Abstract

High-sensitivity (ng/cm2) optical detection of the explosive 2,4,6-trinitrotoluene (TNT) is demonstrated using photodissociation followed by laser-induced fluorescence (PD-LIF). Detection occurs rapidly, within 6 laser pulses (~7 ns each) at a range of 15 cm. Dropcasting is used to create calibrated samples covering a wide range of TNT concentrations; and a correspondence between fractional area covered by TNT and PD-LIF signal strength is observed. Dropcast data are compared to that of an actual fingerprint. These results demonstrate that PD-LIF could be a viable means of rapidly and remotely scanning surfaces for trace explosive residues.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Mostak, in Vapour and Trace Detection of Explosives for Anti-Terrorism Purposes: NATO Science Series II. Mathematics, Physics, and Chemistry – Vol. 167 M. Krausa and A. A. Reznev ed. (Kluwer Academic Publishers, Netherlands, 2004) pp. 23–30.
  2. S. Grossman, “Determination of 2,4,6-trinitrotoluene surface contamination on M107 artillery projectiles and sampling method evaluation,” Proc. SPIE 5794, 717–723 (2005).
    [CrossRef]
  3. J. C. Oxley, J. L. Smith, E. Resende, E. Pearce, and T. Chamberlain, “Trends in explosive contamination,” J. Forensic Sci. 48(2), 334–342 (2003).
    [PubMed]
  4. T. Tamiri, R. Rozin, N. Lemberger, and J. Almog, “Urea nitrate, an exceptionally easy-to-make improvised explosive: studies towards trace characterization,” Anal. Bioanal. Chem. 395(2), 421–428 (2009).
    [CrossRef] [PubMed]
  5. K. Yaeger, in Trace Chemical Sensing of Explosives R. Woodfin, ed. (Wiley, NY, 2007) Chap. 3.
  6. D. S. Moore, “Instrumentation for trace detection of high explosives,” Rev. Sci. Instrum. 75, 2499–2512 (2004).
    [CrossRef]
  7. A. Mukherjee, S. Von der Porten, C. K. Patel, and N. Patel, “Standoff detection of explosive substances at distances of up to 150 m,” Appl. Opt. 49(11), 2072–2078 (2010).
    [CrossRef] [PubMed]
  8. J. I. Steinfeld and J. Wormhoudt, “Explosives detection: a challenge for physical chemistry,” Annu. Rev. Phys. Chem. 49(1), 203–232 (1998).
    [CrossRef] [PubMed]
  9. National Research Council, Existing and Potential Standoff Explosive Detection Techniques (The National Academies Press, 2004).
  10. T. Arusi-Parpar, D. Heflinger, and R. Lavi, “Photodissociation followed by laser-induced fluorescence at atmospheric pressure and 24 degrees C: a unique scheme for remote detection of explosives,” Appl. Opt. 40(36), 6677–6681 (2001).
    [CrossRef] [PubMed]
  11. D. Helfinger, T. Arusi-Parpar, Y. Ron, and R. Lavi, “Application of a unique scheme for remote detection of explosives,” Opt. Commun. 204(1-6), 327–331 (2002).
    [CrossRef]
  12. C. M. Wynn, S. Palmacci, R. R. Kunz, K. Clow, and M. Rothschild, “Detection of condensed-phase explosives via laser-induced vaporization, photodissociation, and resonant excitation,” Appl. Opt. 47(31), 5767–5776 (2008).
    [CrossRef] [PubMed]
  13. C. M. Wynn, S. Palmacci, R. R. Kunz, and M. Rothschild, “Noncontact detection of homemade explosive constituents via photodissociation followed by laser-induced fluorescence,” Opt. Express 18(6), 5399–5406 (2010).
    [CrossRef] [PubMed]
  14. P. Meakin, “Droplet deposition growth and coalescence,” Rep. Prog. Phys. 55(2), 157–240 (1992).
    [CrossRef]
  15. J. R. Verkouteren, J. L. Coleman, and I. Cho, “Automated mapping of explosives particles in composition C-4 fingerprints,” J. Forensic Sci. 55(2), 334–340 (2010).
    [CrossRef] [PubMed]
  16. S. Wallin, A. Pettersson, H. Ostmark, and A. Hobro, “Laser-based standoff detection of explosives: a critical review,” Anal. Bioanal. Chem. 395(2), 259–274 (2009).
    [CrossRef] [PubMed]
  17. M. Abdelhamid, F. J. Fortes, M. A. Harith, and J. J. Laserna, “Analysis of explosive residues in human fingerprints using optical catapulting-laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 26(7), 1445–1450 (2011).
    [CrossRef]
  18. C. M. Wynn, S. Palmacci, R. R. Kunz, J. J. Zayhowski, B. Edwards, and M. Rothschild, “Experimental demonstration of remote detection of trace explosives,” Proc. SPIE 6954, 695407, 695407-8 (2008).
    [CrossRef]

2011 (1)

M. Abdelhamid, F. J. Fortes, M. A. Harith, and J. J. Laserna, “Analysis of explosive residues in human fingerprints using optical catapulting-laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 26(7), 1445–1450 (2011).
[CrossRef]

2010 (3)

2009 (2)

T. Tamiri, R. Rozin, N. Lemberger, and J. Almog, “Urea nitrate, an exceptionally easy-to-make improvised explosive: studies towards trace characterization,” Anal. Bioanal. Chem. 395(2), 421–428 (2009).
[CrossRef] [PubMed]

S. Wallin, A. Pettersson, H. Ostmark, and A. Hobro, “Laser-based standoff detection of explosives: a critical review,” Anal. Bioanal. Chem. 395(2), 259–274 (2009).
[CrossRef] [PubMed]

2008 (2)

C. M. Wynn, S. Palmacci, R. R. Kunz, J. J. Zayhowski, B. Edwards, and M. Rothschild, “Experimental demonstration of remote detection of trace explosives,” Proc. SPIE 6954, 695407, 695407-8 (2008).
[CrossRef]

C. M. Wynn, S. Palmacci, R. R. Kunz, K. Clow, and M. Rothschild, “Detection of condensed-phase explosives via laser-induced vaporization, photodissociation, and resonant excitation,” Appl. Opt. 47(31), 5767–5776 (2008).
[CrossRef] [PubMed]

2005 (1)

S. Grossman, “Determination of 2,4,6-trinitrotoluene surface contamination on M107 artillery projectiles and sampling method evaluation,” Proc. SPIE 5794, 717–723 (2005).
[CrossRef]

2004 (1)

D. S. Moore, “Instrumentation for trace detection of high explosives,” Rev. Sci. Instrum. 75, 2499–2512 (2004).
[CrossRef]

2003 (1)

J. C. Oxley, J. L. Smith, E. Resende, E. Pearce, and T. Chamberlain, “Trends in explosive contamination,” J. Forensic Sci. 48(2), 334–342 (2003).
[PubMed]

2002 (1)

D. Helfinger, T. Arusi-Parpar, Y. Ron, and R. Lavi, “Application of a unique scheme for remote detection of explosives,” Opt. Commun. 204(1-6), 327–331 (2002).
[CrossRef]

2001 (1)

1998 (1)

J. I. Steinfeld and J. Wormhoudt, “Explosives detection: a challenge for physical chemistry,” Annu. Rev. Phys. Chem. 49(1), 203–232 (1998).
[CrossRef] [PubMed]

1992 (1)

P. Meakin, “Droplet deposition growth and coalescence,” Rep. Prog. Phys. 55(2), 157–240 (1992).
[CrossRef]

Abdelhamid, M.

M. Abdelhamid, F. J. Fortes, M. A. Harith, and J. J. Laserna, “Analysis of explosive residues in human fingerprints using optical catapulting-laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 26(7), 1445–1450 (2011).
[CrossRef]

Almog, J.

T. Tamiri, R. Rozin, N. Lemberger, and J. Almog, “Urea nitrate, an exceptionally easy-to-make improvised explosive: studies towards trace characterization,” Anal. Bioanal. Chem. 395(2), 421–428 (2009).
[CrossRef] [PubMed]

Arusi-Parpar, T.

Chamberlain, T.

J. C. Oxley, J. L. Smith, E. Resende, E. Pearce, and T. Chamberlain, “Trends in explosive contamination,” J. Forensic Sci. 48(2), 334–342 (2003).
[PubMed]

Cho, I.

J. R. Verkouteren, J. L. Coleman, and I. Cho, “Automated mapping of explosives particles in composition C-4 fingerprints,” J. Forensic Sci. 55(2), 334–340 (2010).
[CrossRef] [PubMed]

Clow, K.

Coleman, J. L.

J. R. Verkouteren, J. L. Coleman, and I. Cho, “Automated mapping of explosives particles in composition C-4 fingerprints,” J. Forensic Sci. 55(2), 334–340 (2010).
[CrossRef] [PubMed]

Edwards, B.

C. M. Wynn, S. Palmacci, R. R. Kunz, J. J. Zayhowski, B. Edwards, and M. Rothschild, “Experimental demonstration of remote detection of trace explosives,” Proc. SPIE 6954, 695407, 695407-8 (2008).
[CrossRef]

Fortes, F. J.

M. Abdelhamid, F. J. Fortes, M. A. Harith, and J. J. Laserna, “Analysis of explosive residues in human fingerprints using optical catapulting-laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 26(7), 1445–1450 (2011).
[CrossRef]

Grossman, S.

S. Grossman, “Determination of 2,4,6-trinitrotoluene surface contamination on M107 artillery projectiles and sampling method evaluation,” Proc. SPIE 5794, 717–723 (2005).
[CrossRef]

Harith, M. A.

M. Abdelhamid, F. J. Fortes, M. A. Harith, and J. J. Laserna, “Analysis of explosive residues in human fingerprints using optical catapulting-laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 26(7), 1445–1450 (2011).
[CrossRef]

Heflinger, D.

Helfinger, D.

D. Helfinger, T. Arusi-Parpar, Y. Ron, and R. Lavi, “Application of a unique scheme for remote detection of explosives,” Opt. Commun. 204(1-6), 327–331 (2002).
[CrossRef]

Hobro, A.

S. Wallin, A. Pettersson, H. Ostmark, and A. Hobro, “Laser-based standoff detection of explosives: a critical review,” Anal. Bioanal. Chem. 395(2), 259–274 (2009).
[CrossRef] [PubMed]

Kunz, R. R.

Laserna, J. J.

M. Abdelhamid, F. J. Fortes, M. A. Harith, and J. J. Laserna, “Analysis of explosive residues in human fingerprints using optical catapulting-laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 26(7), 1445–1450 (2011).
[CrossRef]

Lavi, R.

Lemberger, N.

T. Tamiri, R. Rozin, N. Lemberger, and J. Almog, “Urea nitrate, an exceptionally easy-to-make improvised explosive: studies towards trace characterization,” Anal. Bioanal. Chem. 395(2), 421–428 (2009).
[CrossRef] [PubMed]

Meakin, P.

P. Meakin, “Droplet deposition growth and coalescence,” Rep. Prog. Phys. 55(2), 157–240 (1992).
[CrossRef]

Moore, D. S.

D. S. Moore, “Instrumentation for trace detection of high explosives,” Rev. Sci. Instrum. 75, 2499–2512 (2004).
[CrossRef]

Mukherjee, A.

Ostmark, H.

S. Wallin, A. Pettersson, H. Ostmark, and A. Hobro, “Laser-based standoff detection of explosives: a critical review,” Anal. Bioanal. Chem. 395(2), 259–274 (2009).
[CrossRef] [PubMed]

Oxley, J. C.

J. C. Oxley, J. L. Smith, E. Resende, E. Pearce, and T. Chamberlain, “Trends in explosive contamination,” J. Forensic Sci. 48(2), 334–342 (2003).
[PubMed]

Palmacci, S.

Patel, C. K.

Patel, N.

Pearce, E.

J. C. Oxley, J. L. Smith, E. Resende, E. Pearce, and T. Chamberlain, “Trends in explosive contamination,” J. Forensic Sci. 48(2), 334–342 (2003).
[PubMed]

Pettersson, A.

S. Wallin, A. Pettersson, H. Ostmark, and A. Hobro, “Laser-based standoff detection of explosives: a critical review,” Anal. Bioanal. Chem. 395(2), 259–274 (2009).
[CrossRef] [PubMed]

Resende, E.

J. C. Oxley, J. L. Smith, E. Resende, E. Pearce, and T. Chamberlain, “Trends in explosive contamination,” J. Forensic Sci. 48(2), 334–342 (2003).
[PubMed]

Ron, Y.

D. Helfinger, T. Arusi-Parpar, Y. Ron, and R. Lavi, “Application of a unique scheme for remote detection of explosives,” Opt. Commun. 204(1-6), 327–331 (2002).
[CrossRef]

Rothschild, M.

Rozin, R.

T. Tamiri, R. Rozin, N. Lemberger, and J. Almog, “Urea nitrate, an exceptionally easy-to-make improvised explosive: studies towards trace characterization,” Anal. Bioanal. Chem. 395(2), 421–428 (2009).
[CrossRef] [PubMed]

Smith, J. L.

J. C. Oxley, J. L. Smith, E. Resende, E. Pearce, and T. Chamberlain, “Trends in explosive contamination,” J. Forensic Sci. 48(2), 334–342 (2003).
[PubMed]

Steinfeld, J. I.

J. I. Steinfeld and J. Wormhoudt, “Explosives detection: a challenge for physical chemistry,” Annu. Rev. Phys. Chem. 49(1), 203–232 (1998).
[CrossRef] [PubMed]

Tamiri, T.

T. Tamiri, R. Rozin, N. Lemberger, and J. Almog, “Urea nitrate, an exceptionally easy-to-make improvised explosive: studies towards trace characterization,” Anal. Bioanal. Chem. 395(2), 421–428 (2009).
[CrossRef] [PubMed]

Verkouteren, J. R.

J. R. Verkouteren, J. L. Coleman, and I. Cho, “Automated mapping of explosives particles in composition C-4 fingerprints,” J. Forensic Sci. 55(2), 334–340 (2010).
[CrossRef] [PubMed]

Von der Porten, S.

Wallin, S.

S. Wallin, A. Pettersson, H. Ostmark, and A. Hobro, “Laser-based standoff detection of explosives: a critical review,” Anal. Bioanal. Chem. 395(2), 259–274 (2009).
[CrossRef] [PubMed]

Wormhoudt, J.

J. I. Steinfeld and J. Wormhoudt, “Explosives detection: a challenge for physical chemistry,” Annu. Rev. Phys. Chem. 49(1), 203–232 (1998).
[CrossRef] [PubMed]

Wynn, C. M.

Zayhowski, J. J.

C. M. Wynn, S. Palmacci, R. R. Kunz, J. J. Zayhowski, B. Edwards, and M. Rothschild, “Experimental demonstration of remote detection of trace explosives,” Proc. SPIE 6954, 695407, 695407-8 (2008).
[CrossRef]

Anal. Bioanal. Chem. (2)

T. Tamiri, R. Rozin, N. Lemberger, and J. Almog, “Urea nitrate, an exceptionally easy-to-make improvised explosive: studies towards trace characterization,” Anal. Bioanal. Chem. 395(2), 421–428 (2009).
[CrossRef] [PubMed]

S. Wallin, A. Pettersson, H. Ostmark, and A. Hobro, “Laser-based standoff detection of explosives: a critical review,” Anal. Bioanal. Chem. 395(2), 259–274 (2009).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem. (1)

J. I. Steinfeld and J. Wormhoudt, “Explosives detection: a challenge for physical chemistry,” Annu. Rev. Phys. Chem. 49(1), 203–232 (1998).
[CrossRef] [PubMed]

Appl. Opt. (3)

J. Anal. At. Spectrom. (1)

M. Abdelhamid, F. J. Fortes, M. A. Harith, and J. J. Laserna, “Analysis of explosive residues in human fingerprints using optical catapulting-laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 26(7), 1445–1450 (2011).
[CrossRef]

J. Forensic Sci. (2)

J. R. Verkouteren, J. L. Coleman, and I. Cho, “Automated mapping of explosives particles in composition C-4 fingerprints,” J. Forensic Sci. 55(2), 334–340 (2010).
[CrossRef] [PubMed]

J. C. Oxley, J. L. Smith, E. Resende, E. Pearce, and T. Chamberlain, “Trends in explosive contamination,” J. Forensic Sci. 48(2), 334–342 (2003).
[PubMed]

Opt. Commun. (1)

D. Helfinger, T. Arusi-Parpar, Y. Ron, and R. Lavi, “Application of a unique scheme for remote detection of explosives,” Opt. Commun. 204(1-6), 327–331 (2002).
[CrossRef]

Opt. Express (1)

Proc. SPIE (2)

C. M. Wynn, S. Palmacci, R. R. Kunz, J. J. Zayhowski, B. Edwards, and M. Rothschild, “Experimental demonstration of remote detection of trace explosives,” Proc. SPIE 6954, 695407, 695407-8 (2008).
[CrossRef]

S. Grossman, “Determination of 2,4,6-trinitrotoluene surface contamination on M107 artillery projectiles and sampling method evaluation,” Proc. SPIE 5794, 717–723 (2005).
[CrossRef]

Rep. Prog. Phys. (1)

P. Meakin, “Droplet deposition growth and coalescence,” Rep. Prog. Phys. 55(2), 157–240 (1992).
[CrossRef]

Rev. Sci. Instrum. (1)

D. S. Moore, “Instrumentation for trace detection of high explosives,” Rev. Sci. Instrum. 75, 2499–2512 (2004).
[CrossRef]

Other (3)

National Research Council, Existing and Potential Standoff Explosive Detection Techniques (The National Academies Press, 2004).

P. Mostak, in Vapour and Trace Detection of Explosives for Anti-Terrorism Purposes: NATO Science Series II. Mathematics, Physics, and Chemistry – Vol. 167 M. Krausa and A. A. Reznev ed. (Kluwer Academic Publishers, Netherlands, 2004) pp. 23–30.

K. Yaeger, in Trace Chemical Sensing of Explosives R. Woodfin, ed. (Wiley, NY, 2007) Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Optical microscope images of portions of (a) dropcast TNT with an overall areal concentration of 784 ng/cm2 (400 × 300 μm image) (b) actual generation 2 TNT fingerprint with an overall areal concentration of ~2000 ng/cm2 (726 × 544 μm image).

Fig. 2
Fig. 2

PD-LIF signal (left axis; red squares) and areal coverage A (right axis; blue circles) as a function of areal concentration (C) of dropcast TNT. ‘G2’ denotes a single point for an actual generation 2 TNT fingerprint with a C of ~2000 ng/cm2; PD-LIF signal is red and areal coverage is blue. Arrows are a guide indicating that for the generation 2 print both the PD-LIF signal and areal coverage are equivalent to a dropcast sample with C of ~10 ng/cm2. Inset: estimated number of particles (dropcast samples) per 1.9 mm2 as a function of C; solid line denotes a 1/C dependence.

Fig. 3
Fig. 3

Images of a generation 2 TNT fingerprint. (a) is a photograph; (b) is high-resolution PD-LIF signal (200 × 200 μm pixels); (c) is areal coverage, A, derived from microscope data (726 × 544 μm pixels); (d) is PD-LIF signal downsampled (726 × 544 μm pixels) from the high-resolution data.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A N C = 9 π / 2 3 ( V T n ) 2 / 3
A C = ( n n C ) 2 / 3 A N C
A T = 9 π / 2 3 V T 2/3 n C 1 / 3

Metrics