Abstract

To facilitate the application of plasmonic nanoparticles (PNPs) in high-throughput detection, we develop a hyperspectral imaging system (HSIS) combining dark-filed microscopy and imaging Fourier transform spectrometry to measure scattering spectra from immobilized PNPs. The current setup has acquisition time of 5 seconds and spectral resolution of 21.4 nm at 532.1 nm. We demonstrate the applicability of the HSIS in conjunction with spectral data analysis to quantify multiple types of PNPs and detect small changes in localized surface plasmon resonance wavelengths of PNPs due to changes in the environmental refractive index.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Reichert, A. Csáki, J. M. Köhler, and W. Fritzsche, “Chip-based optical detection of DNA hybridization by means of nanobead labeling,” Anal. Chem. 72(24), 6025–6029 (2000).
    [CrossRef]
  2. T. A. Taton, G. Lu, and C. A. Mirkin, “Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes,” J. Am. Chem. Soc. 123(21), 5164–5165 (2001).
    [CrossRef] [PubMed]
  3. S. J. Oldenburg, C. C. Genick, K. A. Clark, and D. A. Schultz, “Base pair mismatch recognition using plasmon resonant particle labels,” Anal. Biochem. 309(1), 109–116 (2002).
    [CrossRef] [PubMed]
  4. S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, “Single-target molecule detection with nonbleaching multicolor optical immunolabels,” Proc. Natl. Acad. Sci. U.S.A. 97(3), 996–1001 (2000).
    [CrossRef] [PubMed]
  5. K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res. 63(9), 1999–2004 (2003).
    [PubMed]
  6. I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett. 5(5), 829–834 (2005).
    [CrossRef] [PubMed]
  7. J. Yguerabide and E. E. Yguerabide, “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications,” Anal. Biochem. 262(2), 157–176 (1998).
    [CrossRef] [PubMed]
  8. C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23(6), 741–745 (2005).
    [CrossRef] [PubMed]
  9. J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” J. Biomed. Opt. 12(3), 034007 (2007).
    [CrossRef] [PubMed]
  10. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [CrossRef] [PubMed]
  11. A. Wax and K. Sokolov, “Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles,” Laser Photon. Rev. 3(1-2), 146–158 (2009).
    [CrossRef]
  12. M. J. Crow, G. Grant, J. M. Provenzale, and A. Wax, “Molecular imaging and quantitative measurement of epidermal growth factor receptor expression in live cancer cells using immunolabeled gold nanoparticles,” AJR Am. J. Roentgenol. 192(4), 1021–1028 (2009).
    [CrossRef] [PubMed]
  13. J. Becker, O. Schubert, and C. Sönnichsen, “Gold nanoparticle growth monitored in situ using a novel fast optical single-particle spectroscopy method,” Nano Lett. 7(6), 1664–1669 (2007).
    [CrossRef] [PubMed]
  14. G. L. Liu, J. C. Doll, and L. P. Lee, “High-speed multispectral imaging of nanoplasmonic array,” Opt. Express 13(21), 8520–8525 (2005).
    [CrossRef] [PubMed]
  15. A. Curry, G. Nusz, A. Chilkoti, and A. Wax, “Substrate effect on refractive index dependence of plasmon resonance for individual silver nanoparticles observed using darkfield microspectroscopy,” Opt. Express 13(7), 2668–2677 (2005).
    [CrossRef] [PubMed]
  16. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [CrossRef]
  17. D. M. Haaland, J. A. Timlin, M. B. Sinclair, M. H. V. Benthem, M. J. Martinez, A. D. Aragon, and M. Werner-Washburne, “Multivariate curve resolution for hyperspectral image analysis: applications to microarray technology,” in Proc. SPIE, R. M. Levenson, G. H. Bearman, and A. Mahadevan-Jansen, eds. (San Jose, CA, USA 2003), p. 55.
  18. J. A. Timlin, D. M. Haaland, M. B. Sinclair, A. D. Aragon, M. J. Martinez, and M. Werner-Washburne, “Hyperspectral microarray scanning: impact on the accuracy and reliability of gene expression data,” BMC Genomics 6(1), 72 (2005).
    [CrossRef] [PubMed]
  19. A. Dubois, J. Moreau, and C. Boccara, “Spectroscopic ultrahigh-resolution full-field optical coherence microscopy,” Opt. Express 16(21), 17082–17091 (2008).
    [CrossRef] [PubMed]
  20. A. C. Curry, M. Crow, and A. Wax, “Molecular imaging of epidermal growth factor receptor in live cells with refractive index sensitivity using dark-field microspectroscopy and immunotargeted nanoparticles,” J. Biomed. Opt. 13(1), 014022 (2008).
    [CrossRef] [PubMed]
  21. B. Ford, M. Descour, and R. Lynch, “Large-image-format computed tomography imaging spectrometer for fluorescence microscopy,” Opt. Express 9(9), 444–453 (2001).
    [CrossRef] [PubMed]
  22. R. T. Kester, L. Gao, and T. S. Tkaczyk, “Development of image mappers for hyperspectral biomedical imaging applications,” Appl. Opt. 49(10), 1886–1899 (2010).
    [CrossRef] [PubMed]
  23. G. Steiner, “Surface plasmon resonance imaging,” Anal. Bioanal. Chem. 379(3), 328–331 (2004).
    [CrossRef] [PubMed]
  24. R. Vander and S. G. Lipson, “High-resolution surface-plasmon resonance real-time imaging,” Opt. Lett. 34(1), 37–39 (2009).
    [CrossRef]

2010 (1)

R. T. Kester, L. Gao, and T. S. Tkaczyk, “Development of image mappers for hyperspectral biomedical imaging applications,” Appl. Opt. 49(10), 1886–1899 (2010).
[CrossRef] [PubMed]

2009 (3)

R. Vander and S. G. Lipson, “High-resolution surface-plasmon resonance real-time imaging,” Opt. Lett. 34(1), 37–39 (2009).
[CrossRef]

A. Wax and K. Sokolov, “Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles,” Laser Photon. Rev. 3(1-2), 146–158 (2009).
[CrossRef]

M. J. Crow, G. Grant, J. M. Provenzale, and A. Wax, “Molecular imaging and quantitative measurement of epidermal growth factor receptor expression in live cancer cells using immunolabeled gold nanoparticles,” AJR Am. J. Roentgenol. 192(4), 1021–1028 (2009).
[CrossRef] [PubMed]

2008 (3)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

A. Dubois, J. Moreau, and C. Boccara, “Spectroscopic ultrahigh-resolution full-field optical coherence microscopy,” Opt. Express 16(21), 17082–17091 (2008).
[CrossRef] [PubMed]

A. C. Curry, M. Crow, and A. Wax, “Molecular imaging of epidermal growth factor receptor in live cells with refractive index sensitivity using dark-field microspectroscopy and immunotargeted nanoparticles,” J. Biomed. Opt. 13(1), 014022 (2008).
[CrossRef] [PubMed]

2007 (2)

J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” J. Biomed. Opt. 12(3), 034007 (2007).
[CrossRef] [PubMed]

J. Becker, O. Schubert, and C. Sönnichsen, “Gold nanoparticle growth monitored in situ using a novel fast optical single-particle spectroscopy method,” Nano Lett. 7(6), 1664–1669 (2007).
[CrossRef] [PubMed]

2005 (5)

G. L. Liu, J. C. Doll, and L. P. Lee, “High-speed multispectral imaging of nanoplasmonic array,” Opt. Express 13(21), 8520–8525 (2005).
[CrossRef] [PubMed]

A. Curry, G. Nusz, A. Chilkoti, and A. Wax, “Substrate effect on refractive index dependence of plasmon resonance for individual silver nanoparticles observed using darkfield microspectroscopy,” Opt. Express 13(7), 2668–2677 (2005).
[CrossRef] [PubMed]

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett. 5(5), 829–834 (2005).
[CrossRef] [PubMed]

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23(6), 741–745 (2005).
[CrossRef] [PubMed]

J. A. Timlin, D. M. Haaland, M. B. Sinclair, A. D. Aragon, M. J. Martinez, and M. Werner-Washburne, “Hyperspectral microarray scanning: impact on the accuracy and reliability of gene expression data,” BMC Genomics 6(1), 72 (2005).
[CrossRef] [PubMed]

2004 (1)

G. Steiner, “Surface plasmon resonance imaging,” Anal. Bioanal. Chem. 379(3), 328–331 (2004).
[CrossRef] [PubMed]

2003 (2)

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res. 63(9), 1999–2004 (2003).
[PubMed]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

2002 (1)

S. J. Oldenburg, C. C. Genick, K. A. Clark, and D. A. Schultz, “Base pair mismatch recognition using plasmon resonant particle labels,” Anal. Biochem. 309(1), 109–116 (2002).
[CrossRef] [PubMed]

2001 (2)

T. A. Taton, G. Lu, and C. A. Mirkin, “Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes,” J. Am. Chem. Soc. 123(21), 5164–5165 (2001).
[CrossRef] [PubMed]

B. Ford, M. Descour, and R. Lynch, “Large-image-format computed tomography imaging spectrometer for fluorescence microscopy,” Opt. Express 9(9), 444–453 (2001).
[CrossRef] [PubMed]

2000 (2)

J. Reichert, A. Csáki, J. M. Köhler, and W. Fritzsche, “Chip-based optical detection of DNA hybridization by means of nanobead labeling,” Anal. Chem. 72(24), 6025–6029 (2000).
[CrossRef]

S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, “Single-target molecule detection with nonbleaching multicolor optical immunolabels,” Proc. Natl. Acad. Sci. U.S.A. 97(3), 996–1001 (2000).
[CrossRef] [PubMed]

1998 (1)

J. Yguerabide and E. E. Yguerabide, “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications,” Anal. Biochem. 262(2), 157–176 (1998).
[CrossRef] [PubMed]

Aaron, J.

J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” J. Biomed. Opt. 12(3), 034007 (2007).
[CrossRef] [PubMed]

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res. 63(9), 1999–2004 (2003).
[PubMed]

Alivisatos, A. P.

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23(6), 741–745 (2005).
[CrossRef] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Aragon, A. D.

J. A. Timlin, D. M. Haaland, M. B. Sinclair, A. D. Aragon, M. J. Martinez, and M. Werner-Washburne, “Hyperspectral microarray scanning: impact on the accuracy and reliability of gene expression data,” BMC Genomics 6(1), 72 (2005).
[CrossRef] [PubMed]

Becker, J.

J. Becker, O. Schubert, and C. Sönnichsen, “Gold nanoparticle growth monitored in situ using a novel fast optical single-particle spectroscopy method,” Nano Lett. 7(6), 1664–1669 (2007).
[CrossRef] [PubMed]

Boccara, C.

A. Dubois, J. Moreau, and C. Boccara, “Spectroscopic ultrahigh-resolution full-field optical coherence microscopy,” Opt. Express 16(21), 17082–17091 (2008).
[CrossRef] [PubMed]

Chilkoti, A.

A. Curry, G. Nusz, A. Chilkoti, and A. Wax, “Substrate effect on refractive index dependence of plasmon resonance for individual silver nanoparticles observed using darkfield microspectroscopy,” Opt. Express 13(7), 2668–2677 (2005).
[CrossRef] [PubMed]

Clark, K. A.

S. J. Oldenburg, C. C. Genick, K. A. Clark, and D. A. Schultz, “Base pair mismatch recognition using plasmon resonant particle labels,” Anal. Biochem. 309(1), 109–116 (2002).
[CrossRef] [PubMed]

Coghlan, L.

J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” J. Biomed. Opt. 12(3), 034007 (2007).
[CrossRef] [PubMed]

Collier, T.

J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” J. Biomed. Opt. 12(3), 034007 (2007).
[CrossRef] [PubMed]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Crow, M.

A. C. Curry, M. Crow, and A. Wax, “Molecular imaging of epidermal growth factor receptor in live cells with refractive index sensitivity using dark-field microspectroscopy and immunotargeted nanoparticles,” J. Biomed. Opt. 13(1), 014022 (2008).
[CrossRef] [PubMed]

Crow, M. J.

M. J. Crow, G. Grant, J. M. Provenzale, and A. Wax, “Molecular imaging and quantitative measurement of epidermal growth factor receptor expression in live cancer cells using immunolabeled gold nanoparticles,” AJR Am. J. Roentgenol. 192(4), 1021–1028 (2009).
[CrossRef] [PubMed]

Csáki, A.

J. Reichert, A. Csáki, J. M. Köhler, and W. Fritzsche, “Chip-based optical detection of DNA hybridization by means of nanobead labeling,” Anal. Chem. 72(24), 6025–6029 (2000).
[CrossRef]

Curry, A.

A. Curry, G. Nusz, A. Chilkoti, and A. Wax, “Substrate effect on refractive index dependence of plasmon resonance for individual silver nanoparticles observed using darkfield microspectroscopy,” Opt. Express 13(7), 2668–2677 (2005).
[CrossRef] [PubMed]

Curry, A. C.

A. C. Curry, M. Crow, and A. Wax, “Molecular imaging of epidermal growth factor receptor in live cells with refractive index sensitivity using dark-field microspectroscopy and immunotargeted nanoparticles,” J. Biomed. Opt. 13(1), 014022 (2008).
[CrossRef] [PubMed]

Descour, M.

B. Ford, M. Descour, and R. Lynch, “Large-image-format computed tomography imaging spectrometer for fluorescence microscopy,” Opt. Express 9(9), 444–453 (2001).
[CrossRef] [PubMed]

Doll, J. C.

G. L. Liu, J. C. Doll, and L. P. Lee, “High-speed multispectral imaging of nanoplasmonic array,” Opt. Express 13(21), 8520–8525 (2005).
[CrossRef] [PubMed]

Dubois, A.

A. Dubois, J. Moreau, and C. Boccara, “Spectroscopic ultrahigh-resolution full-field optical coherence microscopy,” Opt. Express 16(21), 17082–17091 (2008).
[CrossRef] [PubMed]

El-Sayed, I. H.

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett. 5(5), 829–834 (2005).
[CrossRef] [PubMed]

El-Sayed, M. A.

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett. 5(5), 829–834 (2005).
[CrossRef] [PubMed]

Follen, M.

J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” J. Biomed. Opt. 12(3), 034007 (2007).
[CrossRef] [PubMed]

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res. 63(9), 1999–2004 (2003).
[PubMed]

Ford, B.

B. Ford, M. Descour, and R. Lynch, “Large-image-format computed tomography imaging spectrometer for fluorescence microscopy,” Opt. Express 9(9), 444–453 (2001).
[CrossRef] [PubMed]

Fritzsche, W.

J. Reichert, A. Csáki, J. M. Köhler, and W. Fritzsche, “Chip-based optical detection of DNA hybridization by means of nanobead labeling,” Anal. Chem. 72(24), 6025–6029 (2000).
[CrossRef]

Gao, L.

R. T. Kester, L. Gao, and T. S. Tkaczyk, “Development of image mappers for hyperspectral biomedical imaging applications,” Appl. Opt. 49(10), 1886–1899 (2010).
[CrossRef] [PubMed]

Genick, C. C.

S. J. Oldenburg, C. C. Genick, K. A. Clark, and D. A. Schultz, “Base pair mismatch recognition using plasmon resonant particle labels,” Anal. Biochem. 309(1), 109–116 (2002).
[CrossRef] [PubMed]

Grant, G.

M. J. Crow, G. Grant, J. M. Provenzale, and A. Wax, “Molecular imaging and quantitative measurement of epidermal growth factor receptor expression in live cancer cells using immunolabeled gold nanoparticles,” AJR Am. J. Roentgenol. 192(4), 1021–1028 (2009).
[CrossRef] [PubMed]

Haaland, D. M.

J. A. Timlin, D. M. Haaland, M. B. Sinclair, A. D. Aragon, M. J. Martinez, and M. Werner-Washburne, “Hyperspectral microarray scanning: impact on the accuracy and reliability of gene expression data,” BMC Genomics 6(1), 72 (2005).
[CrossRef] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Huang, X.

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett. 5(5), 829–834 (2005).
[CrossRef] [PubMed]

José-Yacamán, M.

J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” J. Biomed. Opt. 12(3), 034007 (2007).
[CrossRef] [PubMed]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Kester, R. T.

R. T. Kester, L. Gao, and T. S. Tkaczyk, “Development of image mappers for hyperspectral biomedical imaging applications,” Appl. Opt. 49(10), 1886–1899 (2010).
[CrossRef] [PubMed]

Köhler, J. M.

J. Reichert, A. Csáki, J. M. Köhler, and W. Fritzsche, “Chip-based optical detection of DNA hybridization by means of nanobead labeling,” Anal. Chem. 72(24), 6025–6029 (2000).
[CrossRef]

Kumar, S.

J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” J. Biomed. Opt. 12(3), 034007 (2007).
[CrossRef] [PubMed]

Lee, L. P.

G. L. Liu, J. C. Doll, and L. P. Lee, “High-speed multispectral imaging of nanoplasmonic array,” Opt. Express 13(21), 8520–8525 (2005).
[CrossRef] [PubMed]

Liphardt, J.

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23(6), 741–745 (2005).
[CrossRef] [PubMed]

Lipson, S. G.

R. Vander and S. G. Lipson, “High-resolution surface-plasmon resonance real-time imaging,” Opt. Lett. 34(1), 37–39 (2009).
[CrossRef]

Liu, G. L.

G. L. Liu, J. C. Doll, and L. P. Lee, “High-speed multispectral imaging of nanoplasmonic array,” Opt. Express 13(21), 8520–8525 (2005).
[CrossRef] [PubMed]

Lotan, R.

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res. 63(9), 1999–2004 (2003).
[PubMed]

Lu, G.

T. A. Taton, G. Lu, and C. A. Mirkin, “Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes,” J. Am. Chem. Soc. 123(21), 5164–5165 (2001).
[CrossRef] [PubMed]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Lynch, R.

B. Ford, M. Descour, and R. Lynch, “Large-image-format computed tomography imaging spectrometer for fluorescence microscopy,” Opt. Express 9(9), 444–453 (2001).
[CrossRef] [PubMed]

Malpica, A.

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res. 63(9), 1999–2004 (2003).
[PubMed]

Martinez, M. J.

J. A. Timlin, D. M. Haaland, M. B. Sinclair, A. D. Aragon, M. J. Martinez, and M. Werner-Washburne, “Hyperspectral microarray scanning: impact on the accuracy and reliability of gene expression data,” BMC Genomics 6(1), 72 (2005).
[CrossRef] [PubMed]

Mirkin, C. A.

T. A. Taton, G. Lu, and C. A. Mirkin, “Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes,” J. Am. Chem. Soc. 123(21), 5164–5165 (2001).
[CrossRef] [PubMed]

Mock, J. J.

S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, “Single-target molecule detection with nonbleaching multicolor optical immunolabels,” Proc. Natl. Acad. Sci. U.S.A. 97(3), 996–1001 (2000).
[CrossRef] [PubMed]

Moreau, J.

A. Dubois, J. Moreau, and C. Boccara, “Spectroscopic ultrahigh-resolution full-field optical coherence microscopy,” Opt. Express 16(21), 17082–17091 (2008).
[CrossRef] [PubMed]

Nitin, N.

J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” J. Biomed. Opt. 12(3), 034007 (2007).
[CrossRef] [PubMed]

Nusz, G.

A. Curry, G. Nusz, A. Chilkoti, and A. Wax, “Substrate effect on refractive index dependence of plasmon resonance for individual silver nanoparticles observed using darkfield microspectroscopy,” Opt. Express 13(7), 2668–2677 (2005).
[CrossRef] [PubMed]

Oldenburg, S. J.

S. J. Oldenburg, C. C. Genick, K. A. Clark, and D. A. Schultz, “Base pair mismatch recognition using plasmon resonant particle labels,” Anal. Biochem. 309(1), 109–116 (2002).
[CrossRef] [PubMed]

Park, S. Y.

J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” J. Biomed. Opt. 12(3), 034007 (2007).
[CrossRef] [PubMed]

Pavlova, I.

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res. 63(9), 1999–2004 (2003).
[PubMed]

Provenzale, J. M.

M. J. Crow, G. Grant, J. M. Provenzale, and A. Wax, “Molecular imaging and quantitative measurement of epidermal growth factor receptor expression in live cancer cells using immunolabeled gold nanoparticles,” AJR Am. J. Roentgenol. 192(4), 1021–1028 (2009).
[CrossRef] [PubMed]

Reichert, J.

J. Reichert, A. Csáki, J. M. Köhler, and W. Fritzsche, “Chip-based optical detection of DNA hybridization by means of nanobead labeling,” Anal. Chem. 72(24), 6025–6029 (2000).
[CrossRef]

Reinhard, B. M.

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23(6), 741–745 (2005).
[CrossRef] [PubMed]

Richards-Kortum, R.

J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” J. Biomed. Opt. 12(3), 034007 (2007).
[CrossRef] [PubMed]

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res. 63(9), 1999–2004 (2003).
[PubMed]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Schubert, O.

J. Becker, O. Schubert, and C. Sönnichsen, “Gold nanoparticle growth monitored in situ using a novel fast optical single-particle spectroscopy method,” Nano Lett. 7(6), 1664–1669 (2007).
[CrossRef] [PubMed]

Schultz, D. A.

S. J. Oldenburg, C. C. Genick, K. A. Clark, and D. A. Schultz, “Base pair mismatch recognition using plasmon resonant particle labels,” Anal. Biochem. 309(1), 109–116 (2002).
[CrossRef] [PubMed]

S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, “Single-target molecule detection with nonbleaching multicolor optical immunolabels,” Proc. Natl. Acad. Sci. U.S.A. 97(3), 996–1001 (2000).
[CrossRef] [PubMed]

Schultz, S.

S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, “Single-target molecule detection with nonbleaching multicolor optical immunolabels,” Proc. Natl. Acad. Sci. U.S.A. 97(3), 996–1001 (2000).
[CrossRef] [PubMed]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Sinclair, M. B.

J. A. Timlin, D. M. Haaland, M. B. Sinclair, A. D. Aragon, M. J. Martinez, and M. Werner-Washburne, “Hyperspectral microarray scanning: impact on the accuracy and reliability of gene expression data,” BMC Genomics 6(1), 72 (2005).
[CrossRef] [PubMed]

Smith, D. R.

S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, “Single-target molecule detection with nonbleaching multicolor optical immunolabels,” Proc. Natl. Acad. Sci. U.S.A. 97(3), 996–1001 (2000).
[CrossRef] [PubMed]

Sokolov, K.

A. Wax and K. Sokolov, “Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles,” Laser Photon. Rev. 3(1-2), 146–158 (2009).
[CrossRef]

J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” J. Biomed. Opt. 12(3), 034007 (2007).
[CrossRef] [PubMed]

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res. 63(9), 1999–2004 (2003).
[PubMed]

Sönnichsen, C.

J. Becker, O. Schubert, and C. Sönnichsen, “Gold nanoparticle growth monitored in situ using a novel fast optical single-particle spectroscopy method,” Nano Lett. 7(6), 1664–1669 (2007).
[CrossRef] [PubMed]

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23(6), 741–745 (2005).
[CrossRef] [PubMed]

Steiner, G.

G. Steiner, “Surface plasmon resonance imaging,” Anal. Bioanal. Chem. 379(3), 328–331 (2004).
[CrossRef] [PubMed]

Taton, T. A.

T. A. Taton, G. Lu, and C. A. Mirkin, “Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes,” J. Am. Chem. Soc. 123(21), 5164–5165 (2001).
[CrossRef] [PubMed]

Timlin, J. A.

J. A. Timlin, D. M. Haaland, M. B. Sinclair, A. D. Aragon, M. J. Martinez, and M. Werner-Washburne, “Hyperspectral microarray scanning: impact on the accuracy and reliability of gene expression data,” BMC Genomics 6(1), 72 (2005).
[CrossRef] [PubMed]

Tkaczyk, T. S.

R. T. Kester, L. Gao, and T. S. Tkaczyk, “Development of image mappers for hyperspectral biomedical imaging applications,” Appl. Opt. 49(10), 1886–1899 (2010).
[CrossRef] [PubMed]

Travis, K.

J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” J. Biomed. Opt. 12(3), 034007 (2007).
[CrossRef] [PubMed]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Vander, R.

R. Vander and S. G. Lipson, “High-resolution surface-plasmon resonance real-time imaging,” Opt. Lett. 34(1), 37–39 (2009).
[CrossRef]

Wax, A.

A. Wax and K. Sokolov, “Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles,” Laser Photon. Rev. 3(1-2), 146–158 (2009).
[CrossRef]

M. J. Crow, G. Grant, J. M. Provenzale, and A. Wax, “Molecular imaging and quantitative measurement of epidermal growth factor receptor expression in live cancer cells using immunolabeled gold nanoparticles,” AJR Am. J. Roentgenol. 192(4), 1021–1028 (2009).
[CrossRef] [PubMed]

A. C. Curry, M. Crow, and A. Wax, “Molecular imaging of epidermal growth factor receptor in live cells with refractive index sensitivity using dark-field microspectroscopy and immunotargeted nanoparticles,” J. Biomed. Opt. 13(1), 014022 (2008).
[CrossRef] [PubMed]

A. Curry, G. Nusz, A. Chilkoti, and A. Wax, “Substrate effect on refractive index dependence of plasmon resonance for individual silver nanoparticles observed using darkfield microspectroscopy,” Opt. Express 13(7), 2668–2677 (2005).
[CrossRef] [PubMed]

Werner-Washburne, M.

J. A. Timlin, D. M. Haaland, M. B. Sinclair, A. D. Aragon, M. J. Martinez, and M. Werner-Washburne, “Hyperspectral microarray scanning: impact on the accuracy and reliability of gene expression data,” BMC Genomics 6(1), 72 (2005).
[CrossRef] [PubMed]

Yguerabide, E. E.

J. Yguerabide and E. E. Yguerabide, “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications,” Anal. Biochem. 262(2), 157–176 (1998).
[CrossRef] [PubMed]

Yguerabide, J.

J. Yguerabide and E. E. Yguerabide, “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications,” Anal. Biochem. 262(2), 157–176 (1998).
[CrossRef] [PubMed]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

AJR Am. J. Roentgenol. (1)

M. J. Crow, G. Grant, J. M. Provenzale, and A. Wax, “Molecular imaging and quantitative measurement of epidermal growth factor receptor expression in live cancer cells using immunolabeled gold nanoparticles,” AJR Am. J. Roentgenol. 192(4), 1021–1028 (2009).
[CrossRef] [PubMed]

Anal. Bioanal. Chem. (1)

G. Steiner, “Surface plasmon resonance imaging,” Anal. Bioanal. Chem. 379(3), 328–331 (2004).
[CrossRef] [PubMed]

Anal. Biochem. (2)

S. J. Oldenburg, C. C. Genick, K. A. Clark, and D. A. Schultz, “Base pair mismatch recognition using plasmon resonant particle labels,” Anal. Biochem. 309(1), 109–116 (2002).
[CrossRef] [PubMed]

J. Yguerabide and E. E. Yguerabide, “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications,” Anal. Biochem. 262(2), 157–176 (1998).
[CrossRef] [PubMed]

Anal. Chem. (1)

J. Reichert, A. Csáki, J. M. Köhler, and W. Fritzsche, “Chip-based optical detection of DNA hybridization by means of nanobead labeling,” Anal. Chem. 72(24), 6025–6029 (2000).
[CrossRef]

Appl. Opt. (1)

R. T. Kester, L. Gao, and T. S. Tkaczyk, “Development of image mappers for hyperspectral biomedical imaging applications,” Appl. Opt. 49(10), 1886–1899 (2010).
[CrossRef] [PubMed]

BMC Genomics (1)

J. A. Timlin, D. M. Haaland, M. B. Sinclair, A. D. Aragon, M. J. Martinez, and M. Werner-Washburne, “Hyperspectral microarray scanning: impact on the accuracy and reliability of gene expression data,” BMC Genomics 6(1), 72 (2005).
[CrossRef] [PubMed]

Cancer Res. (1)

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res. 63(9), 1999–2004 (2003).
[PubMed]

J. Am. Chem. Soc. (1)

T. A. Taton, G. Lu, and C. A. Mirkin, “Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes,” J. Am. Chem. Soc. 123(21), 5164–5165 (2001).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” J. Biomed. Opt. 12(3), 034007 (2007).
[CrossRef] [PubMed]

A. C. Curry, M. Crow, and A. Wax, “Molecular imaging of epidermal growth factor receptor in live cells with refractive index sensitivity using dark-field microspectroscopy and immunotargeted nanoparticles,” J. Biomed. Opt. 13(1), 014022 (2008).
[CrossRef] [PubMed]

J. Phys. Chem. B (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Laser Photon. Rev. (1)

A. Wax and K. Sokolov, “Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles,” Laser Photon. Rev. 3(1-2), 146–158 (2009).
[CrossRef]

Nano Lett. (2)

J. Becker, O. Schubert, and C. Sönnichsen, “Gold nanoparticle growth monitored in situ using a novel fast optical single-particle spectroscopy method,” Nano Lett. 7(6), 1664–1669 (2007).
[CrossRef] [PubMed]

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett. 5(5), 829–834 (2005).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23(6), 741–745 (2005).
[CrossRef] [PubMed]

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Opt. Express (4)

G. L. Liu, J. C. Doll, and L. P. Lee, “High-speed multispectral imaging of nanoplasmonic array,” Opt. Express 13(21), 8520–8525 (2005).
[CrossRef] [PubMed]

A. Curry, G. Nusz, A. Chilkoti, and A. Wax, “Substrate effect on refractive index dependence of plasmon resonance for individual silver nanoparticles observed using darkfield microspectroscopy,” Opt. Express 13(7), 2668–2677 (2005).
[CrossRef] [PubMed]

B. Ford, M. Descour, and R. Lynch, “Large-image-format computed tomography imaging spectrometer for fluorescence microscopy,” Opt. Express 9(9), 444–453 (2001).
[CrossRef] [PubMed]

A. Dubois, J. Moreau, and C. Boccara, “Spectroscopic ultrahigh-resolution full-field optical coherence microscopy,” Opt. Express 16(21), 17082–17091 (2008).
[CrossRef] [PubMed]

Opt. Lett. (1)

R. Vander and S. G. Lipson, “High-resolution surface-plasmon resonance real-time imaging,” Opt. Lett. 34(1), 37–39 (2009).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, “Single-target molecule detection with nonbleaching multicolor optical immunolabels,” Proc. Natl. Acad. Sci. U.S.A. 97(3), 996–1001 (2000).
[CrossRef] [PubMed]

Other (1)

D. M. Haaland, J. A. Timlin, M. B. Sinclair, M. H. V. Benthem, M. J. Martinez, A. D. Aragon, and M. Werner-Washburne, “Multivariate curve resolution for hyperspectral image analysis: applications to microarray technology,” in Proc. SPIE, R. M. Levenson, G. H. Bearman, and A. Mahadevan-Jansen, eds. (San Jose, CA, USA 2003), p. 55.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic diagram of the imaging Fourier transform spectrometer consisted of a dark-field microscope and a Michelson interferometer. M1, M2, M3: mirrors, BS: beam-splitter; CCD: charge-coupled device camera. (b) Example interferogram of a 532.1nm laser. (c) Spectrum of the laser is obtained by taking Fourier transform of the interferogram. The spectral resolution, Δk, is measured from the FWHM of the laser spectrum. (d) Spectral resolution of the HSIS at 532.1 nm versus OPD range. The dashed line and red squares represent theoretical and experimental values, respectively.

Fig. 2
Fig. 2

(a) Geometry of an off-axis ray shows its OPD step size of 2dcos(ϕ). (b) Spectrum of the light source through a bandpass filter measured by the commercial imaging spectrograph (black) and those at four pixels in a hyperspectral image measured by the HSIS. The spectra from the upper-left, upper-right, bottom-left and bottom-right corners are plotted in red, green, blue and pink lines, respectively.

Fig. 3
Fig. 3

Color images of (a) 40 nm gold (b) 40 nm silver and (c) 80 nm silver. Average scattering spectra of 40 nm gold (green lines), 40 nm silver (blue lines) and 80 nm silver (red lines) nanoparticles measured by (d) the commercial imaging spectrograph and (e) the HSIS. (f) Scattering spectra of a single 40 nm gold nanoparticle predicted by Mie theory (blue line) and measured by the commercial imaging spectrograph (red line) and the HSIS (green line).

Fig. 4
Fig. 4

(a) False-color image of mixed PNPs immobilized on a slide. Scale bar is 100 μm. (b) Spectra of mixed PNPs with different concentration ratios and corresponding fitting results (dashed lines). (c) Extracted weights of silver and gold PNPs on glass surface show a linear correlation between silver/gold intensity ratios and concentration ratios. Error bars represent the standard deviation among three different fields of views.

Fig. 5
Fig. 5

(a) Scattering spectra of one silver nanoparticle immersed in solutions with different refractive indices. (b) Center-of-mass wavelengths calculated from (a) correlate linearly with the refractive indices of the solutions. (c) The average shift in spectral center of mass correlates linearly with changes in refractive index of the medium. The error bars are standard deviations among 20 nanoparticles.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Spectral center of mass = ( λ 1 I 1 + λ 2 I 2 + + λ n I n ) / ( I 1 + I 2 + + I n ) ,

Metrics