Abstract

For essentially all applications, laser pulses must avoid variations in their intensity and phase within a pulse and from pulse to pulse. Currently available devices work very well for both long (>10ns) and short (<100ps) pulses. But intermediate (~ns) pulses remain difficult to measure and, not surprisingly, are the least stable. Here we describe a simple, elegant, complete, all-optical, single-shot device that measures ~ns pulses and that does not require a reference pulse or assumptions about the pulse shape. It simultaneously achieves a very high spectral resolution of <1pm and a very large delay range of ~10ns (several meters of light travel). It accomplishes both goals using high-efficiency, high-finesse etalons: one to generate high angular dispersion for a high-resolution spectrometer, and another to tilt the pulse front by ~89.9° without distorting it in time. Using this device, we completely measure microchip and fiber-amplifier pulses.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Giordmaine, P. M. Rentzepis, S. L. Shapieo, and K. W. Wecht, “Two-Photon Excitation of Fluorescence By Picosecond Light Pulses,” Appl. Phys. Lett. 11(7), 216–218 (1967).
    [CrossRef]
  2. K. L. Sala, G. A. Kenney-Wallace, and G. E. Hall, “CW Autocorrelation Measurements of Picosecond Laser Pulses,” IEEE J. Quantum Electron. 16(9), 990–996 (1980).
    [CrossRef]
  3. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic Publishers, Boston, 2002).
  4. D. J. Kane and R. Trebino, “Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating,” Opt. Lett. 18(10), 823–825 (1993).
    [CrossRef] [PubMed]
  5. R. Trebino and D. J. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating,” J. Opt. Soc. Am. A 10(5), 1101–1111 (1993).
    [CrossRef]
  6. G. Taft, A. Rundquist, M. M. Murnane, H. C. Kapteyn, K. W. Delong, R. Trebino, and I. P. Christov, “Ultrashort optical waveform measurements using frequency-resolved optical gating,” Opt. Lett. 20(7), 743–745 (1995).
    [CrossRef] [PubMed]
  7. M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. B. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414(6863), 509–513 (2001).
    [CrossRef] [PubMed]
  8. F. Quéré, Y. Mairesse, and J. Itatani, “Temporal characterization of attosecond XUV fields,” J. Mod. Opt. 52(2), 339–360 (2005).
    [CrossRef]
  9. S. A. Diddams, L. Hollberg, L.-S. Ma, and L. Robertsson, “Femtosecond-laser-based optical clockwork with instability < 6.3 x 10−16 in 1 s,” Opt. Lett. 27(1), 58–60 (2002).
    [CrossRef]
  10. F. Di Teodoro and C. D. Brooks, “1.1 MW peak-power, 7 W average-power, high-spectral-brightness, diffraction-limited pulses from a photonic crystal fiber amplifier,” Opt. Lett. 30(20), 2694–2696 (2005).
    [CrossRef] [PubMed]
  11. C. D. Brooks and F. Di Teodoro, “Multimegawatt peak-power, single-transverse-mode operation of a 100 m core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119 (2006).
    [CrossRef]
  12. H. Fuchs, D. Woll, T. Ulm, and J. A. L'Huillier, “High resolution FROG system for the characterization of ps laser pulses,” Appl. Phys. 88(3), 393–396 (2007).
    [CrossRef]
  13. J. M. Dudley, C. Finot, D. J. Richardson, and G. Millot, “Self-similarity in ultrafast nonlinear optics,” Nat. Phys. 3(9), 597–603 (2007).
    [CrossRef]
  14. C. Finot, G. Millot, C. Billet, and J. M. Dudley, “Experimental generation of parabolic pulses via Raman amplification in optical fiber,” Opt. Express 11(13), 1547–1552 (2003).
    [CrossRef] [PubMed]
  15. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27(13), 1174–1176 (2002).
    [CrossRef]
  16. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
    [CrossRef] [PubMed]
  17. D. H. Broaddus, M. A. Foster, O. Kuzucu, A. C. Turner-Foster, K. W. Koch, M. Lipson, and A. L. Gaeta, “Temporal-imaging system with simple external-clock triggering,” Opt. Express 18(13), 14262–14269 (2010).
    [CrossRef] [PubMed]
  18. C. Dorrer and I. Kang, “Linear self-referencing techiques for short-optical-pulse characterization,” J. Opt. Soc. Am. B 25(6), A1–A12 (2008).
    [CrossRef]
  19. C. Dorrer and I. Kang, “Simultaneous characterization of telecommunication optical pulses and modulators by use of spectrograms,” Opt. Lett. 27, 1315–1317 (2002).
    [CrossRef]
  20. J. Bromage, C. Dorrer, I. A. Begishev, N. G. Usechak, and J. D. Zuegel, “Highly sensitive, single-shot characterization for pulse widths from 0.4 to 85 ps using electro-optic shearing interferometry,” Opt. Lett. 31(23), 3523–3525 (2006).
    [CrossRef] [PubMed]
  21. D. Reid and J. Harvey, “Linear spectrograms using electrooptic modulators,” IEEE Photon. Technol. Lett. 19(8), 535–537 (2007).
    [CrossRef]
  22. C. Dorrer, E. M. Kosik, and I. A. Walmsley, “Direct space time-characterization of the electric fields of ultrashort optical pulses,” Opt. Lett. 27(7), 548–550 (2002).
    [CrossRef]
  23. F. Li, Y. Park, and J. Azaña, “Linear Characterization of Optical Pulses with Durations Ranging From the Picosecond to the Nanosecond Regime Using Ultrafast Photonic Differentiation,” J. Lightwave Technol. 27(21), 4623–4633 (2009).
    [CrossRef]
  24. M. Shirasaki, “Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer,” Opt. Lett. 21(5), 366–368 (1996).
    [CrossRef] [PubMed]
  25. M. Born, and E. Wolf, Principles of Optics, 7 ed. (Cambridge University Press, New York, 1999).
  26. P. Bowlan and R. Trebino, “Extreme pulse-front tilt from an etalon,” J. Opt. Soc. Am. B 27(11), 2322–2377 (2010).
    [CrossRef]
  27. S. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
    [CrossRef]
  28. P. O’Shea, M. Kimmel, X. Gu, and R. Trebino, “Highly simplified device for ultrashort-pulse measurement,” Opt. Lett. 26(12), 932–934 (2001).
    [CrossRef]
  29. R. Wyatt and E. E. Marinero, “Versatile Single-Shot Background-Free Pulse Duration Measurement Technique for Pulses of Subnanosecond to Picosecond Duration,” Appl. Phys. 25(3), 297–301 (1981).
    [CrossRef]
  30. Z. Bor, B. Racz, G. Szabo, M. Hilbert, and H. A. Hazim, “Femtosecond pulse front tilt caused by angular dispersion,” Opt. Eng. 32(10), 2501–2504 (1993).
    [CrossRef]
  31. S. Akturk, X. Gu, P. Gabolde, and R. Trebino, “The general theory of first-order spatio-temporal distortions of Gaussian pulses and beams,” Opt. Express 13(21), 8642–8661 (2005).
    [CrossRef] [PubMed]

2010 (2)

D. H. Broaddus, M. A. Foster, O. Kuzucu, A. C. Turner-Foster, K. W. Koch, M. Lipson, and A. L. Gaeta, “Temporal-imaging system with simple external-clock triggering,” Opt. Express 18(13), 14262–14269 (2010).
[CrossRef] [PubMed]

P. Bowlan and R. Trebino, “Extreme pulse-front tilt from an etalon,” J. Opt. Soc. Am. B 27(11), 2322–2377 (2010).
[CrossRef]

2009 (1)

F. Li, Y. Park, and J. Azaña, “Linear Characterization of Optical Pulses with Durations Ranging From the Picosecond to the Nanosecond Regime Using Ultrafast Photonic Differentiation,” J. Lightwave Technol. 27(21), 4623–4633 (2009).
[CrossRef]

2008 (2)

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

C. Dorrer and I. Kang, “Linear self-referencing techiques for short-optical-pulse characterization,” J. Opt. Soc. Am. B 25(6), A1–A12 (2008).
[CrossRef]

2007 (3)

H. Fuchs, D. Woll, T. Ulm, and J. A. L'Huillier, “High resolution FROG system for the characterization of ps laser pulses,” Appl. Phys. 88(3), 393–396 (2007).
[CrossRef]

J. M. Dudley, C. Finot, D. J. Richardson, and G. Millot, “Self-similarity in ultrafast nonlinear optics,” Nat. Phys. 3(9), 597–603 (2007).
[CrossRef]

D. Reid and J. Harvey, “Linear spectrograms using electrooptic modulators,” IEEE Photon. Technol. Lett. 19(8), 535–537 (2007).
[CrossRef]

2006 (2)

J. Bromage, C. Dorrer, I. A. Begishev, N. G. Usechak, and J. D. Zuegel, “Highly sensitive, single-shot characterization for pulse widths from 0.4 to 85 ps using electro-optic shearing interferometry,” Opt. Lett. 31(23), 3523–3525 (2006).
[CrossRef] [PubMed]

C. D. Brooks and F. Di Teodoro, “Multimegawatt peak-power, single-transverse-mode operation of a 100 m core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119 (2006).
[CrossRef]

2005 (3)

F. Di Teodoro and C. D. Brooks, “1.1 MW peak-power, 7 W average-power, high-spectral-brightness, diffraction-limited pulses from a photonic crystal fiber amplifier,” Opt. Lett. 30(20), 2694–2696 (2005).
[CrossRef] [PubMed]

F. Quéré, Y. Mairesse, and J. Itatani, “Temporal characterization of attosecond XUV fields,” J. Mod. Opt. 52(2), 339–360 (2005).
[CrossRef]

S. Akturk, X. Gu, P. Gabolde, and R. Trebino, “The general theory of first-order spatio-temporal distortions of Gaussian pulses and beams,” Opt. Express 13(21), 8642–8661 (2005).
[CrossRef] [PubMed]

2004 (1)

S. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
[CrossRef]

2003 (1)

C. Finot, G. Millot, C. Billet, and J. M. Dudley, “Experimental generation of parabolic pulses via Raman amplification in optical fiber,” Opt. Express 11(13), 1547–1552 (2003).
[CrossRef] [PubMed]

2002 (4)

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27(13), 1174–1176 (2002).
[CrossRef]

C. Dorrer and I. Kang, “Simultaneous characterization of telecommunication optical pulses and modulators by use of spectrograms,” Opt. Lett. 27, 1315–1317 (2002).
[CrossRef]

S. A. Diddams, L. Hollberg, L.-S. Ma, and L. Robertsson, “Femtosecond-laser-based optical clockwork with instability < 6.3 x 10−16 in 1 s,” Opt. Lett. 27(1), 58–60 (2002).
[CrossRef]

C. Dorrer, E. M. Kosik, and I. A. Walmsley, “Direct space time-characterization of the electric fields of ultrashort optical pulses,” Opt. Lett. 27(7), 548–550 (2002).
[CrossRef]

2001 (2)

P. O’Shea, M. Kimmel, X. Gu, and R. Trebino, “Highly simplified device for ultrashort-pulse measurement,” Opt. Lett. 26(12), 932–934 (2001).
[CrossRef]

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. B. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414(6863), 509–513 (2001).
[CrossRef] [PubMed]

1996 (1)

M. Shirasaki, “Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer,” Opt. Lett. 21(5), 366–368 (1996).
[CrossRef] [PubMed]

1995 (1)

G. Taft, A. Rundquist, M. M. Murnane, H. C. Kapteyn, K. W. Delong, R. Trebino, and I. P. Christov, “Ultrashort optical waveform measurements using frequency-resolved optical gating,” Opt. Lett. 20(7), 743–745 (1995).
[CrossRef] [PubMed]

1993 (3)

D. J. Kane and R. Trebino, “Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating,” Opt. Lett. 18(10), 823–825 (1993).
[CrossRef] [PubMed]

R. Trebino and D. J. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating,” J. Opt. Soc. Am. A 10(5), 1101–1111 (1993).
[CrossRef]

Z. Bor, B. Racz, G. Szabo, M. Hilbert, and H. A. Hazim, “Femtosecond pulse front tilt caused by angular dispersion,” Opt. Eng. 32(10), 2501–2504 (1993).
[CrossRef]

1981 (1)

R. Wyatt and E. E. Marinero, “Versatile Single-Shot Background-Free Pulse Duration Measurement Technique for Pulses of Subnanosecond to Picosecond Duration,” Appl. Phys. 25(3), 297–301 (1981).
[CrossRef]

1980 (1)

K. L. Sala, G. A. Kenney-Wallace, and G. E. Hall, “CW Autocorrelation Measurements of Picosecond Laser Pulses,” IEEE J. Quantum Electron. 16(9), 990–996 (1980).
[CrossRef]

1967 (1)

J. A. Giordmaine, P. M. Rentzepis, S. L. Shapieo, and K. W. Wecht, “Two-Photon Excitation of Fluorescence By Picosecond Light Pulses,” Appl. Phys. Lett. 11(7), 216–218 (1967).
[CrossRef]

Akturk, S.

S. Akturk, X. Gu, P. Gabolde, and R. Trebino, “The general theory of first-order spatio-temporal distortions of Gaussian pulses and beams,” Opt. Express 13(21), 8642–8661 (2005).
[CrossRef] [PubMed]

Azaña, J.

F. Li, Y. Park, and J. Azaña, “Linear Characterization of Optical Pulses with Durations Ranging From the Picosecond to the Nanosecond Regime Using Ultrafast Photonic Differentiation,” J. Lightwave Technol. 27(21), 4623–4633 (2009).
[CrossRef]

Begishev, I. A.

J. Bromage, C. Dorrer, I. A. Begishev, N. G. Usechak, and J. D. Zuegel, “Highly sensitive, single-shot characterization for pulse widths from 0.4 to 85 ps using electro-optic shearing interferometry,” Opt. Lett. 31(23), 3523–3525 (2006).
[CrossRef] [PubMed]

Billet, C.

C. Finot, G. Millot, C. Billet, and J. M. Dudley, “Experimental generation of parabolic pulses via Raman amplification in optical fiber,” Opt. Express 11(13), 1547–1552 (2003).
[CrossRef] [PubMed]

Bor, Z.

Z. Bor, B. Racz, G. Szabo, M. Hilbert, and H. A. Hazim, “Femtosecond pulse front tilt caused by angular dispersion,” Opt. Eng. 32(10), 2501–2504 (1993).
[CrossRef]

Bowlan, P.

P. Bowlan and R. Trebino, “Extreme pulse-front tilt from an etalon,” J. Opt. Soc. Am. B 27(11), 2322–2377 (2010).
[CrossRef]

Brabec, T.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. B. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414(6863), 509–513 (2001).
[CrossRef] [PubMed]

Broaddus, D. H.

D. H. Broaddus, M. A. Foster, O. Kuzucu, A. C. Turner-Foster, K. W. Koch, M. Lipson, and A. L. Gaeta, “Temporal-imaging system with simple external-clock triggering,” Opt. Express 18(13), 14262–14269 (2010).
[CrossRef] [PubMed]

Bromage, J.

J. Bromage, C. Dorrer, I. A. Begishev, N. G. Usechak, and J. D. Zuegel, “Highly sensitive, single-shot characterization for pulse widths from 0.4 to 85 ps using electro-optic shearing interferometry,” Opt. Lett. 31(23), 3523–3525 (2006).
[CrossRef] [PubMed]

Brooks, C. D.

C. D. Brooks and F. Di Teodoro, “Multimegawatt peak-power, single-transverse-mode operation of a 100 m core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119 (2006).
[CrossRef]

F. Di Teodoro and C. D. Brooks, “1.1 MW peak-power, 7 W average-power, high-spectral-brightness, diffraction-limited pulses from a photonic crystal fiber amplifier,” Opt. Lett. 30(20), 2694–2696 (2005).
[CrossRef] [PubMed]

Christov, I. P.

G. Taft, A. Rundquist, M. M. Murnane, H. C. Kapteyn, K. W. Delong, R. Trebino, and I. P. Christov, “Ultrashort optical waveform measurements using frequency-resolved optical gating,” Opt. Lett. 20(7), 743–745 (1995).
[CrossRef] [PubMed]

Corkum, P. B.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. B. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414(6863), 509–513 (2001).
[CrossRef] [PubMed]

Delong, K. W.

G. Taft, A. Rundquist, M. M. Murnane, H. C. Kapteyn, K. W. Delong, R. Trebino, and I. P. Christov, “Ultrashort optical waveform measurements using frequency-resolved optical gating,” Opt. Lett. 20(7), 743–745 (1995).
[CrossRef] [PubMed]

Di Teodoro, F.

C. D. Brooks and F. Di Teodoro, “Multimegawatt peak-power, single-transverse-mode operation of a 100 m core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119 (2006).
[CrossRef]

F. Di Teodoro and C. D. Brooks, “1.1 MW peak-power, 7 W average-power, high-spectral-brightness, diffraction-limited pulses from a photonic crystal fiber amplifier,” Opt. Lett. 30(20), 2694–2696 (2005).
[CrossRef] [PubMed]

Diddams, S. A.

S. A. Diddams, L. Hollberg, L.-S. Ma, and L. Robertsson, “Femtosecond-laser-based optical clockwork with instability < 6.3 x 10−16 in 1 s,” Opt. Lett. 27(1), 58–60 (2002).
[CrossRef]

Dorrer, C.

C. Dorrer and I. Kang, “Linear self-referencing techiques for short-optical-pulse characterization,” J. Opt. Soc. Am. B 25(6), A1–A12 (2008).
[CrossRef]

J. Bromage, C. Dorrer, I. A. Begishev, N. G. Usechak, and J. D. Zuegel, “Highly sensitive, single-shot characterization for pulse widths from 0.4 to 85 ps using electro-optic shearing interferometry,” Opt. Lett. 31(23), 3523–3525 (2006).
[CrossRef] [PubMed]

C. Dorrer and I. Kang, “Simultaneous characterization of telecommunication optical pulses and modulators by use of spectrograms,” Opt. Lett. 27, 1315–1317 (2002).
[CrossRef]

C. Dorrer, E. M. Kosik, and I. A. Walmsley, “Direct space time-characterization of the electric fields of ultrashort optical pulses,” Opt. Lett. 27(7), 548–550 (2002).
[CrossRef]

Drescher, M.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. B. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414(6863), 509–513 (2001).
[CrossRef] [PubMed]

Dudley, J. M.

J. M. Dudley, C. Finot, D. J. Richardson, and G. Millot, “Self-similarity in ultrafast nonlinear optics,” Nat. Phys. 3(9), 597–603 (2007).
[CrossRef]

C. Finot, G. Millot, C. Billet, and J. M. Dudley, “Experimental generation of parabolic pulses via Raman amplification in optical fiber,” Opt. Express 11(13), 1547–1552 (2003).
[CrossRef] [PubMed]

Finot, C.

J. M. Dudley, C. Finot, D. J. Richardson, and G. Millot, “Self-similarity in ultrafast nonlinear optics,” Nat. Phys. 3(9), 597–603 (2007).
[CrossRef]

C. Finot, G. Millot, C. Billet, and J. M. Dudley, “Experimental generation of parabolic pulses via Raman amplification in optical fiber,” Opt. Express 11(13), 1547–1552 (2003).
[CrossRef] [PubMed]

Foster, M. A.

D. H. Broaddus, M. A. Foster, O. Kuzucu, A. C. Turner-Foster, K. W. Koch, M. Lipson, and A. L. Gaeta, “Temporal-imaging system with simple external-clock triggering,” Opt. Express 18(13), 14262–14269 (2010).
[CrossRef] [PubMed]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

Fuchs, H.

H. Fuchs, D. Woll, T. Ulm, and J. A. L'Huillier, “High resolution FROG system for the characterization of ps laser pulses,” Appl. Phys. 88(3), 393–396 (2007).
[CrossRef]

Gabolde, P.

S. Akturk, X. Gu, P. Gabolde, and R. Trebino, “The general theory of first-order spatio-temporal distortions of Gaussian pulses and beams,” Opt. Express 13(21), 8642–8661 (2005).
[CrossRef] [PubMed]

Gaeta, A. L.

D. H. Broaddus, M. A. Foster, O. Kuzucu, A. C. Turner-Foster, K. W. Koch, M. Lipson, and A. L. Gaeta, “Temporal-imaging system with simple external-clock triggering,” Opt. Express 18(13), 14262–14269 (2010).
[CrossRef] [PubMed]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

Geraghty, D. F.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

Giordmaine, J. A.

J. A. Giordmaine, P. M. Rentzepis, S. L. Shapieo, and K. W. Wecht, “Two-Photon Excitation of Fluorescence By Picosecond Light Pulses,” Appl. Phys. Lett. 11(7), 216–218 (1967).
[CrossRef]

Gu, X.

S. Akturk, X. Gu, P. Gabolde, and R. Trebino, “The general theory of first-order spatio-temporal distortions of Gaussian pulses and beams,” Opt. Express 13(21), 8642–8661 (2005).
[CrossRef] [PubMed]

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27(13), 1174–1176 (2002).
[CrossRef]

P. O’Shea, M. Kimmel, X. Gu, and R. Trebino, “Highly simplified device for ultrashort-pulse measurement,” Opt. Lett. 26(12), 932–934 (2001).
[CrossRef]

Hall, G. E.

K. L. Sala, G. A. Kenney-Wallace, and G. E. Hall, “CW Autocorrelation Measurements of Picosecond Laser Pulses,” IEEE J. Quantum Electron. 16(9), 990–996 (1980).
[CrossRef]

Harvey, J.

D. Reid and J. Harvey, “Linear spectrograms using electrooptic modulators,” IEEE Photon. Technol. Lett. 19(8), 535–537 (2007).
[CrossRef]

Hazim, H. A.

Z. Bor, B. Racz, G. Szabo, M. Hilbert, and H. A. Hazim, “Femtosecond pulse front tilt caused by angular dispersion,” Opt. Eng. 32(10), 2501–2504 (1993).
[CrossRef]

Heinzmann, U.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. B. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414(6863), 509–513 (2001).
[CrossRef] [PubMed]

Hentschel, M.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. B. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414(6863), 509–513 (2001).
[CrossRef] [PubMed]

Hilbert, M.

Z. Bor, B. Racz, G. Szabo, M. Hilbert, and H. A. Hazim, “Femtosecond pulse front tilt caused by angular dispersion,” Opt. Eng. 32(10), 2501–2504 (1993).
[CrossRef]

Hollberg, L.

S. A. Diddams, L. Hollberg, L.-S. Ma, and L. Robertsson, “Femtosecond-laser-based optical clockwork with instability < 6.3 x 10−16 in 1 s,” Opt. Lett. 27(1), 58–60 (2002).
[CrossRef]

Itatani, J.

F. Quéré, Y. Mairesse, and J. Itatani, “Temporal characterization of attosecond XUV fields,” J. Mod. Opt. 52(2), 339–360 (2005).
[CrossRef]

Kane, D. J.

R. Trebino and D. J. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating,” J. Opt. Soc. Am. A 10(5), 1101–1111 (1993).
[CrossRef]

D. J. Kane and R. Trebino, “Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating,” Opt. Lett. 18(10), 823–825 (1993).
[CrossRef] [PubMed]

Kang, I.

C. Dorrer and I. Kang, “Linear self-referencing techiques for short-optical-pulse characterization,” J. Opt. Soc. Am. B 25(6), A1–A12 (2008).
[CrossRef]

C. Dorrer and I. Kang, “Simultaneous characterization of telecommunication optical pulses and modulators by use of spectrograms,” Opt. Lett. 27, 1315–1317 (2002).
[CrossRef]

Kapteyn, H. C.

G. Taft, A. Rundquist, M. M. Murnane, H. C. Kapteyn, K. W. Delong, R. Trebino, and I. P. Christov, “Ultrashort optical waveform measurements using frequency-resolved optical gating,” Opt. Lett. 20(7), 743–745 (1995).
[CrossRef] [PubMed]

Kenney-Wallace, G. A.

K. L. Sala, G. A. Kenney-Wallace, and G. E. Hall, “CW Autocorrelation Measurements of Picosecond Laser Pulses,” IEEE J. Quantum Electron. 16(9), 990–996 (1980).
[CrossRef]

Kienberger, R.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. B. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414(6863), 509–513 (2001).
[CrossRef] [PubMed]

Kimmel, M.

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27(13), 1174–1176 (2002).
[CrossRef]

P. O’Shea, M. Kimmel, X. Gu, and R. Trebino, “Highly simplified device for ultrashort-pulse measurement,” Opt. Lett. 26(12), 932–934 (2001).
[CrossRef]

Koch, K. W.

D. H. Broaddus, M. A. Foster, O. Kuzucu, A. C. Turner-Foster, K. W. Koch, M. Lipson, and A. L. Gaeta, “Temporal-imaging system with simple external-clock triggering,” Opt. Express 18(13), 14262–14269 (2010).
[CrossRef] [PubMed]

Kosik, E. M.

C. Dorrer, E. M. Kosik, and I. A. Walmsley, “Direct space time-characterization of the electric fields of ultrashort optical pulses,” Opt. Lett. 27(7), 548–550 (2002).
[CrossRef]

Krausz, F.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. B. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414(6863), 509–513 (2001).
[CrossRef] [PubMed]

Kuzucu, O.

D. H. Broaddus, M. A. Foster, O. Kuzucu, A. C. Turner-Foster, K. W. Koch, M. Lipson, and A. L. Gaeta, “Temporal-imaging system with simple external-clock triggering,” Opt. Express 18(13), 14262–14269 (2010).
[CrossRef] [PubMed]

L'Huillier, J. A.

H. Fuchs, D. Woll, T. Ulm, and J. A. L'Huillier, “High resolution FROG system for the characterization of ps laser pulses,” Appl. Phys. 88(3), 393–396 (2007).
[CrossRef]

Li, F.

F. Li, Y. Park, and J. Azaña, “Linear Characterization of Optical Pulses with Durations Ranging From the Picosecond to the Nanosecond Regime Using Ultrafast Photonic Differentiation,” J. Lightwave Technol. 27(21), 4623–4633 (2009).
[CrossRef]

Lin, C.

S. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
[CrossRef]

Lipson, M.

D. H. Broaddus, M. A. Foster, O. Kuzucu, A. C. Turner-Foster, K. W. Koch, M. Lipson, and A. L. Gaeta, “Temporal-imaging system with simple external-clock triggering,” Opt. Express 18(13), 14262–14269 (2010).
[CrossRef] [PubMed]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

Ma, L.-S.

S. A. Diddams, L. Hollberg, L.-S. Ma, and L. Robertsson, “Femtosecond-laser-based optical clockwork with instability < 6.3 x 10−16 in 1 s,” Opt. Lett. 27(1), 58–60 (2002).
[CrossRef]

Mairesse, Y.

F. Quéré, Y. Mairesse, and J. Itatani, “Temporal characterization of attosecond XUV fields,” J. Mod. Opt. 52(2), 339–360 (2005).
[CrossRef]

Marinero, E. E.

R. Wyatt and E. E. Marinero, “Versatile Single-Shot Background-Free Pulse Duration Measurement Technique for Pulses of Subnanosecond to Picosecond Duration,” Appl. Phys. 25(3), 297–301 (1981).
[CrossRef]

Millot, G.

J. M. Dudley, C. Finot, D. J. Richardson, and G. Millot, “Self-similarity in ultrafast nonlinear optics,” Nat. Phys. 3(9), 597–603 (2007).
[CrossRef]

C. Finot, G. Millot, C. Billet, and J. M. Dudley, “Experimental generation of parabolic pulses via Raman amplification in optical fiber,” Opt. Express 11(13), 1547–1552 (2003).
[CrossRef] [PubMed]

Milosevic, N.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. B. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414(6863), 509–513 (2001).
[CrossRef] [PubMed]

Murnane, M. M.

G. Taft, A. Rundquist, M. M. Murnane, H. C. Kapteyn, K. W. Delong, R. Trebino, and I. P. Christov, “Ultrashort optical waveform measurements using frequency-resolved optical gating,” Opt. Lett. 20(7), 743–745 (1995).
[CrossRef] [PubMed]

O’Shea, P.

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27(13), 1174–1176 (2002).
[CrossRef]

P. O’Shea, M. Kimmel, X. Gu, and R. Trebino, “Highly simplified device for ultrashort-pulse measurement,” Opt. Lett. 26(12), 932–934 (2001).
[CrossRef]

Park, Y.

F. Li, Y. Park, and J. Azaña, “Linear Characterization of Optical Pulses with Durations Ranging From the Picosecond to the Nanosecond Regime Using Ultrafast Photonic Differentiation,” J. Lightwave Technol. 27(21), 4623–4633 (2009).
[CrossRef]

Quéré, F.

F. Quéré, Y. Mairesse, and J. Itatani, “Temporal characterization of attosecond XUV fields,” J. Mod. Opt. 52(2), 339–360 (2005).
[CrossRef]

Racz, B.

Z. Bor, B. Racz, G. Szabo, M. Hilbert, and H. A. Hazim, “Femtosecond pulse front tilt caused by angular dispersion,” Opt. Eng. 32(10), 2501–2504 (1993).
[CrossRef]

Reid, D.

D. Reid and J. Harvey, “Linear spectrograms using electrooptic modulators,” IEEE Photon. Technol. Lett. 19(8), 535–537 (2007).
[CrossRef]

Reider, G. A.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. B. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414(6863), 509–513 (2001).
[CrossRef] [PubMed]

Rentzepis, P. M.

J. A. Giordmaine, P. M. Rentzepis, S. L. Shapieo, and K. W. Wecht, “Two-Photon Excitation of Fluorescence By Picosecond Light Pulses,” Appl. Phys. Lett. 11(7), 216–218 (1967).
[CrossRef]

Richardson, D. J.

J. M. Dudley, C. Finot, D. J. Richardson, and G. Millot, “Self-similarity in ultrafast nonlinear optics,” Nat. Phys. 3(9), 597–603 (2007).
[CrossRef]

Robertsson, L.

S. A. Diddams, L. Hollberg, L.-S. Ma, and L. Robertsson, “Femtosecond-laser-based optical clockwork with instability < 6.3 x 10−16 in 1 s,” Opt. Lett. 27(1), 58–60 (2002).
[CrossRef]

Rundquist, A.

G. Taft, A. Rundquist, M. M. Murnane, H. C. Kapteyn, K. W. Delong, R. Trebino, and I. P. Christov, “Ultrashort optical waveform measurements using frequency-resolved optical gating,” Opt. Lett. 20(7), 743–745 (1995).
[CrossRef] [PubMed]

Sala, K. L.

K. L. Sala, G. A. Kenney-Wallace, and G. E. Hall, “CW Autocorrelation Measurements of Picosecond Laser Pulses,” IEEE J. Quantum Electron. 16(9), 990–996 (1980).
[CrossRef]

Salem, R.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

Shapieo, S. L.

J. A. Giordmaine, P. M. Rentzepis, S. L. Shapieo, and K. W. Wecht, “Two-Photon Excitation of Fluorescence By Picosecond Light Pulses,” Appl. Phys. Lett. 11(7), 216–218 (1967).
[CrossRef]

Shirasaki, M.

M. Shirasaki, “Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer,” Opt. Lett. 21(5), 366–368 (1996).
[CrossRef] [PubMed]

Shreenath, A. P.

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27(13), 1174–1176 (2002).
[CrossRef]

Spielmann, C.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. B. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414(6863), 509–513 (2001).
[CrossRef] [PubMed]

Szabo, G.

Z. Bor, B. Racz, G. Szabo, M. Hilbert, and H. A. Hazim, “Femtosecond pulse front tilt caused by angular dispersion,” Opt. Eng. 32(10), 2501–2504 (1993).
[CrossRef]

Taft, G.

G. Taft, A. Rundquist, M. M. Murnane, H. C. Kapteyn, K. W. Delong, R. Trebino, and I. P. Christov, “Ultrashort optical waveform measurements using frequency-resolved optical gating,” Opt. Lett. 20(7), 743–745 (1995).
[CrossRef] [PubMed]

Trebino, R.

P. Bowlan and R. Trebino, “Extreme pulse-front tilt from an etalon,” J. Opt. Soc. Am. B 27(11), 2322–2377 (2010).
[CrossRef]

S. Akturk, X. Gu, P. Gabolde, and R. Trebino, “The general theory of first-order spatio-temporal distortions of Gaussian pulses and beams,” Opt. Express 13(21), 8642–8661 (2005).
[CrossRef] [PubMed]

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27(13), 1174–1176 (2002).
[CrossRef]

P. O’Shea, M. Kimmel, X. Gu, and R. Trebino, “Highly simplified device for ultrashort-pulse measurement,” Opt. Lett. 26(12), 932–934 (2001).
[CrossRef]

G. Taft, A. Rundquist, M. M. Murnane, H. C. Kapteyn, K. W. Delong, R. Trebino, and I. P. Christov, “Ultrashort optical waveform measurements using frequency-resolved optical gating,” Opt. Lett. 20(7), 743–745 (1995).
[CrossRef] [PubMed]

D. J. Kane and R. Trebino, “Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating,” Opt. Lett. 18(10), 823–825 (1993).
[CrossRef] [PubMed]

R. Trebino and D. J. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating,” J. Opt. Soc. Am. A 10(5), 1101–1111 (1993).
[CrossRef]

Turner-Foster, A. C.

D. H. Broaddus, M. A. Foster, O. Kuzucu, A. C. Turner-Foster, K. W. Koch, M. Lipson, and A. L. Gaeta, “Temporal-imaging system with simple external-clock triggering,” Opt. Express 18(13), 14262–14269 (2010).
[CrossRef] [PubMed]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

Ulm, T.

H. Fuchs, D. Woll, T. Ulm, and J. A. L'Huillier, “High resolution FROG system for the characterization of ps laser pulses,” Appl. Phys. 88(3), 393–396 (2007).
[CrossRef]

Usechak, N. G.

J. Bromage, C. Dorrer, I. A. Begishev, N. G. Usechak, and J. D. Zuegel, “Highly sensitive, single-shot characterization for pulse widths from 0.4 to 85 ps using electro-optic shearing interferometry,” Opt. Lett. 31(23), 3523–3525 (2006).
[CrossRef] [PubMed]

Walmsley, I. A.

C. Dorrer, E. M. Kosik, and I. A. Walmsley, “Direct space time-characterization of the electric fields of ultrashort optical pulses,” Opt. Lett. 27(7), 548–550 (2002).
[CrossRef]

Wecht, K. W.

J. A. Giordmaine, P. M. Rentzepis, S. L. Shapieo, and K. W. Wecht, “Two-Photon Excitation of Fluorescence By Picosecond Light Pulses,” Appl. Phys. Lett. 11(7), 216–218 (1967).
[CrossRef]

Weiner, A. M.

S. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
[CrossRef]

Windeler, R. S.

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27(13), 1174–1176 (2002).
[CrossRef]

Woll, D.

H. Fuchs, D. Woll, T. Ulm, and J. A. L'Huillier, “High resolution FROG system for the characterization of ps laser pulses,” Appl. Phys. 88(3), 393–396 (2007).
[CrossRef]

Wyatt, R.

R. Wyatt and E. E. Marinero, “Versatile Single-Shot Background-Free Pulse Duration Measurement Technique for Pulses of Subnanosecond to Picosecond Duration,” Appl. Phys. 25(3), 297–301 (1981).
[CrossRef]

Xiao, S.

S. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
[CrossRef]

Xu, L.

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27(13), 1174–1176 (2002).
[CrossRef]

Zeek, E.

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27(13), 1174–1176 (2002).
[CrossRef]

Zuegel, J. D.

J. Bromage, C. Dorrer, I. A. Begishev, N. G. Usechak, and J. D. Zuegel, “Highly sensitive, single-shot characterization for pulse widths from 0.4 to 85 ps using electro-optic shearing interferometry,” Opt. Lett. 31(23), 3523–3525 (2006).
[CrossRef] [PubMed]

Appl. Phys. (2)

H. Fuchs, D. Woll, T. Ulm, and J. A. L'Huillier, “High resolution FROG system for the characterization of ps laser pulses,” Appl. Phys. 88(3), 393–396 (2007).
[CrossRef]

R. Wyatt and E. E. Marinero, “Versatile Single-Shot Background-Free Pulse Duration Measurement Technique for Pulses of Subnanosecond to Picosecond Duration,” Appl. Phys. 25(3), 297–301 (1981).
[CrossRef]

Appl. Phys. Lett. (2)

C. D. Brooks and F. Di Teodoro, “Multimegawatt peak-power, single-transverse-mode operation of a 100 m core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119 (2006).
[CrossRef]

J. A. Giordmaine, P. M. Rentzepis, S. L. Shapieo, and K. W. Wecht, “Two-Photon Excitation of Fluorescence By Picosecond Light Pulses,” Appl. Phys. Lett. 11(7), 216–218 (1967).
[CrossRef]

IEEE J. Quantum Electron. (2)

K. L. Sala, G. A. Kenney-Wallace, and G. E. Hall, “CW Autocorrelation Measurements of Picosecond Laser Pulses,” IEEE J. Quantum Electron. 16(9), 990–996 (1980).
[CrossRef]

S. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. Reid and J. Harvey, “Linear spectrograms using electrooptic modulators,” IEEE Photon. Technol. Lett. 19(8), 535–537 (2007).
[CrossRef]

J. Lightwave Technol. (1)

F. Li, Y. Park, and J. Azaña, “Linear Characterization of Optical Pulses with Durations Ranging From the Picosecond to the Nanosecond Regime Using Ultrafast Photonic Differentiation,” J. Lightwave Technol. 27(21), 4623–4633 (2009).
[CrossRef]

J. Mod. Opt. (1)

F. Quéré, Y. Mairesse, and J. Itatani, “Temporal characterization of attosecond XUV fields,” J. Mod. Opt. 52(2), 339–360 (2005).
[CrossRef]

J. Opt. Soc. Am. A (1)

R. Trebino and D. J. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating,” J. Opt. Soc. Am. A 10(5), 1101–1111 (1993).
[CrossRef]

J. Opt. Soc. Am. B (2)

C. Dorrer and I. Kang, “Linear self-referencing techiques for short-optical-pulse characterization,” J. Opt. Soc. Am. B 25(6), A1–A12 (2008).
[CrossRef]

P. Bowlan and R. Trebino, “Extreme pulse-front tilt from an etalon,” J. Opt. Soc. Am. B 27(11), 2322–2377 (2010).
[CrossRef]

Nat. Phys. (1)

J. M. Dudley, C. Finot, D. J. Richardson, and G. Millot, “Self-similarity in ultrafast nonlinear optics,” Nat. Phys. 3(9), 597–603 (2007).
[CrossRef]

Nature (2)

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. B. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414(6863), 509–513 (2001).
[CrossRef] [PubMed]

Opt. Eng. (1)

Z. Bor, B. Racz, G. Szabo, M. Hilbert, and H. A. Hazim, “Femtosecond pulse front tilt caused by angular dispersion,” Opt. Eng. 32(10), 2501–2504 (1993).
[CrossRef]

Opt. Express (3)

S. Akturk, X. Gu, P. Gabolde, and R. Trebino, “The general theory of first-order spatio-temporal distortions of Gaussian pulses and beams,” Opt. Express 13(21), 8642–8661 (2005).
[CrossRef] [PubMed]

D. H. Broaddus, M. A. Foster, O. Kuzucu, A. C. Turner-Foster, K. W. Koch, M. Lipson, and A. L. Gaeta, “Temporal-imaging system with simple external-clock triggering,” Opt. Express 18(13), 14262–14269 (2010).
[CrossRef] [PubMed]

C. Finot, G. Millot, C. Billet, and J. M. Dudley, “Experimental generation of parabolic pulses via Raman amplification in optical fiber,” Opt. Express 11(13), 1547–1552 (2003).
[CrossRef] [PubMed]

Opt. Lett. (10)

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27(13), 1174–1176 (2002).
[CrossRef]

C. Dorrer and I. Kang, “Simultaneous characterization of telecommunication optical pulses and modulators by use of spectrograms,” Opt. Lett. 27, 1315–1317 (2002).
[CrossRef]

J. Bromage, C. Dorrer, I. A. Begishev, N. G. Usechak, and J. D. Zuegel, “Highly sensitive, single-shot characterization for pulse widths from 0.4 to 85 ps using electro-optic shearing interferometry,” Opt. Lett. 31(23), 3523–3525 (2006).
[CrossRef] [PubMed]

D. J. Kane and R. Trebino, “Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating,” Opt. Lett. 18(10), 823–825 (1993).
[CrossRef] [PubMed]

S. A. Diddams, L. Hollberg, L.-S. Ma, and L. Robertsson, “Femtosecond-laser-based optical clockwork with instability < 6.3 x 10−16 in 1 s,” Opt. Lett. 27(1), 58–60 (2002).
[CrossRef]

F. Di Teodoro and C. D. Brooks, “1.1 MW peak-power, 7 W average-power, high-spectral-brightness, diffraction-limited pulses from a photonic crystal fiber amplifier,” Opt. Lett. 30(20), 2694–2696 (2005).
[CrossRef] [PubMed]

G. Taft, A. Rundquist, M. M. Murnane, H. C. Kapteyn, K. W. Delong, R. Trebino, and I. P. Christov, “Ultrashort optical waveform measurements using frequency-resolved optical gating,” Opt. Lett. 20(7), 743–745 (1995).
[CrossRef] [PubMed]

P. O’Shea, M. Kimmel, X. Gu, and R. Trebino, “Highly simplified device for ultrashort-pulse measurement,” Opt. Lett. 26(12), 932–934 (2001).
[CrossRef]

M. Shirasaki, “Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer,” Opt. Lett. 21(5), 366–368 (1996).
[CrossRef] [PubMed]

C. Dorrer, E. M. Kosik, and I. A. Walmsley, “Direct space time-characterization of the electric fields of ultrashort optical pulses,” Opt. Lett. 27(7), 548–550 (2002).
[CrossRef]

Other (2)

M. Born, and E. Wolf, Principles of Optics, 7 ed. (Cambridge University Press, New York, 1999).

R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic Publishers, Boston, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

A FROG is an autocorrelator followed by a spectrometer. The spectrometer spectrally resolves the signal pulse produced by the nonlinear-optical medium and yields a spectrogram of the pulse, which yields the complete intensity and phase vs. time. The device shown below is a simplified single-shot version of FROG, called GRENOUILLE, which replaces the beam splitter, delay line, and beam-recombining optics with a single optical component (see Fig. 2 for more details), an approach that we will also take in the device described in this article.

Fig. 2
Fig. 2

a) Splitting a beam in two and crossing the resulting replicas yields a range of delays on a single shot by mapping delay onto transverse position. This can be done with a Fresnel biprism but only generates a few ps of relative delay. b,c,d) All optical elements that introduce angular dispersion also introduce pulse-front tilt. b) In prisms, because the group velocity is less than the phase velocity, the group delay is greater for rays that pass through the base of the prism than those that pass through the tip. c) In gratings, rays that impinge on the near edge of the grating emerge sooner and so precede those that must travel all the way to the far edge of the grating. d) And multiple reflections inside etalons delay the far side of the beam significantly with respect to the near side, where the beam passes directly through. While the reasons for the pulse-front tilt appear unrelated, the tilt is always proportional to the angular dispersion of the component.

Fig. 3
Fig. 3

a) Three-dimensional view of the ns FROG. The Fresnel biprism generates two beams, which cross (in air) and then spatially separate. The cylindrical lens redirects them toward each other and focuses them as they enter the PFT etalon. A second lens images the emerging tilted pulse fronts onto the SHG crystal, where relative delay of the two pulses is mapped onto transverse position. The SHG crystal performs the single-shot autocorrelation and is imaged onto the camera’s horizontal dimension. Simultaneously, the beam is spectrally resolved along the vertical dimension by an etalon spectrometer (a VIPA etalon followed by a focusing lens), resulting in a single-shot FROG trace at the camera. b) Top view of the single-shot ns-FROG. Not shown: a filter that absorbs the input pulse but transmits the second harmonic and slit at the focal plane of the imaging lens that removes the higher orders from the etalon. In our experiments, we used two cylindrical lenses rather than anamorphic lenses.

Fig. 4
Fig. 4

Testing the FROG: (a) FROG measurement results for the output of a 1064nm microdisk laser. The spectrum shown in red was measured with a VIPA etalon spectrometer for comparison with the FROG results. (b) FROG measurements of a 2.6ns double pulse generated by sending the pulses from the microdisk laser through a Michelson interferometer in which one arm was 39cm longer than the other. A 36% relative intensity of the two pulses was expected and also correctly measured by the FROG. Note that all of the figures in the top row share the same y-axis. In both of these measurements, we averaged over ~100 laser pulses due to the low pulse energy.

Fig. 5
Fig. 5

FROG and high-resolution spectral measurements of amplified pulses: (a) FROG traces of pulses from the Yb-fiber amplifier for different pump power levels. (b) Spectra of the amplified pulses versus pump power using the 1064nm VIPA etalon spectrometer. In these FROG traces we averaged over ~100 pulses.

Fig. 6
Fig. 6

Measurements of amplified pulses. FROG results for 12 × (a) and 15 × amplification (b). The results shown at right were a measurement of a single pulse, and in the left we averaged over ~100 pulses.

Tables (1)

Tables Icon

Table 1 Summary of the parameters of the ns-FROG used here.

Metrics