimum front-end design," Nucl. Instrum. Methods Phys. Res. A 572, 416-418 (2007).
[CrossRef]

Dalls Mora, A.

F. Zappa, A. Tosi, A. Dalls Mora, and S. Tisa, "SPICE modeling of single photon avalanche diodes," Sens. Actuators A Phys. 153, 197-204 (2009).
[CrossRef]

David, J. P. R.

P. J. Hambleton, S. A. Plimmer, J. P. R. David, and G. J. Rees, "Simulated current response in avalanche photodiodes," J. Appl. Opt. 91, 2107-2111 (2002).

J. S. Ng, C. H. Tan, J. P. R. David, and G. J. Rees, "A general method for estimating the duration of avalanche multiplication," Semicond. Sci. Technol. 17, 1067-1071 (2002).
[CrossRef]

Del Guerra, A.

F. Corsi, A. Dragone, C. Marzocca, A. Del Guerra, P. Delizia, N. Dinu, C. Piemonte, M. Boscardin, and G. F. Dalla Betta, "Modeling a silicon photomultiplier (SiPM) as a signal source for optimum front-end design," Nucl. Instrum. Methods Phys. Res. A 572, 416-418 (2007).
[CrossRef]

Delizia, P.

F. Corsi, A. Dragone, C. Marzocca, A. Del Guerra, P. Delizia, N. Dinu, C. Piemonte, M. Boscardin, and G. F. Dalla Betta, "Modeling a silicon photomultiplier (SiPM) as a signal source for optimum front-end design," Nucl. Instrum. Methods Phys. Res. A 572, 416-418 (2007).
[CrossRef]

Dendooven, P.

S. Seifert, H. T. van Dam, J. Huizenga, R. Vinke, P. Dendooven, H. Löhner, and D. Schaart, "Simulation of Silicon Photomultipliers," IEEE Trans. Nucl. Sci. 56, 3726-3733 (2009).
[CrossRef]

DiMauro, S.

G. Bonanno, P. Finocchiaro, A. Pappalardo, S. Billotta, L. Cosentino, M. Belluso, S. DiMauro, and G. Occhipinti, "Precision measurements of Photon Detection Efficiency for SiPM detectors," Nucl. Instrum. Methods Phys. Res. A 610, 93-97 (2009).
[CrossRef]

Dinu, N.

F. Corsi, A. Dragone, C. Marzocca, A. Del Guerra, P. Delizia, N. Dinu, C. Piemonte, M. Boscardin, and G. F. Dalla Betta, "Modeling a silicon photomultiplier (SiPM) as a signal source for optimum front-end design," Nucl. Instrum. Methods Phys. Res. A 572, 416-418 (2007).
[CrossRef]

Dixon, A. R.

Z. L. Yuan, A. W. Sharpe, L. F. Dynes, A. R. Dixon, and A. J. Shields, "Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes," Appl. Phys. Lett. 96, 071101 (2010).
[CrossRef]

Dragone, A.

F. Corsi, A. Dragone, C. Marzocca, A. Del Guerra, P. Delizia, N. Dinu, C. Piemonte, M. Boscardin, and G. F. Dalla Betta, "Modeling a silicon photomultiplier (SiPM) as a signal source for optimum front-end design," Nucl. Instrum. Methods Phys. Res. A 572, 416-418 (2007).
[CrossRef]

Dynes, J. F.

O. Thomas, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, "Efficient photon number detection with silicon avalanche photodiodes," Appl. Phys. Lett. 97, 031102 (2010).
[CrossRef]

Dynes, L. F.

Z. L. Yuan, A. W. Sharpe, L. F. Dynes, A. R. Dixon, and A. J. Shields, "Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes," Appl. Phys. Lett. 96, 071101 (2010).
[CrossRef]

Eraerds, P.

P. Eraerds, M. Legre, A. Rochas, H. Zbinden, and N. Gisin, "SiPM for fast Photon-Counting and Multiphoton Detection," Opt. Express 15, 14539-14549 (2007).
[CrossRef] [PubMed]

Finocchiaro, P.

G. Bonanno, P. Finocchiaro, A. Pappalardo, S. Billotta, L. Cosentino, M. Belluso, S. DiMauro, and G. Occhipinti, "Precision measurements of Photon Detection Efficiency for SiPM detectors," Nucl. Instrum. Methods Phys. Res. A 610, 93-97 (2009).
[CrossRef]

Ghioni, M.

I. Rech, A. Ingargiola, R. Spinelli, I. Labanca, S. Marangoni, M. Ghioni, and S. Cova, "Optical crosstalk in single photon avalanche diode arrays: a new complete model," Opt. Express 16, 8381-8394 (2008).
[CrossRef] [PubMed]

S. Cova, M. Ghioni, A. Lacaita, and F. Zappa, "Avalanche photodiodes and quenching circuits for single-photon detection," Appl. Opt. 35, 1956-1976 (1996).
[CrossRef] [PubMed]

Gisin, N.

P. Eraerds, M. Legre, A. Rochas, H. Zbinden, and N. Gisin, "SiPM for fast Photon-Counting and Multiphoton Detection," Opt. Express 15, 14539-14549 (2007).
[CrossRef] [PubMed]

Goliszek, B.

A. Syntfeld-Kazuch, M. Moszynski, L. Swiderski, T. Szczesniak, A. Nassalski, C. L. Melcher, M. A. Spurrier, B. Goliszek, P. Kaminski, and M. Nowaczyk, "Energy Resolution of Calcium Co-Doped LSO:Ce Scintillators," IEEE Trans. Nucl. Sci. 56, 2972-2978 (2009).
[CrossRef]

Guerrieri, F.

S. Tisa, F. Guerrieri, and F. Zappa, "Variable-Load Quenching Circuit for single-photon avalanche diodes," Opt. Express 16, 2232-2244 (2008).
[CrossRef] [PubMed]

Hambleton, P. J.

P. J. Hambleton, S. A. Plimmer, J. P. R. David, and G. J. Rees, "Simulated current response in avalanche photodiodes," J. Appl. Opt. 91, 2107-2111 (2002).

Henderson, R.

D.-U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, and R. Henderson, "Real-time fluorescence lifetime imaging system with a 32×32 0.13μm CMOS low dark-count single-photon avalanche diode array," Opt. Express 18, 10257-10269 (2010).
[CrossRef] [PubMed]

Huizenga, J.

S. Seifert, H. T. van Dam, J. Huizenga, R. Vinke, P. Dendooven, H. Löhner, and D. Schaart, "Simulation of Silicon Photomultipliers," IEEE Trans. Nucl. Sci. 56, 3726-3733 (2009).
[CrossRef]

Ingargiola, A.

I. Rech, A. Ingargiola, R. Spinelli, I. Labanca, S. Marangoni, M. Ghioni, and S. Cova, "Optical crosstalk in single photon avalanche diode arrays: a new complete model," Opt. Express 16, 8381-8394 (2008).
[CrossRef] [PubMed]

Inoue, S.

N. Namekata, S. Adachi, and S. Inoue, "1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode," Opt. Express 17, 6275-6282 (2009).
[CrossRef] [PubMed]

Jones, R.

R. G. W. Brown, R. Jones, K. D. Ridley, and J. G. Rarity, "Characterization of silicon avalanche photodiodes for photon correlation measurements. 2: Active quenching," Appl. Opt. 26, 2383-2389 (1987).
[CrossRef] [PubMed]

Kaminski, P.

A. Syntfeld-Kazuch, M. Moszynski, L. Swiderski, T. Szczesniak, A. Nassalski, C. L. Melcher, M. A. Spurrier, B. Goliszek, P. Kaminski, and M. Nowaczyk, "Energy Resolution of Calcium Co-Doped LSO:Ce Scintillators," IEEE Trans. Nucl. Sci. 56, 2972-2978 (2009).
[CrossRef]

Kang, Y.

Y. Kang, H. X. Lu, and Y.-H. Lo, "Dark count probability and quantum efficiency of avalanche photodiodes for single-photon detection," Appl. Phys. Lett. 83, 2955-2957 (2003).
[CrossRef]

Labanca, I.

I. Rech, A. Ingargiola, R. Spinelli, I. Labanca, S. Marangoni, M. Ghioni, and S. Cova, "Optical crosstalk in single photon avalanche diode arrays: a new complete model," Opt. Express 16, 8381-8394 (2008).
[CrossRef] [PubMed]

Lacaita, A.

S. Cova, M. Ghioni, A. Lacaita, and F. Zappa, "Avalanche photodiodes and quenching circuits for single-photon detection," Appl. Opt. 35, 1956-1976 (1996).
[CrossRef] [PubMed]

Laurendeau, D.

F. Cayouette, D. Laurendeau, and C. Moisan, "DETECT2000: An Improved Monte-Carlo Simulator for the Computer Aided Design of Photon Sensing Devices," Proc. SPIE 4833, 69 (2003).
[CrossRef]

Legre, M.

P. Eraerds, M. Legre, A. Rochas, H. Zbinden, and N. Gisin, "SiPM for fast Photon-Counting and Multiphoton Detection," Opt. Express 15, 14539-14549 (2007).
[CrossRef] [PubMed]

Levin, C. S.

H. Peng, and C. S. Levin, "Design study of a high-resolution breast-dedicated PET system built from cadmium zinc telluride detectors," Phys. Med. Biol. 54, 2761-2788 (2010).
[CrossRef]

V. Ch. Spanoudaki, and C. S. Levin, "Photo-Detectors for Time of Flight Positron Emission Tomography (ToFPET)," Sensors 10, 10484-10505 (2010).
[CrossRef]

V. Ch. Spanoudaki, and C. S. Levin, "Investigating the temporal resolution limits of scintillation detection from pixilated elements: comparison between experiment and simulation," Phys. Med. Biol.in press.
[CrossRef] [PubMed]

Li, D.-U.

D.-U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, and R. Henderson, "Real-time fluorescence lifetime imaging system with a 32×32 0.13μm CMOS low dark-count single-photon avalanche diode array," Opt. Express 18, 10257-10269 (2010).
[CrossRef] [PubMed]

Lo, Y.-H.

Y. Kang, H. X. Lu, and Y.-H. Lo, "Dark count probability and quantum efficiency of avalanche photodiodes for single-photon detection," Appl. Phys. Lett. 83, 2955-2957 (2003).
[CrossRef]

Löhner, H.

S. Seifert, H. T. van Dam, J. Huizenga, R. Vinke, P. Dendooven, H. Löhner, and D. Schaart, "Simulation of Silicon Photomultipliers," IEEE Trans. Nucl. Sci. 56, 3726-3733 (2009).
[CrossRef]

Lu, H. X.

Y. Kang, H. X. Lu, and Y.-H. Lo, "Dark count probability and quantum efficiency of avalanche photodiodes for single-photon detection," Appl. Phys. Lett. 83, 2955-2957 (2003).
[CrossRef]

Marangoni, S.

I. Rech, A. Ingargiola, R. Spinelli, I. Labanca, S. Marangoni, M. Ghioni, and S. Cova, "Optical crosstalk in single photon avalanche diode arrays: a new complete model," Opt. Express 16, 8381-8394 (2008).
[CrossRef] [PubMed]

Marzocca, C.

F. Corsi, A. Dragone, C. Marzocca, A. Del Guerra, P. Delizia, N. Dinu, C. Piemonte, M. Boscardin, and G. F. Dalla Betta, "Modeling a silicon photomultiplier (SiPM) as a signal source for optimum front-end design," Nucl. Instrum. Methods Phys. Res. A 572, 416-418 (2007).
[CrossRef]

Melcher, C. L.

T. Szczesniak, M. Moszynski, A. Syntfeld-Kazuch, L. Swiderski, M. A. Spurrier Koschan, and C. L. Melcher, "Timing Resolution and Decay Time of LSO Crystals Co-Doped With Calcium," IEEE Trans. Nucl. Sci. 57, 1329-1334 (2010).
[CrossRef]

A. Syntfeld-Kazuch, M. Moszynski, L. Swiderski, T. Szczesniak, A. Nassalski, C. L. Melcher, M. A. Spurrier, B. Goliszek, P. Kaminski, and M. Nowaczyk, "Energy Resolution of Calcium Co-Doped LSO:Ce Scintillators," IEEE Trans. Nucl. Sci. 56, 2972-2978 (2009).
[CrossRef]

Moisan, C.

F. Cayouette, D. Laurendeau, and C. Moisan, "DETECT2000: An Improved Monte-Carlo Simulator for the Computer Aided Design of Photon Sensing Devices," Proc. SPIE 4833, 69 (2003).
[CrossRef]

Moszynski, M.

T. Szczesniak, M. Moszynski, A. Syntfeld-Kazuch, L. Swiderski, M. A. Spurrier Koschan, and C. L. Melcher, "Timing Resolution and Decay Time of LSO Crystals Co-Doped With Calcium," IEEE Trans. Nucl. Sci. 57, 1329-1334 (2010).
[CrossRef]

A. Nassalski, M. Moszynski, A. Syntfeld-Kazuch, T. Szczesniak, L. Swiderski, D. Wolski, and J. Baszak, "Multi Pixel Photon Counters (MPPC) as an Alternative to APD in PET Applications," IEEE Trans. Nucl. Sci. 57, 1008-1014 (2010).
[CrossRef]

A. Syntfeld-Kazuch, M. Moszynski, L. Swiderski, T. Szczesniak, A. Nassalski, C. L. Melcher, M. A. Spurrier, B. Goliszek, P. Kaminski, and M. Nowaczyk, "Energy Resolution of Calcium Co-Doped LSO:Ce Scintillators," IEEE Trans. Nucl. Sci. 56, 2972-2978 (2009).
[CrossRef]

Namekata, N.

N. Namekata, S. Adachi, and S. Inoue, "1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode," Opt. Express 17, 6275-6282 (2009).
[CrossRef] [PubMed]

Nassalski, A.

A. Nassalski, M. Moszynski, A. Syntfeld-Kazuch, T. Szczesniak, L. Swiderski, D. Wolski, and J. Baszak, "Multi Pixel Photon Counters (MPPC) as an Alternative to APD in PET Applications," IEEE Trans. Nucl. Sci. 57, 1008-1014 (2010).
[CrossRef]

A. Syntfeld-Kazuch, M. Moszynski, L. Swiderski, T. Szczesniak, A. Nassalski, C. L. Melcher, M. A. Spurrier, B. Goliszek, P. Kaminski, and M. Nowaczyk, "Energy Resolution of Calcium Co-Doped LSO:Ce Scintillators," IEEE Trans. Nucl. Sci. 56, 2972-2978 (2009).
[CrossRef]

Ng, J. S.

J. S. Ng, C. H. Tan, J. P. R. David, and G. J. Rees, "A general method for estimating the duration of avalanche multiplication," Semicond. Sci. Technol. 17, 1067-1071 (2002).
[CrossRef]

Nowaczyk, M.

A. Syntfeld-Kazuch, M. Moszynski, L. Swiderski, T. Szczesniak, A. Nassalski, C. L. Melcher, M. A. Spurrier, B. Goliszek, P. Kaminski, and M. Nowaczyk, "Energy Resolution of Calcium Co-Doped LSO:Ce Scintillators," IEEE Trans. Nucl. Sci. 56, 2972-2978 (2009).
[CrossRef]

Occhipinti, G.

G. Bonanno, P. Finocchiaro, A. Pappalardo, S. Billotta, L. Cosentino, M. Belluso, S. DiMauro, and G. Occhipinti, "Precision measurements of Photon Detection Efficiency for SiPM detectors," Nucl. Instrum. Methods Phys. Res. A 610, 93-97 (2009).
[CrossRef]

Pappalardo, A.

G. Bonanno, P. Finocchiaro, A. Pappalardo, S. Billotta, L. Cosentino, M. Belluso, S. DiMauro, and G. Occhipinti, "Precision measurements of Photon Detection Efficiency for SiPM detectors," Nucl. Instrum. Methods Phys. Res. A 610, 93-97 (2009).
[CrossRef]

Peng, H.

H. Peng, and C. S. Levin, "Design study of a high-resolution breast-dedicated PET system built from cadmium zinc telluride detectors," Phys. Med. Biol. 54, 2761-2788 (2010).
[CrossRef]

Piemonte, C.

F. Corsi, A. Dragone, C. Marzocca, A. Del Guerra, P. Delizia, N. Dinu, C. Piemonte, M. Boscardin, and G. F. Dalla Betta, "Modeling a silicon photomultiplier (SiPM) as a signal source for optimum front-end design," Nucl. Instrum. Methods Phys. Res. A 572, 416-418 (2007).
[CrossRef]

Plimmer, S. A.

P. J. Hambleton, S. A. Plimmer, J. P. R. David, and G. J. Rees, "Simulated current response in avalanche photodiodes," J. Appl. Opt. 91, 2107-2111 (2002).

Rarity, J. G.

R. G. W. Brown, R. Jones, K. D. Ridley, and J. G. Rarity, "Characterization of silicon avalanche photodiodes for photon correlation measurements. 2: Active quenching," Appl. Opt. 26, 2383-2389 (1987).
[CrossRef] [PubMed]

R. G. W. Brown, K. D. Ridley, and J. G. Rarity, "Characterization of silicon avalanche photodiodes for photon correlation measurements. 1: Passive quenching," Appl. Opt. 25, 4122-4126 (1986).
[CrossRef] [PubMed]

Rech, I.

I. Rech, A. Ingargiola, R. Spinelli, I. Labanca, S. Marangoni, M. Ghioni, and S. Cova, "Optical crosstalk in single photon avalanche diode arrays: a new complete model," Opt. Express 16, 8381-8394 (2008).
[CrossRef] [PubMed]

Rees, G. J.

J. S. Ng, C. H. Tan, J. P. R. David, and G. J. Rees, "A general method for estimating the duration of avalanche multiplication," Semicond. Sci. Technol. 17, 1067-1071 (2002).
[CrossRef]

P. J. Hambleton, S. A. Plimmer, J. P. R. David, and G. J. Rees, "Simulated current response in avalanche photodiodes," J. Appl. Opt. 91, 2107-2111 (2002).

Richardson, J.

D.-U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, and R. Henderson, "Real-time fluorescence lifetime imaging system with a 32×32 0.13μm CMOS low dark-count single-photon avalanche diode array," Opt. Express 18, 10257-10269 (2010).
[CrossRef] [PubMed]

Ridley, K. D.

R. G. W. Brown, R. Jones, K. D. Ridley, and J. G. Rarity, "Characterization of silicon avalanche photodiodes for photon correlation measurements. 2: Active quenching," Appl. Opt. 26, 2383-2389 (1987).
[CrossRef] [PubMed]

R. G. W. Brown, K. D. Ridley, and J. G. Rarity, "Characterization of silicon avalanche photodiodes for photon correlation measurements. 1: Passive quenching," Appl. Opt. 25, 4122-4126 (1986).
[CrossRef] [PubMed]

Rochas, A.

P. Eraerds, M. Legre, A. Rochas, H. Zbinden, and N. Gisin, "SiPM for fast Photon-Counting and Multiphoton Detection," Opt. Express 15, 14539-14549 (2007).
[CrossRef] [PubMed]

Sasaki, M.

M. Akiba, K. Tsujino, K. Sato, and M. Sasaki, "Multipixel silicon avalanche photodiode with ultralow dark count rate at liquid nitrogen temperature," Opt. Express 17, 16885-16897 (2009).
[CrossRef] [PubMed]

Sato, K.

M. Akiba, K. Tsujino, K. Sato, and M. Sasaki, "Multipixel silicon avalanche photodiode with ultralow dark count rate at liquid nitrogen temperature," Opt. Express 17, 16885-16897 (2009).
[CrossRef] [PubMed]

Schaart, D.

S. Seifert, H. T. van Dam, J. Huizenga, R. Vinke, P. Dendooven, H. Löhner, and D. Schaart, "Simulation of Silicon Photomultipliers," IEEE Trans. Nucl. Sci. 56, 3726-3733 (2009).
[CrossRef]

Seifert, S.

S. Seifert, H. T. van Dam, J. Huizenga, R. Vinke, P. Dendooven, H. Löhner, and D. Schaart, "Simulation of Silicon Photomultipliers," IEEE Trans. Nucl. Sci. 56, 3726-3733 (2009).
[CrossRef]

Sharpe, A. W.

O. Thomas, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, "Efficient photon number detection with silicon avalanche photodiodes," Appl. Phys. Lett. 97, 031102 (2010).
[CrossRef]

Z. L. Yuan, A. W. Sharpe, L. F. Dynes, A. R. Dixon, and A. J. Shields, "Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes," Appl. Phys. Lett. 96, 071101 (2010).
[CrossRef]

Shields, A. J.

Z. L. Yuan, A. W. Sharpe, L. F. Dynes, A. R. Dixon, and A. J. Shields, "Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes," Appl. Phys. Lett. 96, 071101 (2010).
[CrossRef]

O. Thomas, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, "Efficient photon number detection with silicon avalanche photodiodes," Appl. Phys. Lett. 97, 031102 (2010).
[CrossRef]

Spanoudaki, V. Ch.

V. Ch. Spanoudaki, and C. S. Levin, "Photo-Detectors for Time of Flight Positron Emission Tomography (ToFPET)," Sensors 10, 10484-10505 (2010).
[CrossRef]

V. Ch. Spanoudaki, and C. S. Levin, "Investigating the temporal resolution limits of scintillation detection from pixilated elements: comparison between experiment and simulation," Phys. Med. Biol.in press.
[CrossRef] [PubMed]

Spinelli, R.

I. Rech, A. Ingargiola, R. Spinelli, I. Labanca, S. Marangoni, M. Ghioni, and S. Cova, "Optical crosstalk in single photon avalanche diode arrays: a new complete model," Opt. Express 16, 8381-8394 (2008).
[CrossRef] [PubMed]

Spurrier, M. A.

A. Syntfeld-Kazuch, M. Moszynski, L. Swiderski, T. Szczesniak, A. Nassalski, C. L. Melcher, M. A. Spurrier, B. Goliszek, P. Kaminski, and M. Nowaczyk, "Energy Resolution of Calcium Co-Doped LSO:Ce Scintillators," IEEE Trans. Nucl. Sci. 56, 2972-2978 (2009).
[CrossRef]

Spurrier Koschan, M. A.

T. Szczesniak, M. Moszynski, A. Syntfeld-Kazuch, L. Swiderski, M. A. Spurrier Koschan, and C. L. Melcher, "Timing Resolution and Decay Time of LSO Crystals Co-Doped With Calcium," IEEE Trans. Nucl. Sci. 57, 1329-1334 (2010).
[CrossRef]

Stoppa, D.

D.-U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, and R. Henderson, "Real-time fluorescence lifetime imaging system with a 32×32 0.13μm CMOS low dark-count single-photon avalanche diode array," Opt. Express 18, 10257-10269 (2010).
[CrossRef] [PubMed]

Swiderski, L.

T. Szczesniak, M. Moszynski, A. Syntfeld-Kazuch, L. Swiderski, M. A. Spurrier Koschan, and C. L. Melcher, "Timing Resolution and Decay Time of LSO Crystals Co-Doped With Calcium," IEEE Trans. Nucl. Sci. 57, 1329-1334 (2010).
[CrossRef]

A. Nassalski, M. Moszynski, A. Syntfeld-Kazuch, T. Szczesniak, L. Swiderski, D. Wolski, and J. Baszak, "Multi Pixel Photon Counters (MPPC) as an Alternative to APD in PET Applications," IEEE Trans. Nucl. Sci. 57, 1008-1014 (2010).
[CrossRef]

A. Syntfeld-Kazuch, M. Moszynski, L. Swiderski, T. Szczesniak, A. Nassalski, C. L. Melcher, M. A. Spurrier, B. Goliszek, P. Kaminski, and M. Nowaczyk, "Energy Resolution of Calcium Co-Doped LSO:Ce Scintillators," IEEE Trans. Nucl. Sci. 56, 2972-2978 (2009).
[CrossRef]

Syntfeld-Kazuch, A.

A. Nassalski, M. Moszynski, A. Syntfeld-Kazuch, T. Szczesniak, L. Swiderski, D. Wolski, and J. Baszak, "Multi Pixel Photon Counters (MPPC) as an Alternative to APD in PET Applications," IEEE Trans. Nucl. Sci. 57, 1008-1014 (2010).
[CrossRef]

T. Szczesniak, M. Moszynski, A. Syntfeld-Kazuch, L. Swiderski, M. A. Spurrier Koschan, and C. L. Melcher, "Timing Resolution and Decay Time of LSO Crystals Co-Doped With Calcium," IEEE Trans. Nucl. Sci. 57, 1329-1334 (2010).
[CrossRef]

A. Syntfeld-Kazuch, M. Moszynski, L. Swiderski, T. Szczesniak, A. Nassalski, C. L. Melcher, M. A. Spurrier, B. Goliszek, P. Kaminski, and M. Nowaczyk, "Energy Resolution of Calcium Co-Doped LSO:Ce Scintillators," IEEE Trans. Nucl. Sci. 56, 2972-2978 (2009).
[CrossRef]

Szczesniak, T.

A. Nassalski, M. Moszynski, A. Syntfeld-Kazuch, T. Szczesniak, L. Swiderski, D. Wolski, and J. Baszak, "Multi Pixel Photon Counters (MPPC) as an Alternative to APD in PET Applications," IEEE Trans. Nucl. Sci. 57, 1008-1014 (2010).
[CrossRef]

T. Szczesniak, M. Moszynski, A. Syntfeld-Kazuch, L. Swiderski, M. A. Spurrier Koschan, and C. L. Melcher, "Timing Resolution and Decay Time of LSO Crystals Co-Doped With Calcium," IEEE Trans. Nucl. Sci. 57, 1329-1334 (2010).
[CrossRef]

A. Syntfeld-Kazuch, M. Moszynski, L. Swiderski, T. Szczesniak, A. Nassalski, C. L. Melcher, M. A. Spurrier, B. Goliszek, P. Kaminski, and M. Nowaczyk, "Energy Resolution of Calcium Co-Doped LSO:Ce Scintillators," IEEE Trans. Nucl. Sci. 56, 2972-2978 (2009).
[CrossRef]

Tan, C. H.

J. S. Ng, C. H. Tan, J. P. R. David, and G. J. Rees, "A general method for estimating the duration of avalanche multiplication," Semicond. Sci. Technol. 17, 1067-1071 (2002).
[CrossRef]

Thomas, O.

O. Thomas, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, "Efficient photon number detection with silicon avalanche photodiodes," Appl. Phys. Lett. 97, 031102 (2010).
[CrossRef]

Tisa, S.

F. Zappa, A. Tosi, A. Dalls Mora, and S. Tisa, "SPICE modeling of single photon avalanche diodes," Sens. Actuators A Phys. 153, 197-204 (2009).
[CrossRef]

S. Tisa, F. Guerrieri, and F. Zappa, "Variable-Load Quenching Circuit for single-photon avalanche diodes," Opt. Express 16, 2232-2244 (2008).
[CrossRef] [PubMed]

Tosi, A.

F. Zappa, A. Tosi, A. Dalls Mora, and S. Tisa, "SPICE modeling of single photon avalanche diodes," Sens. Actuators A Phys. 153, 197-204 (2009).
[CrossRef]

Tsujino, K.

M. Akiba, K. Tsujino, K. Sato, and M. Sasaki, "Multipixel silicon avalanche photodiode with ultralow dark count rate at liquid nitrogen temperature," Opt. Express 17, 16885-16897 (2009).
[CrossRef] [PubMed]

van Dam, H. T.

S. Seifert, H. T. van Dam, J. Huizenga, R. Vinke, P. Dendooven, H. Löhner, and D. Schaart, "Simulation of Silicon Photomultipliers," IEEE Trans. Nucl. Sci. 56, 3726-3733 (2009).
[CrossRef]

Vinke, R.

S. Seifert, H. T. van Dam, J. Huizenga, R. Vinke, P. Dendooven, H. Löhner, and D. Schaart, "Simulation of Silicon Photomultipliers," IEEE Trans. Nucl. Sci. 56, 3726-3733 (2009).
[CrossRef]

Walker, R.

D.-U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, and R. Henderson, "Real-time fluorescence lifetime imaging system with a 32×32 0.13μm CMOS low dark-count single-photon avalanche diode array," Opt. Express 18, 10257-10269 (2010).
[CrossRef] [PubMed]

Wolski, D.

A. Nassalski, M. Moszynski, A. Syntfeld-Kazuch, T. Szczesniak, L. Swiderski, D. Wolski, and J. Baszak, "Multi Pixel Photon Counters (MPPC) as an Alternative to APD in PET Applications," IEEE Trans. Nucl. Sci. 57, 1008-1014 (2010).
[CrossRef]

Yuan, Z. L.

Z. L. Yuan, A. W. Sharpe, L. F. Dynes, A. R. Dixon, and A. J. Shields, "Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes," Appl. Phys. Lett. 96, 071101 (2010).
[CrossRef]

O. Thomas, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, "Efficient photon number detection with silicon avalanche photodiodes," Appl. Phys. Lett. 97, 031102 (2010).
[CrossRef]

Zappa, F.

F. Zappa, A. Tosi, A. Dalls Mora, and S. Tisa, "SPICE modeling of single photon avalanche diodes," Sens. Actuators A Phys. 153, 197-204 (2009).
[CrossRef]

S. Tisa, F. Guerrieri, and F. Zappa, "Variable-Load Quenching Circuit for single-photon avalanche diodes," Opt. Express 16, 2232-2244 (2008).
[CrossRef] [PubMed]

S. Cova, M. Ghioni, A. Lacaita, and F. Zappa, "Avalanche photodiodes and quenching circuits for single-photon detection," Appl. Opt. 35, 1956-1976 (1996).
[CrossRef] [PubMed]

Zbinden, H.

P. Eraerds, M. Legre, A. Rochas, H. Zbinden, and N. Gisin, "SiPM for fast Photon-Counting and Multiphoton Detection," Opt. Express 15, 14539-14549 (2007).
[CrossRef] [PubMed]

Appl. Opt. (3)

R. G. W. Brown, K. D. Ridley, and J. G. Rarity, "Characterization of silicon avalanche photodiodes for photon correlation measurements. 1: Passive quenching," Appl. Opt. 25, 4122-4126 (1986).
[CrossRef] [PubMed]

R. G. W. Brown, R. Jones, K. D. Ridley, and J. G. Rarity, "Characterization of silicon avalanche photodiodes for photon correlation measurements. 2: Active quenching," Appl. Opt. 26, 2383-2389 (1987).
[CrossRef] [PubMed]

S. Cova, M. Ghioni, A. Lacaita, and F. Zappa, "Avalanche photodiodes and quenching circuits for single-photon detection," Appl. Opt. 35, 1956-1976 (1996).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

Y. Kang, H. X. Lu, and Y.-H. Lo, "Dark count probability and quantum efficiency of avalanche photodiodes for single-photon detection," Appl. Phys. Lett. 83, 2955-2957 (2003).
[CrossRef]

O. Thomas, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, "Efficient photon number detection with silicon avalanche photodiodes," Appl. Phys. Lett. 97, 031102 (2010).
[CrossRef]

Z. L. Yuan, A. W. Sharpe, L. F. Dynes, A. R. Dixon, and A. J. Shields, "Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes," Appl. Phys. Lett. 96, 071101 (2010).
[CrossRef]

IEEE Trans. Nucl. Sci. (4)

S. Seifert, H. T. van Dam, J. Huizenga, R. Vinke, P. Dendooven, H. Löhner, and D. Schaart, "Simulation of Silicon Photomultipliers," IEEE Trans. Nucl. Sci. 56, 3726-3733 (2009).
[CrossRef]

T. Szczesniak, M. Moszynski, A. Syntfeld-Kazuch, L. Swiderski, M. A. Spurrier Koschan, and C. L. Melcher, "Timing Resolution and Decay Time of LSO Crystals Co-Doped With Calcium," IEEE Trans. Nucl. Sci. 57, 1329-1334 (2010).
[CrossRef]

A. Nassalski, M. Moszynski, A. Syntfeld-Kazuch, T. Szczesniak, L. Swiderski, D. Wolski, and J. Baszak, "Multi Pixel Photon Counters (MPPC) as an Alternative to APD in PET Applications," IEEE Trans. Nucl. Sci. 57, 1008-1014 (2010).
[CrossRef]

A. Syntfeld-Kazuch, M. Moszynski, L. Swiderski, T. Szczesniak, A. Nassalski, C. L. Melcher, M. A. Spurrier, B. Goliszek, P. Kaminski, and M. Nowaczyk, "Energy Resolution of Calcium Co-Doped LSO:Ce Scintillators," IEEE Trans. Nucl. Sci. 56, 2972-2978 (2009).
[CrossRef]

J. Appl. Opt. (1)

P. J. Hambleton, S. A. Plimmer, J. P. R. David, and G. J. Rees, "Simulated current response in avalanche photodiodes," J. Appl. Opt. 91, 2107-2111 (2002).

Nucl. Instrum. Methods Phys. Res. A (2)

F. Corsi, A. Dragone, C. Marzocca, A. Del Guerra, P. Delizia, N. Dinu, C. Piemonte, M. Boscardin, and G. F. Dalla Betta, "Modeling a silicon photomultiplier (SiPM) as a signal source for optimum front-end design," Nucl. Instrum. Methods Phys. Res. A 572, 416-418 (2007).
[CrossRef]

G. Bonanno, P. Finocchiaro, A. Pappalardo, S. Billotta, L. Cosentino, M. Belluso, S. DiMauro, and G. Occhipinti, "Precision measurements of Photon Detection Efficiency for SiPM detectors," Nucl. Instrum. Methods Phys. Res. A 610, 93-97 (2009).
[CrossRef]

Opt. Express (6)

D.-U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, and R. Henderson, "Real-time fluorescence lifetime imaging system with a 32×32 0.13μm CMOS low dark-count single-photon avalanche diode array," Opt. Express 18, 10257-10269 (2010).
[CrossRef] [PubMed]

P. Eraerds, M. Legre, A. Rochas, H. Zbinden, and N. Gisin, "SiPM for fast Photon-Counting and Multiphoton Detection," Opt. Express 15, 14539-14549 (2007).
[CrossRef] [PubMed]

M. Akiba, K. Tsujino, K. Sato, and M. Sasaki, "Multipixel silicon avalanche photodiode with ultralow dark count rate at liquid nitrogen temperature," Opt. Express 17, 16885-16897 (2009).
[CrossRef] [PubMed]

N. Namekata, S. Adachi, and S. Inoue, "1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode," Opt. Express 17, 6275-6282 (2009).
[CrossRef] [PubMed]

I. Rech, A. Ingargiola, R. Spinelli, I. Labanca, S. Marangoni, M. Ghioni, and S. Cova, "Optical crosstalk in single photon avalanche diode arrays: a new complete model," Opt. Express 16, 8381-8394 (2008).
[CrossRef] [PubMed]

S. Tisa, F. Guerrieri, and F. Zappa, "Variable-Load Quenching Circuit for single-photon avalanche diodes," Opt. Express 16, 2232-2244 (2008).
[CrossRef] [PubMed]

Phys. Med. Biol. (2)

V. Ch. Spanoudaki, and C. S. Levin, "Investigating the temporal resolution limits of scintillation detection from pixilated elements: comparison between experiment and simulation," Phys. Med. Biol.in press.
[CrossRef] [PubMed]

H. Peng, and C. S. Levin, "Design study of a high-resolution breast-dedicated PET system built from cadmium zinc telluride detectors," Phys. Med. Biol. 54, 2761-2788 (2010).
[CrossRef]

Proc. SPIE (1)

F. Cayouette, D. Laurendeau, and C. Moisan, "DETECT2000: An Improved Monte-Carlo Simulator for the Computer Aided Design of Photon Sensing Devices," Proc. SPIE 4833, 69 (2003).
[CrossRef]

Semicond. Sci. Technol. (1)

J. S. Ng, C. H. Tan, J. P. R. David, and G. J. Rees, "A general method for estimating the duration of avalanche multiplication," Semicond. Sci. Technol. 17, 1067-1071 (2002).
[CrossRef]

Sens. Actuators A Phys. (1)

F. Zappa, A. Tosi, A. Dalls Mora, and S. Tisa, "SPICE modeling of single photon avalanche diodes," Sens. Actuators A Phys. 153, 197-204 (2009).
[CrossRef]

Sensors (1)

V. Ch. Spanoudaki, and C. S. Levin, "Photo-Detectors for Time of Flight Positron Emission Tomography (ToFPET)," Sensors 10, 10484-10505 (2010).
[CrossRef]

Other (3)

Linear Technologies, http://www.linear.com/designtools/software/ltspice.jsp.

G. F. Knoll, Radiation detection and measurement, (Wiley, 2001).

S. M. Sze, Physics of semiconductor devices (Wiley, New York,1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Left: Schematic of the basic architecture of a SiPM consisting of multiple passively-quenched Geiger APDs (microcells) connected in parallel. Right: The individual photoelectron pulses from each microcell (solid lines) arrive asynchronously and are summed in a common readout line to form the SiPM pulse (dashed lines) as a result of their effective pile-up. Figure adopted from [14].

Fig. 2
Fig. 2

Examples of pdfscintillation and pdfPD microcell calculated from Eqs. (4) and (5) for a 40 ns/0.5 ns scintillation decay/rise time and for a 25 ns/0.1 ns photodetector microcell rise/decay time. The pdfs are normalized to their maximum values for illustration purposes.

Fig. 3
Fig. 3

Schematic representation of the combined optical-electrical model used to predict the SiPM response to scintillation light. Each microcell is modeled as a current source triggered at a time point equal to the time stamp of each sequentially detected scintillation photon (toptical photon). The amplitude of the charge delta function (Ipeak) has been selected to emulate a SiPM of a specific gain at a typical overvoltage of 2 V. For this study the number of simulated microcells (N) is 3600.

Fig. 4
Fig. 4

Flow chart of the combined optical electrical detector model. An analytically implemented Bernoulli decision process is used to emulate the limited SiPM PDE and an iterative comparison between the number of scintillation photons n and the number of microcells N is performed at each step to ensure that the dynamic range limits of the SiPM have not been surpassed.

Fig. 5
Fig. 5

Scintillation induced response of a SiPM based on the convolution of a pdf describing the scintillator response and a pdf describing the photodetector microcell response. The modeled response is shown as a function of scintillator rise (top left), scintillator decay (top right) and SiPM microcell decay (bottom). In each graph all the rise/decay times of the scintillator/photodetector microcell that are not varied, are given constant values shown in Table 3.

Fig. 6
Fig. 6

Scintillation induced response of a SiPM based on the simulation process shown in Figure 3. The modeled response is shown as a function of scintillator rise (top left), scintillator decay (top right) and SiPM microcell decay (bottom). In each graph all the rise/decay times of the scintillator/photodetector microcell that are not varied, are given constant values shown in Table 3.

Fig. 7
Fig. 7

Relative pulse height (normalized to the maximum value, top row of graphs) and decay/rise time (bottom rows of graphs) as a function of the scintillator (squares) and the photodetector microcell (circles) decay time. Results are shown for both the theoretical model (left) and the optical electrical simulation model (right).

Fig. 8
Fig. 8

Schematic of the experimental setup for the measurement of a scintillator-photodetector response to the absorption of annihilation quanta. Signals from a 20 mm length LSO crystal read out by a SiPM are digitized with a fast oscilloscope. The bitwise AND operation symbol appears in the oscilloscope screen in order to demonstrate that the signals from the 20 mm length detector are digitized only under the concurrent presence of a signal from the opposing 3 mm length detector.

Fig. 9
Fig. 9

Comparison between the measured persistence oscilloscope waveform caption over 50 LSO-SiPM detector pulses (top) and 25 simulated detector pulses (bottom). In measurement, a 20 mm length scintillation crystal has been irradiated from the side with a 22Na source and an interaction depth in the middle of the crystal was achieved through electronic collimation. In simulation, scintillation photons were generated in the middle of a 20 mm length crystal and the arrival times of the detected photons were used to generate a response in the SiPM according to the logic described in Fig. 4.

Fig. 10
Fig. 10

Top: the mean scintillation-induced SiPM response averaged over 50 measured signals (black) and over 25 modeled signals (blue). Bottom: the difference between the measured and simulated signals of top plot.

Tables (4)

Tables Icon

Table 1 Values for the two decay components of the photodetector response considered in theory and the optical-electrical model. The first two columns show the values for capacitances Cdiode and Cquench chosen as input to Eqs. (1) and (2)

Tables Icon

Table 2 The various simulation parameters used in the optical electrical model

Tables Icon

Table 3 The fixed values assumed for the variables τsc,rise, τsc,decay, τph,rise,τph,decay

Tables Icon

Table 4 Comparison between measured values and values estimated by the optical electrical model

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

τ p h , decay , 1 R load ( C trace + N C quench C diode C quench + C diode )
τ p h , decay , 2 R quench ( C quench + C diode )
p d f detector = p d f scintillation p d f P D microcell
p d f scintillation = random ( 1 τ s c , decay τ s c , rise ( e t τ s c , decay e t τ s c , rise ) , P D E )
p d f P D microcell = 1 τ p h , decay , 1 + τ p h , decay , 2 τ p h , rise ( e t τ p h , decay , 1 + e t τ p h , decay , 2 e t τ p h , rise )
( t start , I start ) = ( t optical photon , 0 ) ( t peak , I peak ) = ( t optical photon * , I peak ) ( t stop , I stop ) = ( t optical photon * + t avalanche , 0 )
Q = ( C cell + C quench ) ( V bias V breakdown )
I peak = Q t avalanche

Metrics