Abstract

The after-pulsing effect is a common problem that needs to be overcome for high-speed single-photon detection based on gated-mode single-photon avalanche photodiodes (SPADs). This paper presents a simple and practical method for suppression of the after-pulsing probability using an auxiliary signal to discriminate quite weak avalanches. The detection efficiency and after-pulse probability of an InGaAs/InP SPAD are investigated with a 10 MHz gating for conventional and proposed methods, and a sharp decrease of after-pulse probability is demonstrated with the application of the proposed method. At a gating frequency of 100 MHz, a detection efficiency of 10.4% is achieved with an after-pulse probability of 5.6% without dead time.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35(12), 1956–1976 (1996).
    [CrossRef] [PubMed]
  2. A. Lacaita, F. Zappa, S. Cova, and P. Lovati, “Single-photon detection beyond 1 µm: performance of commercially available InGaAs/lnP detectors,” Appl. Opt. 35(16), 2986–2996 (1996).
    [CrossRef] [PubMed]
  3. D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48(13), 1967–1981 (2001).
    [CrossRef]
  4. N. Namekata, Y. Makino, and S. Inoue, “Single-photon detector for long-distance fiber-optic quantum key distribution,” Opt. Lett. 27(11), 954–956 (2002).
    [CrossRef] [PubMed]
  5. M. Liu, C. Hu, J. C. Campbell, Z. Pan, and M. M. Tashima, “Reduce after-pulsing of single-photon avalanche diodes using passive quenching with active reset,” IEEE J. Quantum Electron. 44(5), 430–434 (2008).
    [CrossRef]
  6. N. Namekata, S. Sasamori, and S. Inoue, “800 MHz single-photon detection at 1550 nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating,” Opt. Express 14(21), 10043–10049 (2006).
    [CrossRef] [PubMed]
  7. Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High-speed single-photon detection in the near infrared,” Appl. Phys. Lett. 91(4), 041114 (2007).
    [CrossRef]
  8. J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast-gate rate ingaas/inp single-photon avalanche photodiodes,” Appl. Phys. Lett. 95(9), 091103 (2009).
    [CrossRef]
  9. N. Namekata, S. Adachi, and S. Inoue, “1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode,” Opt. Express 17(8), 6275–6282 (2009).
    [CrossRef] [PubMed]
  10. A. R. Dixon, J. F. Dynes, Z. L. Yuan, A. W. Sharpe, A. J. Bennett, and A. J. Shields, “Ultrashort dead time of photon-counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 94(23), 231113 (2009).
    [CrossRef]
  11. Z. L. Yuan, A. W. Sharpe, J. F. Dynes, A. R. Dixon, and A. J. Shields, “Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 96(7), 071101 (2010).
    [CrossRef]
  12. N. Namekata, G. Fujii, S. Inoue, T. Honjo, and H. Takesue, “Differential phase shift quantum key distribution using single-photon detectors based on a sinusoidally gated InGaAs/InP avalanche photodiodes,” Appl. Phys. Lett. 91(1), 011112 (2007).
    [CrossRef]
  13. Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92(20), 201104 (2008).
    [CrossRef]
  14. A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate,” Opt. Express 16(23), 18790–18797 (2008).
    [CrossRef] [PubMed]
  15. B. E. Kardynał, Z. L. Yuan, and A. J. Shields, “An avalanche-photodiode-based photon-number-resolving detector,” Nat. Photonics 2(7), 425–428 (2008).
    [CrossRef]

2010 (1)

Z. L. Yuan, A. W. Sharpe, J. F. Dynes, A. R. Dixon, and A. J. Shields, “Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 96(7), 071101 (2010).
[CrossRef]

2009 (3)

J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast-gate rate ingaas/inp single-photon avalanche photodiodes,” Appl. Phys. Lett. 95(9), 091103 (2009).
[CrossRef]

N. Namekata, S. Adachi, and S. Inoue, “1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode,” Opt. Express 17(8), 6275–6282 (2009).
[CrossRef] [PubMed]

A. R. Dixon, J. F. Dynes, Z. L. Yuan, A. W. Sharpe, A. J. Bennett, and A. J. Shields, “Ultrashort dead time of photon-counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 94(23), 231113 (2009).
[CrossRef]

2008 (4)

M. Liu, C. Hu, J. C. Campbell, Z. Pan, and M. M. Tashima, “Reduce after-pulsing of single-photon avalanche diodes using passive quenching with active reset,” IEEE J. Quantum Electron. 44(5), 430–434 (2008).
[CrossRef]

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92(20), 201104 (2008).
[CrossRef]

A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate,” Opt. Express 16(23), 18790–18797 (2008).
[CrossRef] [PubMed]

B. E. Kardynał, Z. L. Yuan, and A. J. Shields, “An avalanche-photodiode-based photon-number-resolving detector,” Nat. Photonics 2(7), 425–428 (2008).
[CrossRef]

2007 (2)

N. Namekata, G. Fujii, S. Inoue, T. Honjo, and H. Takesue, “Differential phase shift quantum key distribution using single-photon detectors based on a sinusoidally gated InGaAs/InP avalanche photodiodes,” Appl. Phys. Lett. 91(1), 011112 (2007).
[CrossRef]

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High-speed single-photon detection in the near infrared,” Appl. Phys. Lett. 91(4), 041114 (2007).
[CrossRef]

2006 (1)

2002 (1)

2001 (1)

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48(13), 1967–1981 (2001).
[CrossRef]

1996 (2)

Adachi, S.

Barreiro, C.

J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast-gate rate ingaas/inp single-photon avalanche photodiodes,” Appl. Phys. Lett. 95(9), 091103 (2009).
[CrossRef]

Bennett, A. J.

A. R. Dixon, J. F. Dynes, Z. L. Yuan, A. W. Sharpe, A. J. Bennett, and A. J. Shields, “Ultrashort dead time of photon-counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 94(23), 231113 (2009).
[CrossRef]

Campbell, J. C.

M. Liu, C. Hu, J. C. Campbell, Z. Pan, and M. M. Tashima, “Reduce after-pulsing of single-photon avalanche diodes using passive quenching with active reset,” IEEE J. Quantum Electron. 44(5), 430–434 (2008).
[CrossRef]

Cova, S.

Dixon, A. R.

Z. L. Yuan, A. W. Sharpe, J. F. Dynes, A. R. Dixon, and A. J. Shields, “Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 96(7), 071101 (2010).
[CrossRef]

A. R. Dixon, J. F. Dynes, Z. L. Yuan, A. W. Sharpe, A. J. Bennett, and A. J. Shields, “Ultrashort dead time of photon-counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 94(23), 231113 (2009).
[CrossRef]

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92(20), 201104 (2008).
[CrossRef]

A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate,” Opt. Express 16(23), 18790–18797 (2008).
[CrossRef] [PubMed]

Dynes, J. F.

Z. L. Yuan, A. W. Sharpe, J. F. Dynes, A. R. Dixon, and A. J. Shields, “Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 96(7), 071101 (2010).
[CrossRef]

A. R. Dixon, J. F. Dynes, Z. L. Yuan, A. W. Sharpe, A. J. Bennett, and A. J. Shields, “Ultrashort dead time of photon-counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 94(23), 231113 (2009).
[CrossRef]

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92(20), 201104 (2008).
[CrossRef]

A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate,” Opt. Express 16(23), 18790–18797 (2008).
[CrossRef] [PubMed]

Fujii, G.

N. Namekata, G. Fujii, S. Inoue, T. Honjo, and H. Takesue, “Differential phase shift quantum key distribution using single-photon detectors based on a sinusoidally gated InGaAs/InP avalanche photodiodes,” Appl. Phys. Lett. 91(1), 011112 (2007).
[CrossRef]

Ghioni, M.

Honjo, T.

N. Namekata, G. Fujii, S. Inoue, T. Honjo, and H. Takesue, “Differential phase shift quantum key distribution using single-photon detectors based on a sinusoidally gated InGaAs/InP avalanche photodiodes,” Appl. Phys. Lett. 91(1), 011112 (2007).
[CrossRef]

Hu, C.

M. Liu, C. Hu, J. C. Campbell, Z. Pan, and M. M. Tashima, “Reduce after-pulsing of single-photon avalanche diodes using passive quenching with active reset,” IEEE J. Quantum Electron. 44(5), 430–434 (2008).
[CrossRef]

Inoue, S.

Kardynal, B. E.

B. E. Kardynał, Z. L. Yuan, and A. J. Shields, “An avalanche-photodiode-based photon-number-resolving detector,” Nat. Photonics 2(7), 425–428 (2008).
[CrossRef]

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High-speed single-photon detection in the near infrared,” Appl. Phys. Lett. 91(4), 041114 (2007).
[CrossRef]

Lacaita, A.

Liu, M.

M. Liu, C. Hu, J. C. Campbell, Z. Pan, and M. M. Tashima, “Reduce after-pulsing of single-photon avalanche diodes using passive quenching with active reset,” IEEE J. Quantum Electron. 44(5), 430–434 (2008).
[CrossRef]

Lovati, P.

Makino, Y.

Namekata, N.

Pan, Z.

M. Liu, C. Hu, J. C. Campbell, Z. Pan, and M. M. Tashima, “Reduce after-pulsing of single-photon avalanche diodes using passive quenching with active reset,” IEEE J. Quantum Electron. 44(5), 430–434 (2008).
[CrossRef]

Rarity, J. G.

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48(13), 1967–1981 (2001).
[CrossRef]

Ribordy, G.

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48(13), 1967–1981 (2001).
[CrossRef]

Samori, C.

Sasamori, S.

Sharpe, A. W.

Z. L. Yuan, A. W. Sharpe, J. F. Dynes, A. R. Dixon, and A. J. Shields, “Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 96(7), 071101 (2010).
[CrossRef]

A. R. Dixon, J. F. Dynes, Z. L. Yuan, A. W. Sharpe, A. J. Bennett, and A. J. Shields, “Ultrashort dead time of photon-counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 94(23), 231113 (2009).
[CrossRef]

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92(20), 201104 (2008).
[CrossRef]

A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate,” Opt. Express 16(23), 18790–18797 (2008).
[CrossRef] [PubMed]

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High-speed single-photon detection in the near infrared,” Appl. Phys. Lett. 91(4), 041114 (2007).
[CrossRef]

Shields, A. J.

Z. L. Yuan, A. W. Sharpe, J. F. Dynes, A. R. Dixon, and A. J. Shields, “Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 96(7), 071101 (2010).
[CrossRef]

A. R. Dixon, J. F. Dynes, Z. L. Yuan, A. W. Sharpe, A. J. Bennett, and A. J. Shields, “Ultrashort dead time of photon-counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 94(23), 231113 (2009).
[CrossRef]

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92(20), 201104 (2008).
[CrossRef]

A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate,” Opt. Express 16(23), 18790–18797 (2008).
[CrossRef] [PubMed]

B. E. Kardynał, Z. L. Yuan, and A. J. Shields, “An avalanche-photodiode-based photon-number-resolving detector,” Nat. Photonics 2(7), 425–428 (2008).
[CrossRef]

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High-speed single-photon detection in the near infrared,” Appl. Phys. Lett. 91(4), 041114 (2007).
[CrossRef]

Stefanov, A.

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48(13), 1967–1981 (2001).
[CrossRef]

Stucki, D.

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48(13), 1967–1981 (2001).
[CrossRef]

Takesue, H.

N. Namekata, G. Fujii, S. Inoue, T. Honjo, and H. Takesue, “Differential phase shift quantum key distribution using single-photon detectors based on a sinusoidally gated InGaAs/InP avalanche photodiodes,” Appl. Phys. Lett. 91(1), 011112 (2007).
[CrossRef]

Tashima, M. M.

M. Liu, C. Hu, J. C. Campbell, Z. Pan, and M. M. Tashima, “Reduce after-pulsing of single-photon avalanche diodes using passive quenching with active reset,” IEEE J. Quantum Electron. 44(5), 430–434 (2008).
[CrossRef]

Thew, R.

J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast-gate rate ingaas/inp single-photon avalanche photodiodes,” Appl. Phys. Lett. 95(9), 091103 (2009).
[CrossRef]

Wall, T.

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48(13), 1967–1981 (2001).
[CrossRef]

Yuan, Z. L.

Z. L. Yuan, A. W. Sharpe, J. F. Dynes, A. R. Dixon, and A. J. Shields, “Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 96(7), 071101 (2010).
[CrossRef]

A. R. Dixon, J. F. Dynes, Z. L. Yuan, A. W. Sharpe, A. J. Bennett, and A. J. Shields, “Ultrashort dead time of photon-counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 94(23), 231113 (2009).
[CrossRef]

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92(20), 201104 (2008).
[CrossRef]

A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate,” Opt. Express 16(23), 18790–18797 (2008).
[CrossRef] [PubMed]

B. E. Kardynał, Z. L. Yuan, and A. J. Shields, “An avalanche-photodiode-based photon-number-resolving detector,” Nat. Photonics 2(7), 425–428 (2008).
[CrossRef]

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High-speed single-photon detection in the near infrared,” Appl. Phys. Lett. 91(4), 041114 (2007).
[CrossRef]

Zappa, F.

Zbinden, H.

J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast-gate rate ingaas/inp single-photon avalanche photodiodes,” Appl. Phys. Lett. 95(9), 091103 (2009).
[CrossRef]

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48(13), 1967–1981 (2001).
[CrossRef]

Zhang, J.

J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast-gate rate ingaas/inp single-photon avalanche photodiodes,” Appl. Phys. Lett. 95(9), 091103 (2009).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (6)

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High-speed single-photon detection in the near infrared,” Appl. Phys. Lett. 91(4), 041114 (2007).
[CrossRef]

J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast-gate rate ingaas/inp single-photon avalanche photodiodes,” Appl. Phys. Lett. 95(9), 091103 (2009).
[CrossRef]

A. R. Dixon, J. F. Dynes, Z. L. Yuan, A. W. Sharpe, A. J. Bennett, and A. J. Shields, “Ultrashort dead time of photon-counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 94(23), 231113 (2009).
[CrossRef]

Z. L. Yuan, A. W. Sharpe, J. F. Dynes, A. R. Dixon, and A. J. Shields, “Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 96(7), 071101 (2010).
[CrossRef]

N. Namekata, G. Fujii, S. Inoue, T. Honjo, and H. Takesue, “Differential phase shift quantum key distribution using single-photon detectors based on a sinusoidally gated InGaAs/InP avalanche photodiodes,” Appl. Phys. Lett. 91(1), 011112 (2007).
[CrossRef]

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92(20), 201104 (2008).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Liu, C. Hu, J. C. Campbell, Z. Pan, and M. M. Tashima, “Reduce after-pulsing of single-photon avalanche diodes using passive quenching with active reset,” IEEE J. Quantum Electron. 44(5), 430–434 (2008).
[CrossRef]

J. Mod. Opt. (1)

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48(13), 1967–1981 (2001).
[CrossRef]

Nat. Photonics (1)

B. E. Kardynał, Z. L. Yuan, and A. J. Shields, “An avalanche-photodiode-based photon-number-resolving detector,” Nat. Photonics 2(7), 425–428 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Concept of auxiliary signal method. Output signals of (a) a SPAD and (b) a combiner for a weak avalanche event.

Fig. 2
Fig. 2

Experimental setup.

Fig. 3
Fig. 3

Accumulated combiner output recorded on OSC with 10 MHz gating.

Fig. 4
Fig. 4

Detection efficiency vs. after-pulse and dark-count probabilities with f g = 10 MHz, f p = 100 kHz, and μ = 0.1, without dead time.

Fig. 5
Fig. 5

Detection efficiency vs. after-pulse and dark-count probabilities, with f g = 100 MHz, f p = 1 MHz, and μ = 0.1, without dead time.

Fig. 6
Fig. 6

Time distribution of after-pulse probability.

Tables (1)

Tables Icon

Table 1 Experimental Parameters for 100 MHz Gating of SPAD

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η = ( 1 / μ ) × ln [ ( 1 R dark / f g ) / ( 1 R de c / f p ) ] ,
P ap = [ R de R de c ( 1 f p f g ) R dark ] / R de c .

Metrics