Abstract

We propose a reconfigurable Tbit/s network switching element using double-pass liquid crystal on silicon (LCoS) technology accompanied by bidirectional degenerate four-wave mixing (FWM) in a single highly nonlinear fiber (HNLF). We demonstrate the LCoS + HNLF-based 2.3-Tbit/s multi-functional grooming switch which performs simultaneous selective add/drop, switchable data exchange, and power equalization, for 23-channel 100-Gbit/s return-to-zero differential quadrature phase-shift keying (RZ-DQPSK) signals. Less than 1.5-dB power penalty is observed for power equalization at a bit-error rate (BER) of 10−9. Selective single-/two-channel add/drop are achieved with power penalties less than 1.2 dB. Switchable two-channel data exchange and simultaneous six-channel data exchange are implemented with power penalties less than 5 dB.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Tkach, “Scaling optical communications for the next decade and beyond,” Bell Labs Tech. J. 14(4), 3–9 (2010).
    [CrossRef]
  2. A. H. Gnauck, G. Charlet, P. Tran, P. J. Winzer, C. R. Doerr, J. C. Centanni, E. C. Burrows, T. Kawanishi, T. Sakamoto, and K. Higuma, “25.6-Tb/s WDM transmission of polarization-multiplexed RZ-DQPSK signals,” J. Lightwave Technol. 26(1), 79–84 (2008).
    [CrossRef]
  3. A. H. Gnauck, P. J. Winzer, G. Raybon, M. Schnecker, and P. J. Pupalaikis, “10x224-Gb/s WDM transmission of 56-Gbaud PDM-QPSK signals over 1890 km of fiber,” IEEE Photon. Technol. Lett. 22(13), 954–956 (2010).
    [CrossRef]
  4. P. N. Ji, Y. Aono, and T. Wang, “Reconfigurable optical add/drop multiplexer based on bidirectional wavelength selective switches,” in Photonics in Switching, OSA Technical Digest (CD) (Optical Society of America, 2010), paper PWB1.
  5. K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8(3), 560–568 (2002).
    [CrossRef]
  6. C. R. Doerr, K. W. Chang, L. W. Stulz, R. Pafchek, Q. Guo, L. Buhl, L. Gomez, M. Cappuzzo, and G. Bogert, “Arrayed waveguide dynamic gain equalization filter with reduced insertion loss and increased dynamic range,” IEEE Photon. Technol. Lett. 13(4), 329–331 (2001).
    [CrossRef]
  7. C. R. Doerr, R. Pafchek, and L. W. Stulz, “16-band integrated dynamic gain equalization filter with less than 2.8-dB insertion loss,” IEEE Photon. Technol. Lett. 14(3), 334–336 (2002).
    [CrossRef]
  8. P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE 94(5), 952–985 (2006).
    [CrossRef]
  9. N. Kataoka, K. Sone, N. Wada, Y. Aoki, S. Kinoshita, H. Miyata, T. Miyazaki, H. Onaka, and K.-I. Kitayama, “Field trial of 640-Gbit/s-throughput, granularity-flexible optical network using packet-selective ROADM prototype,” J. Lightwave Technol. 27(7), 825–832 (2009).
    [CrossRef]
  10. J. Wang, S. R. Nuccio, H. Huang, X. Wang, J.-Y. Yang, and A. E. Willner, “Optical data exchange of 100-Gbit/s DQPSK signals,” Opt. Express 18(23), 23740–23745 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-23-23740 .
    [CrossRef] [PubMed]
  11. J. Wang, H. Huang, X. Wang, J.-Y. Yang, and A. E. Willner, “Multi-channel 100-Gbit/s DQPSK data exchange using bidirectional degenerate four-wave mixing,” Opt. Express 19(4), 3332–3338 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-4-3332 .
    [CrossRef] [PubMed]
  12. J. Wang, H. Huang, X. Wang, J.-Y. Yang, O. F. Yilmaz, X. Wu, S. R. Nuccio, and A. E. Willner, “2.3-Tbit/s (23X100-Gbit/s) RZ-DQPSK grooming switch (simultaneous add/drop, data exchange and equalization) using double-pass LCoS and bidirectional HNLF,” Proc. OFC’11, Los Angeles, California, USA, paper OTuE2, 2011.
  13. M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, “Dispersion trimming in a reconfigurable wavelength selective switch,” J. Lightwave Technol. 26(1), 73–78 (2008).
    [CrossRef]
  14. M. A. Roelens, J. A. Bolger, D. Williams, and B. J. Eggleton, “Multi-wavelength synchronous pulse burst generation with a wavelength selective switch,” Opt. Express 16(14), 10152–10157 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-14-10152 .
    [CrossRef] [PubMed]

2011 (1)

2010 (3)

J. Wang, S. R. Nuccio, H. Huang, X. Wang, J.-Y. Yang, and A. E. Willner, “Optical data exchange of 100-Gbit/s DQPSK signals,” Opt. Express 18(23), 23740–23745 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-23-23740 .
[CrossRef] [PubMed]

A. H. Gnauck, P. J. Winzer, G. Raybon, M. Schnecker, and P. J. Pupalaikis, “10x224-Gb/s WDM transmission of 56-Gbaud PDM-QPSK signals over 1890 km of fiber,” IEEE Photon. Technol. Lett. 22(13), 954–956 (2010).
[CrossRef]

R. W. Tkach, “Scaling optical communications for the next decade and beyond,” Bell Labs Tech. J. 14(4), 3–9 (2010).
[CrossRef]

2009 (1)

2008 (3)

2006 (1)

P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE 94(5), 952–985 (2006).
[CrossRef]

2002 (2)

C. R. Doerr, R. Pafchek, and L. W. Stulz, “16-band integrated dynamic gain equalization filter with less than 2.8-dB insertion loss,” IEEE Photon. Technol. Lett. 14(3), 334–336 (2002).
[CrossRef]

K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8(3), 560–568 (2002).
[CrossRef]

2001 (1)

C. R. Doerr, K. W. Chang, L. W. Stulz, R. Pafchek, Q. Guo, L. Buhl, L. Gomez, M. Cappuzzo, and G. Bogert, “Arrayed waveguide dynamic gain equalization filter with reduced insertion loss and increased dynamic range,” IEEE Photon. Technol. Lett. 13(4), 329–331 (2001).
[CrossRef]

Abakoumov, D.

Aoki, Y.

Baxter, G.

Bogert, G.

C. R. Doerr, K. W. Chang, L. W. Stulz, R. Pafchek, Q. Guo, L. Buhl, L. Gomez, M. Cappuzzo, and G. Bogert, “Arrayed waveguide dynamic gain equalization filter with reduced insertion loss and increased dynamic range,” IEEE Photon. Technol. Lett. 13(4), 329–331 (2001).
[CrossRef]

Bolger, J. A.

Buhl, L.

C. R. Doerr, K. W. Chang, L. W. Stulz, R. Pafchek, Q. Guo, L. Buhl, L. Gomez, M. Cappuzzo, and G. Bogert, “Arrayed waveguide dynamic gain equalization filter with reduced insertion loss and increased dynamic range,” IEEE Photon. Technol. Lett. 13(4), 329–331 (2001).
[CrossRef]

Burrows, E. C.

Cappuzzo, M.

C. R. Doerr, K. W. Chang, L. W. Stulz, R. Pafchek, Q. Guo, L. Buhl, L. Gomez, M. Cappuzzo, and G. Bogert, “Arrayed waveguide dynamic gain equalization filter with reduced insertion loss and increased dynamic range,” IEEE Photon. Technol. Lett. 13(4), 329–331 (2001).
[CrossRef]

Centanni, J. C.

Chang, K. W.

C. R. Doerr, K. W. Chang, L. W. Stulz, R. Pafchek, Q. Guo, L. Buhl, L. Gomez, M. Cappuzzo, and G. Bogert, “Arrayed waveguide dynamic gain equalization filter with reduced insertion loss and increased dynamic range,” IEEE Photon. Technol. Lett. 13(4), 329–331 (2001).
[CrossRef]

Charlet, G.

Doerr, C. R.

A. H. Gnauck, G. Charlet, P. Tran, P. J. Winzer, C. R. Doerr, J. C. Centanni, E. C. Burrows, T. Kawanishi, T. Sakamoto, and K. Higuma, “25.6-Tb/s WDM transmission of polarization-multiplexed RZ-DQPSK signals,” J. Lightwave Technol. 26(1), 79–84 (2008).
[CrossRef]

C. R. Doerr, R. Pafchek, and L. W. Stulz, “16-band integrated dynamic gain equalization filter with less than 2.8-dB insertion loss,” IEEE Photon. Technol. Lett. 14(3), 334–336 (2002).
[CrossRef]

C. R. Doerr, K. W. Chang, L. W. Stulz, R. Pafchek, Q. Guo, L. Buhl, L. Gomez, M. Cappuzzo, and G. Bogert, “Arrayed waveguide dynamic gain equalization filter with reduced insertion loss and increased dynamic range,” IEEE Photon. Technol. Lett. 13(4), 329–331 (2001).
[CrossRef]

Eggleton, B. J.

Essiambre, R.-J.

P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE 94(5), 952–985 (2006).
[CrossRef]

Frisken, S.

Gnauck, A. H.

A. H. Gnauck, P. J. Winzer, G. Raybon, M. Schnecker, and P. J. Pupalaikis, “10x224-Gb/s WDM transmission of 56-Gbaud PDM-QPSK signals over 1890 km of fiber,” IEEE Photon. Technol. Lett. 22(13), 954–956 (2010).
[CrossRef]

A. H. Gnauck, G. Charlet, P. Tran, P. J. Winzer, C. R. Doerr, J. C. Centanni, E. C. Burrows, T. Kawanishi, T. Sakamoto, and K. Higuma, “25.6-Tb/s WDM transmission of polarization-multiplexed RZ-DQPSK signals,” J. Lightwave Technol. 26(1), 79–84 (2008).
[CrossRef]

Gomez, L.

C. R. Doerr, K. W. Chang, L. W. Stulz, R. Pafchek, Q. Guo, L. Buhl, L. Gomez, M. Cappuzzo, and G. Bogert, “Arrayed waveguide dynamic gain equalization filter with reduced insertion loss and increased dynamic range,” IEEE Photon. Technol. Lett. 13(4), 329–331 (2001).
[CrossRef]

Guo, Q.

C. R. Doerr, K. W. Chang, L. W. Stulz, R. Pafchek, Q. Guo, L. Buhl, L. Gomez, M. Cappuzzo, and G. Bogert, “Arrayed waveguide dynamic gain equalization filter with reduced insertion loss and increased dynamic range,” IEEE Photon. Technol. Lett. 13(4), 329–331 (2001).
[CrossRef]

Higuma, K.

Huang, H.

Kataoka, N.

Kawanishi, T.

Kazovsky, L. G.

K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8(3), 560–568 (2002).
[CrossRef]

Kinoshita, S.

Kitayama, K.-I.

Marhic, M. E.

K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8(3), 560–568 (2002).
[CrossRef]

Miyata, H.

Miyazaki, T.

Nuccio, S. R.

Onaka, H.

Pafchek, R.

C. R. Doerr, R. Pafchek, and L. W. Stulz, “16-band integrated dynamic gain equalization filter with less than 2.8-dB insertion loss,” IEEE Photon. Technol. Lett. 14(3), 334–336 (2002).
[CrossRef]

C. R. Doerr, K. W. Chang, L. W. Stulz, R. Pafchek, Q. Guo, L. Buhl, L. Gomez, M. Cappuzzo, and G. Bogert, “Arrayed waveguide dynamic gain equalization filter with reduced insertion loss and increased dynamic range,” IEEE Photon. Technol. Lett. 13(4), 329–331 (2001).
[CrossRef]

Poole, S.

Pupalaikis, P. J.

A. H. Gnauck, P. J. Winzer, G. Raybon, M. Schnecker, and P. J. Pupalaikis, “10x224-Gb/s WDM transmission of 56-Gbaud PDM-QPSK signals over 1890 km of fiber,” IEEE Photon. Technol. Lett. 22(13), 954–956 (2010).
[CrossRef]

Raybon, G.

A. H. Gnauck, P. J. Winzer, G. Raybon, M. Schnecker, and P. J. Pupalaikis, “10x224-Gb/s WDM transmission of 56-Gbaud PDM-QPSK signals over 1890 km of fiber,” IEEE Photon. Technol. Lett. 22(13), 954–956 (2010).
[CrossRef]

Roelens, M. A.

Roelens, M. A. F.

Sakamoto, T.

Schnecker, M.

A. H. Gnauck, P. J. Winzer, G. Raybon, M. Schnecker, and P. J. Pupalaikis, “10x224-Gb/s WDM transmission of 56-Gbaud PDM-QPSK signals over 1890 km of fiber,” IEEE Photon. Technol. Lett. 22(13), 954–956 (2010).
[CrossRef]

Sone, K.

Stulz, L. W.

C. R. Doerr, R. Pafchek, and L. W. Stulz, “16-band integrated dynamic gain equalization filter with less than 2.8-dB insertion loss,” IEEE Photon. Technol. Lett. 14(3), 334–336 (2002).
[CrossRef]

C. R. Doerr, K. W. Chang, L. W. Stulz, R. Pafchek, Q. Guo, L. Buhl, L. Gomez, M. Cappuzzo, and G. Bogert, “Arrayed waveguide dynamic gain equalization filter with reduced insertion loss and increased dynamic range,” IEEE Photon. Technol. Lett. 13(4), 329–331 (2001).
[CrossRef]

Tkach, R. W.

R. W. Tkach, “Scaling optical communications for the next decade and beyond,” Bell Labs Tech. J. 14(4), 3–9 (2010).
[CrossRef]

Tran, P.

Uesaka, K.

K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8(3), 560–568 (2002).
[CrossRef]

Wada, N.

Wang, J.

Wang, X.

Williams, D.

Willner, A. E.

Winzer, P. J.

A. H. Gnauck, P. J. Winzer, G. Raybon, M. Schnecker, and P. J. Pupalaikis, “10x224-Gb/s WDM transmission of 56-Gbaud PDM-QPSK signals over 1890 km of fiber,” IEEE Photon. Technol. Lett. 22(13), 954–956 (2010).
[CrossRef]

A. H. Gnauck, G. Charlet, P. Tran, P. J. Winzer, C. R. Doerr, J. C. Centanni, E. C. Burrows, T. Kawanishi, T. Sakamoto, and K. Higuma, “25.6-Tb/s WDM transmission of polarization-multiplexed RZ-DQPSK signals,” J. Lightwave Technol. 26(1), 79–84 (2008).
[CrossRef]

P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE 94(5), 952–985 (2006).
[CrossRef]

Wong, K. K. Y.

K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8(3), 560–568 (2002).
[CrossRef]

Yang, J.-Y.

Bell Labs Tech. J. (1)

R. W. Tkach, “Scaling optical communications for the next decade and beyond,” Bell Labs Tech. J. 14(4), 3–9 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8(3), 560–568 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

C. R. Doerr, K. W. Chang, L. W. Stulz, R. Pafchek, Q. Guo, L. Buhl, L. Gomez, M. Cappuzzo, and G. Bogert, “Arrayed waveguide dynamic gain equalization filter with reduced insertion loss and increased dynamic range,” IEEE Photon. Technol. Lett. 13(4), 329–331 (2001).
[CrossRef]

C. R. Doerr, R. Pafchek, and L. W. Stulz, “16-band integrated dynamic gain equalization filter with less than 2.8-dB insertion loss,” IEEE Photon. Technol. Lett. 14(3), 334–336 (2002).
[CrossRef]

A. H. Gnauck, P. J. Winzer, G. Raybon, M. Schnecker, and P. J. Pupalaikis, “10x224-Gb/s WDM transmission of 56-Gbaud PDM-QPSK signals over 1890 km of fiber,” IEEE Photon. Technol. Lett. 22(13), 954–956 (2010).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (3)

Proc. IEEE (1)

P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE 94(5), 952–985 (2006).
[CrossRef]

Other (2)

P. N. Ji, Y. Aono, and T. Wang, “Reconfigurable optical add/drop multiplexer based on bidirectional wavelength selective switches,” in Photonics in Switching, OSA Technical Digest (CD) (Optical Society of America, 2010), paper PWB1.

J. Wang, H. Huang, X. Wang, J.-Y. Yang, O. F. Yilmaz, X. Wu, S. R. Nuccio, and A. E. Willner, “2.3-Tbit/s (23X100-Gbit/s) RZ-DQPSK grooming switch (simultaneous add/drop, data exchange and equalization) using double-pass LCoS and bidirectional HNLF,” Proc. OFC’11, Los Angeles, California, USA, paper OTuE2, 2011.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of multi-functional grooming switch at network nodes.

Fig. 2
Fig. 2

Concept and principle of LCoS + HNLF-based multi-functional grooming switch (add/drop, data exchange, power equalization).

Fig. 3
Fig. 3

Experimental setup for LCoS + HNLF-based multi-functional grooming switch of 23-channel 100-Gbit/s RZ-DQPSK signals. PC: polarization controller; AWG: arrayed waveguide grating; Tx: transmitter; OC: optical coupler; CIR: circulator; BPF: band-pass filter; EDFA: erbium-doped fiber amplifier.

Fig. 4
Fig. 4

Measured spectrum and balanced eyes for input unequalized 23-channel 100-Gbit/s RZ-DQPSK signals.

Fig. 5
Fig. 5

BER curves for (a1)(a2) power equalization (S1-S11, S13-S17, S19, S20, S22, S23), (b1)(b2) single-channel add/drop (S18), and (c1)(c2) two-channel data exchange (S12 and S21).

Fig. 6
Fig. 6

Measured spectrum and balanced eyes after multi-functional grooming switch (S18: add/drop; S12&S21: data exchange; S1-S23: power equalization).

Fig. 7
Fig. 7

Power penalties for the multi-channel grooming switch (S18: add/drop; S12&S21: data exchange; S1-S23: power equalization).

Fig. 8
Fig. 8

BER curves for switchable two-channel data exchange between (a1)(a2) S10 and S23, (b1)(b2) S13 and S20, (c1)(c2) S14 and S19.

Fig. 9
Fig. 9

Measured spectrum and balanced eyes after multi-functional grooming switch (S6, S7: add/drop; S10, S11, S12, S21, S22, S23: data exchange; S1-S23: power equalization).

Fig. 10
Fig. 10

BER curves for (a1)(a2) two-channel add/drop (S6, S7) and (b1)(b2) simultaneous six-channel data exchange (S10, S11, S12, S21, S22, S23).

Metrics