Abstract

Multi-µJ narrow-bandwidth (≈ 10 cm−1) picosecond pulses, broadly tunable in the visible-UV range (320-520 nm), are generated by spectral compression of femtosecond pulses emitted by an amplified Ti:sapphire system. Such pulses provide the ideal Raman pump for broadband femtosecond stimulated Raman spectroscopy, as here demonstrated on a heme protein.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods,” Rev. Sci. Instrum. 75(11), 4971–4980 (2004).
    [CrossRef]
  2. P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Anal. Chem. 78(17), 5952–5959 (2006).
    [CrossRef]
  3. P. Kukura, D. W. McCamant, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Annu. Rev. Phys. Chem. 58(1), 461–488 (2007).
    [CrossRef]
  4. P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, “Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman,” Science 310(5750), 1006–1009 (2005).
    [CrossRef] [PubMed]
  5. C. Fang, R. R. Frontiera, R. Tran, and R. A. Mathies, “Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy,” Nature 462(7270), 200–204 (2009).
    [CrossRef] [PubMed]
  6. D. W. McCamant, P. Kukura, and R. A. Mathies, “Femtosecond stimulated Raman study of excited-state evolution in bacteriorhodopsin,” J. Phys. Chem. B 109(20), 10449–10457 (2005).
    [CrossRef]
  7. F. Raoult, A. C. L. Boscheron, D. Husson, C. Sauteret, A. Modena, V. Malka, F. Dorchies, and A. Migus, “Efficient generation of narrow-bandwidth picosecond pulses by frequency doubling of femtosecond chirped pulses,” Opt. Lett. 23(14), 1117–1119 (1998).
    [CrossRef]
  8. S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated Raman spectrograph for the near ultraviolet,” Appl. Phys. B 85(4), 557–564 (2006).
    [CrossRef]
  9. S. Shim and R. A. Mathies, “Generation of narrow-bandwidth picosecond visible pulses from broadband femtosecond pulses for femtosecond stimulated Raman,” Appl. Phys. Lett. 89(12), 121124 (2006).
    [CrossRef]
  10. D. T. Co, J. V. Lockard, D. W. McCamant, and M. R. Wasielewski, “Narrow-bandwidth tunable picosecond pulses in the visible produced by noncollinear optical parametric amplification with a chirped blue pump,” Appl. Opt. 49(10), 1880–1885 (2010).
    [CrossRef] [PubMed]
  11. A. Weigel and N. P. Ernsting, “Excited stilbene: intramolecular vibrational redistribution and solvation studied by femtosecond stimulated Raman spectroscopy,” J. Phys. Chem. B 114(23), 7879–7893 (2010).
    [CrossRef] [PubMed]
  12. T. C. Gunaratne, M. Milliken, J. R. Challa, and M. C. Simpson, “Tunable ultrafast infrared/visible laser to probe vibrational dynamics,” Appl. Opt. 45(3), 558–564 (2006).
    [CrossRef] [PubMed]
  13. M. A. Marangoni, D. Brida, M. Quintavalle, G. Cirmi, F. M. Pigozzo, C. Manzoni, F. Baronio, A. D. Capobianco, and G. Cerullo, “Narrow-bandwidth picosecond pulses by spectral compression of femtosecond pulses in second-order nonlinear crystals,” Opt. Express 15(14), 8884–8891 (2007).
    [CrossRef] [PubMed]
  14. M. Marangoni, D. Brida, M. Conforti, A. D. Capobianco, C. Manzoni, F. Baronio, G. F. Nalesso, C. De Angelis, R. Ramponi, and G. Cerullo, “Synthesis of picosecond pulses by spectral compression and shaping of femtosecond pulses in engineered quadratic nonlinear media,” Opt. Lett. 34(3), 241–243 (2009).
    [CrossRef] [PubMed]
  15. M. Marangoni, A. Gambetta, C. Manzoni, V. Kumar, R. Ramponi, and G. Cerullo, “Fiber-format CARS spectroscopy by spectral compression of femtosecond pulses from a single laser oscillator,” Opt. Lett. 34(21), 3262–3264 (2009).
    [CrossRef] [PubMed]
  16. K. Moutzouris, E. Adler, F. Sotier, D. Träutlein, and A. Leitenstorfer, “Multimilliwatt ultrashort pulses continuously tunable in the visible from a compact fiber source,” Opt. Lett. 31(8), 1148–1150 (2006).
    [CrossRef] [PubMed]
  17. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
    [CrossRef]
  18. L. Torner, D. Mazilu, and D. Mihalache, “Walking Solitons in quadratic nonlinear media,” Phys. Rev. Lett. 77(12), 2455–2458 (1996).
    [CrossRef] [PubMed]
  19. S. R. Greenfield and M. R. Wasielewski, “Near-transform-limited visible and near-IR femtosecond pulses from optical parametric amplification using Type II β-barium borate,” Opt. Lett. 20(12), 1394–1396 (1995).
    [CrossRef] [PubMed]
  20. S. R. Greenfield and M. R. Wasielewski, “Optical parametric amplification of femtosecond pulses tunable from the blue to the infrared with microjoule energies,” Appl. Opt. 34(15), 2688–2691 (1995).
    [CrossRef] [PubMed]
  21. M. Brunori, “Myoglobin strikes back,” Protein Sci. 19(2), 195–201 (2010).
    [CrossRef]
  22. S. Hu, K. M. Smith, and T. G. Spiro, “Assignment of Protoheme Resonance Raman Spectrum by Heme Labeling in Myoglobin,” J. Am. Chem. Soc. 118(50), 12638–12646 (1996).
    [CrossRef]
  23. S. Kruglik, J-C. Lambry, J-L. Martin, M. Vos, and M. Negrerie, “Sub-picosecond Raman spectrometer for time-resolved studies of structural dynamics in heme proteins,” J. Raman Spectro. doi: (2010).

2010 (4)

A. Weigel and N. P. Ernsting, “Excited stilbene: intramolecular vibrational redistribution and solvation studied by femtosecond stimulated Raman spectroscopy,” J. Phys. Chem. B 114(23), 7879–7893 (2010).
[CrossRef] [PubMed]

M. Brunori, “Myoglobin strikes back,” Protein Sci. 19(2), 195–201 (2010).
[CrossRef]

S. Kruglik, J-C. Lambry, J-L. Martin, M. Vos, and M. Negrerie, “Sub-picosecond Raman spectrometer for time-resolved studies of structural dynamics in heme proteins,” J. Raman Spectro. doi: (2010).

D. T. Co, J. V. Lockard, D. W. McCamant, and M. R. Wasielewski, “Narrow-bandwidth tunable picosecond pulses in the visible produced by noncollinear optical parametric amplification with a chirped blue pump,” Appl. Opt. 49(10), 1880–1885 (2010).
[CrossRef] [PubMed]

2009 (3)

2007 (2)

2006 (5)

T. C. Gunaratne, M. Milliken, J. R. Challa, and M. C. Simpson, “Tunable ultrafast infrared/visible laser to probe vibrational dynamics,” Appl. Opt. 45(3), 558–564 (2006).
[CrossRef] [PubMed]

K. Moutzouris, E. Adler, F. Sotier, D. Träutlein, and A. Leitenstorfer, “Multimilliwatt ultrashort pulses continuously tunable in the visible from a compact fiber source,” Opt. Lett. 31(8), 1148–1150 (2006).
[CrossRef] [PubMed]

P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Anal. Chem. 78(17), 5952–5959 (2006).
[CrossRef]

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated Raman spectrograph for the near ultraviolet,” Appl. Phys. B 85(4), 557–564 (2006).
[CrossRef]

S. Shim and R. A. Mathies, “Generation of narrow-bandwidth picosecond visible pulses from broadband femtosecond pulses for femtosecond stimulated Raman,” Appl. Phys. Lett. 89(12), 121124 (2006).
[CrossRef]

2005 (2)

P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, “Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman,” Science 310(5750), 1006–1009 (2005).
[CrossRef] [PubMed]

D. W. McCamant, P. Kukura, and R. A. Mathies, “Femtosecond stimulated Raman study of excited-state evolution in bacteriorhodopsin,” J. Phys. Chem. B 109(20), 10449–10457 (2005).
[CrossRef]

2004 (1)

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods,” Rev. Sci. Instrum. 75(11), 4971–4980 (2004).
[CrossRef]

1998 (1)

1996 (2)

S. Hu, K. M. Smith, and T. G. Spiro, “Assignment of Protoheme Resonance Raman Spectrum by Heme Labeling in Myoglobin,” J. Am. Chem. Soc. 118(50), 12638–12646 (1996).
[CrossRef]

L. Torner, D. Mazilu, and D. Mihalache, “Walking Solitons in quadratic nonlinear media,” Phys. Rev. Lett. 77(12), 2455–2458 (1996).
[CrossRef] [PubMed]

1995 (2)

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Adler, E.

Baronio, F.

Boscheron, A. C. L.

Brida, D.

Brunori, M.

M. Brunori, “Myoglobin strikes back,” Protein Sci. 19(2), 195–201 (2010).
[CrossRef]

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Capobianco, A. D.

Cerullo, G.

Challa, J. R.

Cirmi, G.

Co, D. T.

Conforti, M.

De Angelis, C.

Dorchies, F.

Ernsting, N. P.

A. Weigel and N. P. Ernsting, “Excited stilbene: intramolecular vibrational redistribution and solvation studied by femtosecond stimulated Raman spectroscopy,” J. Phys. Chem. B 114(23), 7879–7893 (2010).
[CrossRef] [PubMed]

Fang, C.

C. Fang, R. R. Frontiera, R. Tran, and R. A. Mathies, “Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy,” Nature 462(7270), 200–204 (2009).
[CrossRef] [PubMed]

Fejer, M. M.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Frontiera, R. R.

C. Fang, R. R. Frontiera, R. Tran, and R. A. Mathies, “Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy,” Nature 462(7270), 200–204 (2009).
[CrossRef] [PubMed]

Gambetta, A.

Gilch, P.

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated Raman spectrograph for the near ultraviolet,” Appl. Phys. B 85(4), 557–564 (2006).
[CrossRef]

Greenfield, S. R.

Gunaratne, T. C.

Hu, S.

S. Hu, K. M. Smith, and T. G. Spiro, “Assignment of Protoheme Resonance Raman Spectrum by Heme Labeling in Myoglobin,” J. Am. Chem. Soc. 118(50), 12638–12646 (1996).
[CrossRef]

Husson, D.

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Kruglik, S.

S. Kruglik, J-C. Lambry, J-L. Martin, M. Vos, and M. Negrerie, “Sub-picosecond Raman spectrometer for time-resolved studies of structural dynamics in heme proteins,” J. Raman Spectro. doi: (2010).

Kukura, P.

P. Kukura, D. W. McCamant, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Annu. Rev. Phys. Chem. 58(1), 461–488 (2007).
[CrossRef]

P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Anal. Chem. 78(17), 5952–5959 (2006).
[CrossRef]

P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, “Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman,” Science 310(5750), 1006–1009 (2005).
[CrossRef] [PubMed]

D. W. McCamant, P. Kukura, and R. A. Mathies, “Femtosecond stimulated Raman study of excited-state evolution in bacteriorhodopsin,” J. Phys. Chem. B 109(20), 10449–10457 (2005).
[CrossRef]

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods,” Rev. Sci. Instrum. 75(11), 4971–4980 (2004).
[CrossRef]

Kumar, V.

Laimgruber, S.

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated Raman spectrograph for the near ultraviolet,” Appl. Phys. B 85(4), 557–564 (2006).
[CrossRef]

Lambry, J-C.

S. Kruglik, J-C. Lambry, J-L. Martin, M. Vos, and M. Negrerie, “Sub-picosecond Raman spectrometer for time-resolved studies of structural dynamics in heme proteins,” J. Raman Spectro. doi: (2010).

Leitenstorfer, A.

Lockard, J. V.

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Malka, V.

Manzoni, C.

Marangoni, M.

Marangoni, M. A.

Martin, J-L.

S. Kruglik, J-C. Lambry, J-L. Martin, M. Vos, and M. Negrerie, “Sub-picosecond Raman spectrometer for time-resolved studies of structural dynamics in heme proteins,” J. Raman Spectro. doi: (2010).

Mathies, R. A.

C. Fang, R. R. Frontiera, R. Tran, and R. A. Mathies, “Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy,” Nature 462(7270), 200–204 (2009).
[CrossRef] [PubMed]

P. Kukura, D. W. McCamant, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Annu. Rev. Phys. Chem. 58(1), 461–488 (2007).
[CrossRef]

P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Anal. Chem. 78(17), 5952–5959 (2006).
[CrossRef]

S. Shim and R. A. Mathies, “Generation of narrow-bandwidth picosecond visible pulses from broadband femtosecond pulses for femtosecond stimulated Raman,” Appl. Phys. Lett. 89(12), 121124 (2006).
[CrossRef]

D. W. McCamant, P. Kukura, and R. A. Mathies, “Femtosecond stimulated Raman study of excited-state evolution in bacteriorhodopsin,” J. Phys. Chem. B 109(20), 10449–10457 (2005).
[CrossRef]

P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, “Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman,” Science 310(5750), 1006–1009 (2005).
[CrossRef] [PubMed]

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods,” Rev. Sci. Instrum. 75(11), 4971–4980 (2004).
[CrossRef]

Mazilu, D.

L. Torner, D. Mazilu, and D. Mihalache, “Walking Solitons in quadratic nonlinear media,” Phys. Rev. Lett. 77(12), 2455–2458 (1996).
[CrossRef] [PubMed]

McCamant, D. W.

D. T. Co, J. V. Lockard, D. W. McCamant, and M. R. Wasielewski, “Narrow-bandwidth tunable picosecond pulses in the visible produced by noncollinear optical parametric amplification with a chirped blue pump,” Appl. Opt. 49(10), 1880–1885 (2010).
[CrossRef] [PubMed]

P. Kukura, D. W. McCamant, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Annu. Rev. Phys. Chem. 58(1), 461–488 (2007).
[CrossRef]

P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, “Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman,” Science 310(5750), 1006–1009 (2005).
[CrossRef] [PubMed]

D. W. McCamant, P. Kukura, and R. A. Mathies, “Femtosecond stimulated Raman study of excited-state evolution in bacteriorhodopsin,” J. Phys. Chem. B 109(20), 10449–10457 (2005).
[CrossRef]

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods,” Rev. Sci. Instrum. 75(11), 4971–4980 (2004).
[CrossRef]

Migus, A.

Mihalache, D.

L. Torner, D. Mazilu, and D. Mihalache, “Walking Solitons in quadratic nonlinear media,” Phys. Rev. Lett. 77(12), 2455–2458 (1996).
[CrossRef] [PubMed]

Milliken, M.

Modena, A.

Moutzouris, K.

Nalesso, G. F.

Negrerie, M.

S. Kruglik, J-C. Lambry, J-L. Martin, M. Vos, and M. Negrerie, “Sub-picosecond Raman spectrometer for time-resolved studies of structural dynamics in heme proteins,” J. Raman Spectro. doi: (2010).

Pigozzo, F. M.

Quintavalle, M.

Ramponi, R.

Raoult, F.

Sauteret, C.

Schachenmayr, H.

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated Raman spectrograph for the near ultraviolet,” Appl. Phys. B 85(4), 557–564 (2006).
[CrossRef]

Schmidt, B.

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated Raman spectrograph for the near ultraviolet,” Appl. Phys. B 85(4), 557–564 (2006).
[CrossRef]

Shim, S.

S. Shim and R. A. Mathies, “Generation of narrow-bandwidth picosecond visible pulses from broadband femtosecond pulses for femtosecond stimulated Raman,” Appl. Phys. Lett. 89(12), 121124 (2006).
[CrossRef]

Simpson, M. C.

Smith, K. M.

S. Hu, K. M. Smith, and T. G. Spiro, “Assignment of Protoheme Resonance Raman Spectrum by Heme Labeling in Myoglobin,” J. Am. Chem. Soc. 118(50), 12638–12646 (1996).
[CrossRef]

Sotier, F.

Spiro, T. G.

S. Hu, K. M. Smith, and T. G. Spiro, “Assignment of Protoheme Resonance Raman Spectrum by Heme Labeling in Myoglobin,” J. Am. Chem. Soc. 118(50), 12638–12646 (1996).
[CrossRef]

Torner, L.

L. Torner, D. Mazilu, and D. Mihalache, “Walking Solitons in quadratic nonlinear media,” Phys. Rev. Lett. 77(12), 2455–2458 (1996).
[CrossRef] [PubMed]

Tran, R.

C. Fang, R. R. Frontiera, R. Tran, and R. A. Mathies, “Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy,” Nature 462(7270), 200–204 (2009).
[CrossRef] [PubMed]

Träutlein, D.

Vos, M.

S. Kruglik, J-C. Lambry, J-L. Martin, M. Vos, and M. Negrerie, “Sub-picosecond Raman spectrometer for time-resolved studies of structural dynamics in heme proteins,” J. Raman Spectro. doi: (2010).

Wandschneider, D. B.

P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, “Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman,” Science 310(5750), 1006–1009 (2005).
[CrossRef] [PubMed]

Wasielewski, M. R.

Weigel, A.

A. Weigel and N. P. Ernsting, “Excited stilbene: intramolecular vibrational redistribution and solvation studied by femtosecond stimulated Raman spectroscopy,” J. Phys. Chem. B 114(23), 7879–7893 (2010).
[CrossRef] [PubMed]

Yoon, S.

P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Anal. Chem. 78(17), 5952–5959 (2006).
[CrossRef]

P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, “Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman,” Science 310(5750), 1006–1009 (2005).
[CrossRef] [PubMed]

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods,” Rev. Sci. Instrum. 75(11), 4971–4980 (2004).
[CrossRef]

Zinth, W.

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated Raman spectrograph for the near ultraviolet,” Appl. Phys. B 85(4), 557–564 (2006).
[CrossRef]

Anal. Chem. (1)

P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Anal. Chem. 78(17), 5952–5959 (2006).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

P. Kukura, D. W. McCamant, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Annu. Rev. Phys. Chem. 58(1), 461–488 (2007).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (1)

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated Raman spectrograph for the near ultraviolet,” Appl. Phys. B 85(4), 557–564 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

S. Shim and R. A. Mathies, “Generation of narrow-bandwidth picosecond visible pulses from broadband femtosecond pulses for femtosecond stimulated Raman,” Appl. Phys. Lett. 89(12), 121124 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

J. Am. Chem. Soc. (1)

S. Hu, K. M. Smith, and T. G. Spiro, “Assignment of Protoheme Resonance Raman Spectrum by Heme Labeling in Myoglobin,” J. Am. Chem. Soc. 118(50), 12638–12646 (1996).
[CrossRef]

J. Phys. Chem. B (2)

A. Weigel and N. P. Ernsting, “Excited stilbene: intramolecular vibrational redistribution and solvation studied by femtosecond stimulated Raman spectroscopy,” J. Phys. Chem. B 114(23), 7879–7893 (2010).
[CrossRef] [PubMed]

D. W. McCamant, P. Kukura, and R. A. Mathies, “Femtosecond stimulated Raman study of excited-state evolution in bacteriorhodopsin,” J. Phys. Chem. B 109(20), 10449–10457 (2005).
[CrossRef]

J. Raman Spectro. (1)

S. Kruglik, J-C. Lambry, J-L. Martin, M. Vos, and M. Negrerie, “Sub-picosecond Raman spectrometer for time-resolved studies of structural dynamics in heme proteins,” J. Raman Spectro. doi: (2010).

Nature (1)

C. Fang, R. R. Frontiera, R. Tran, and R. A. Mathies, “Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy,” Nature 462(7270), 200–204 (2009).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (5)

Phys. Rev. Lett. (1)

L. Torner, D. Mazilu, and D. Mihalache, “Walking Solitons in quadratic nonlinear media,” Phys. Rev. Lett. 77(12), 2455–2458 (1996).
[CrossRef] [PubMed]

Protein Sci. (1)

M. Brunori, “Myoglobin strikes back,” Protein Sci. 19(2), 195–201 (2010).
[CrossRef]

Rev. Sci. Instrum. (1)

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods,” Rev. Sci. Instrum. 75(11), 4971–4980 (2004).
[CrossRef]

Science (1)

P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, “Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman,” Science 310(5750), 1006–1009 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup for FSRS using tunable narrowband pulses generated by SC. CPA: chirped pulse amplification; WLG: white light generation; VA: variable attenuator flip mirror (FM). Alternate use of the two FM allows to select each of the two layouts described in the text.

Fig. 2
Fig. 2

(a) Simulated spectra (black solid lines) obtained by SC in BBO, starting from the FF spectrum shown in red dashed line; inset blow up of a spectrum with a FWHM of 7.9 cm−1. (b) Measured SH spectra (black solid lines) and FF spectrum (red dashed line).

Fig. 3
Fig. 3

(a) Sequence of tunable narrowband spectra obtained by SC of the visible OPA; (b) measured pulse bandwidths (red circles) after deconvolution with the instrumental response compared to the bandwidths expected from theory (dashed lines) and energy tuning curve (blue squares) for a fixed 12-µJ OPA energy, which provides the best spectral narrowing conditions.

Fig. 4
Fig. 4

(a) SRS spectrum of cyclohexane using a 415-nm, 1-μJ Raman pump and Stokes generated by WLC in CaF2, 10 seconds integration; (b) same as (a) using a 470-nm Raman pump and WLC in sapphire; (c) CW Raman spectrum of cyclohexane.

Fig. 5
Fig. 5

SRS (a) and CW (b) spectrum of ferric horse heart myoglobin (met Mb).

Metrics