Abstract

This paper proposes an automatic point spread function (PSF) estimation method to de-blur out-of-focus optical coherence tomography (OCT) images. The method utilizes Richardson-Lucy deconvolution algorithm to deconvolve noisy defocused images with a family of Gaussian PSFs with different beam spot sizes. Then, the best beam spot size is automatically estimated based on the discontinuity of information entropy of recovered images. Therefore, it is not required a prior knowledge of the parameters or PSF of OCT system for de-convoluting image. The model does not account for the diffraction and the coherent scattering of light by the sample. A series of experiments are performed on digital phantoms, a custom-built phantom doped with microspheres, fresh onion as well as the human fingertip in vivo to show the performance of the proposed method. The method may also be useful in combining with other deconvolution algorithms for PSF estimation and image recovery.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Z. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. P. H. Tomolins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys. 38(15), 2519–2535 (2005).
    [CrossRef]
  3. F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus of OCT with depth-independent transversal resolution,” J. Mod. Opt. 46, 541–553 (1999).
  4. B. Qi, A. O. Himmer, L. M. Gordon, X. D. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a micro-electromechanical mirror,” Opt. Commun. 232(1-6), 123–128 (2004).
    [CrossRef]
  5. A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G.-P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
    [CrossRef]
  6. T. Xie, S. Guo, Z. Chen, D. Mukai, and M. Brenner, “GRIN lens rod based probe for endoscopic spectral domain optical coherence tomography with fast dynamic focus tracking,” Opt. Express 14(8), 3238–3246 (2006).
    [CrossRef] [PubMed]
  7. Z. H. Ding, H. W. Ren, Y. H. Zhao, J. S. Nelson, and Z. P. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27(4), 243–245 (2002).
    [CrossRef] [PubMed]
  8. J. Holmes and S. Hattersley, “Image blending and speckle noise reduction in multi-beam OCT,” Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIII, Proc. of SPIE Vol. 7168, 71681N (2009).
  9. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
    [CrossRef]
  10. L. Yu, B. Rao, J. Zhang, J. Su, Q. Wang, S. Guo, and Z. Chen, “Improved lateral resolution in optical coherence tomography by digital focusing using two-dimensional numerical diffraction method,” Opt. Express 15(12), 7634–7641 (2007).
    [CrossRef] [PubMed]
  11. Y. Yasuno, J. I. Sugisaka, Y. Sando, Y. Nakamura, S. Makita, M. Itoh, and T. Yatagai, “Non-iterative numerical method for laterally superresolving Fourier domain optical coherence tomography,” Opt. Express 14(3), 1006–1020 (2006).
    [CrossRef] [PubMed]
  12. M. D. Kulkarni, C. W. Thomas, and J. A. Izatt, “Image enhancement in optical coherence tomography using deconvolution,” Electron. Lett. 33(16), 1365–1367 (1997).
    [CrossRef]
  13. R. K. Wang, “Resolution improved optical coherence-gating tomography for imaging biological tissue,” J. Mod. Opt. 46, 1905–1913 (1999).
  14. T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution Methods for Mitigation of Transverse Blurring in Optical Coherence Tomography,” IEEE Trans. Image Process. 14(9), 1254–1264 (2005).
    [CrossRef] [PubMed]
  15. Y. Liu, Y. Liang, G. Mu, and X. Zhu, “Deconvolution methods for image deblurring in optical coherence tomography,” J. Opt. Soc. Am. A 26(1), 72–77 (2009).
    [CrossRef] [PubMed]
  16. J. M. Schmitt, “Restoration of optical coherence images of living tissue using the CLEAN algorithm,” J. Biomed. Opt. 3(1), 66–75 (1998).
    [CrossRef]
  17. J. P. Rolland, P. Meemon, S. Murali, K. P. Thompson, and K. S. Lee, “Gabor-based fusion technique for Optical Coherence Microscopy,” Opt. Express 18(4), 3632–3642 (2010).
    [CrossRef] [PubMed]
  18. P. H. Tomlins, P. Woolliams, M. Tedaldi, A. Beaumont, and C. Hart, “Measurement of the three-dimensional point-spread function in an optical coherence tomography imaging system,” Proc. SPIE 6847, 68472Q, 68472Q-8 (2008).
    [CrossRef]
  19. P. H. Tomlins, R. A. Ferguson, C. Hart, and P. D. Woolliams, “Point-spread function phantoms for optical coherence tomography,” NPL Report OP 2 (National Physical Laboratory, pp: 1754–2944, (2009).
  20. P. D. Woolliams, R. A. Ferguson, C. Hart, A. Grimwood, and P. H. Tomlins, “Spatially deconvolved optical coherence tomography,” Appl. Opt. 49(11), 2014–2021 (2010).
    [CrossRef] [PubMed]
  21. P. H. Tomlins, G. N. Smith, P. D. Woolliams, J. Rasakanthan, and K. Sugden, “Femtosecond laser micro-inscription of optical coherence tomography resolution test artifacts,” Biomed. Opt. Express 2(5), 1319–1327 (2011).
    [CrossRef] [PubMed]
  22. A. Agrawal, T. J. Pfefer, N. Gilani, and R. Drezek, “Three-dimensional characterization of optical coherence tomography point spread functions with a nanoparticle-embedded phantom,” Opt. Lett. 35(13), 2269–2271 (2010).
    [CrossRef] [PubMed]
  23. R. K. Wang and Z. Ma, “Real-time flow imaging by removing texture pattern artifacts in spectral-domain optical Doppler tomography,” Opt. Lett. 31(20), 3001–3003 (2006).
    [CrossRef] [PubMed]
  24. Z. Zhi, Y. Jung, Y. Jia, L. An, and R. K. Wang, “Highly sensitive imaging of renal microcirculation in vivo using ultrahigh sensitive optical microangiography,” Biomed. Opt. Express 2(5), 1059–1068 (2011).
    [CrossRef] [PubMed]

2011

2010

2009

2008

P. H. Tomlins, P. Woolliams, M. Tedaldi, A. Beaumont, and C. Hart, “Measurement of the three-dimensional point-spread function in an optical coherence tomography imaging system,” Proc. SPIE 6847, 68472Q, 68472Q-8 (2008).
[CrossRef]

2007

2006

2005

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution Methods for Mitigation of Transverse Blurring in Optical Coherence Tomography,” IEEE Trans. Image Process. 14(9), 1254–1264 (2005).
[CrossRef] [PubMed]

A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G.-P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[CrossRef]

P. H. Tomolins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys. 38(15), 2519–2535 (2005).
[CrossRef]

2004

B. Qi, A. O. Himmer, L. M. Gordon, X. D. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a micro-electromechanical mirror,” Opt. Commun. 232(1-6), 123–128 (2004).
[CrossRef]

2002

1999

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus of OCT with depth-independent transversal resolution,” J. Mod. Opt. 46, 541–553 (1999).

R. K. Wang, “Resolution improved optical coherence-gating tomography for imaging biological tissue,” J. Mod. Opt. 46, 1905–1913 (1999).

1998

J. M. Schmitt, “Restoration of optical coherence images of living tissue using the CLEAN algorithm,” J. Biomed. Opt. 3(1), 66–75 (1998).
[CrossRef]

1997

M. D. Kulkarni, C. W. Thomas, and J. A. Izatt, “Image enhancement in optical coherence tomography using deconvolution,” Electron. Lett. 33(16), 1365–1367 (1997).
[CrossRef]

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Z. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Agrawal, A.

An, L.

Bachman, M.

A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G.-P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[CrossRef]

Beaumont, A.

P. H. Tomlins, P. Woolliams, M. Tedaldi, A. Beaumont, and C. Hart, “Measurement of the three-dimensional point-spread function in an optical coherence tomography imaging system,” Proc. SPIE 6847, 68472Q, 68472Q-8 (2008).
[CrossRef]

Boppart, S. A.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[CrossRef]

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution Methods for Mitigation of Transverse Blurring in Optical Coherence Tomography,” IEEE Trans. Image Process. 14(9), 1254–1264 (2005).
[CrossRef] [PubMed]

Brenner, M.

Carney, P. S.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Z. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, Z.

Chen, Z. P.

Dickensheets, L. D.

B. Qi, A. O. Himmer, L. M. Gordon, X. D. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a micro-electromechanical mirror,” Opt. Commun. 232(1-6), 123–128 (2004).
[CrossRef]

Ding, Z. H.

Divetia, A.

A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G.-P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[CrossRef]

Drexler, W.

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus of OCT with depth-independent transversal resolution,” J. Mod. Opt. 46, 541–553 (1999).

Drezek, R.

Fercher, A. F.

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus of OCT with depth-independent transversal resolution,” J. Mod. Opt. 46, 541–553 (1999).

Ferguson, R. A.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Z. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. Z. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Z. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gilani, N.

Gordon, L. M.

B. Qi, A. O. Himmer, L. M. Gordon, X. D. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a micro-electromechanical mirror,” Opt. Commun. 232(1-6), 123–128 (2004).
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Z. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Grimwood, A.

Guo, S.

Hart, C.

P. D. Woolliams, R. A. Ferguson, C. Hart, A. Grimwood, and P. H. Tomlins, “Spatially deconvolved optical coherence tomography,” Appl. Opt. 49(11), 2014–2021 (2010).
[CrossRef] [PubMed]

P. H. Tomlins, P. Woolliams, M. Tedaldi, A. Beaumont, and C. Hart, “Measurement of the three-dimensional point-spread function in an optical coherence tomography imaging system,” Proc. SPIE 6847, 68472Q, 68472Q-8 (2008).
[CrossRef]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Z. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Himmer, A. O.

B. Qi, A. O. Himmer, L. M. Gordon, X. D. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a micro-electromechanical mirror,” Opt. Commun. 232(1-6), 123–128 (2004).
[CrossRef]

Hitzenberger, C. K.

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus of OCT with depth-independent transversal resolution,” J. Mod. Opt. 46, 541–553 (1999).

Hsieh, T.-H.

A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G.-P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Z. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Itoh, M.

Izatt, J. A.

M. D. Kulkarni, C. W. Thomas, and J. A. Izatt, “Image enhancement in optical coherence tomography using deconvolution,” Electron. Lett. 33(16), 1365–1367 (1997).
[CrossRef]

Jia, Y.

Jung, Y.

Kamalabadi, F.

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution Methods for Mitigation of Transverse Blurring in Optical Coherence Tomography,” IEEE Trans. Image Process. 14(9), 1254–1264 (2005).
[CrossRef] [PubMed]

Kulkarni, M. D.

M. D. Kulkarni, C. W. Thomas, and J. A. Izatt, “Image enhancement in optical coherence tomography using deconvolution,” Electron. Lett. 33(16), 1365–1367 (1997).
[CrossRef]

Lee, K. S.

Lexer, F.

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus of OCT with depth-independent transversal resolution,” J. Mod. Opt. 46, 541–553 (1999).

Li, G.-P.

A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G.-P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[CrossRef]

Liang, Y.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Z. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Liu, Y.

Ma, Z.

Makita, S.

Marks, D. L.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[CrossRef]

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution Methods for Mitigation of Transverse Blurring in Optical Coherence Tomography,” IEEE Trans. Image Process. 14(9), 1254–1264 (2005).
[CrossRef] [PubMed]

Meemon, P.

Molebny, S.

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus of OCT with depth-independent transversal resolution,” J. Mod. Opt. 46, 541–553 (1999).

Mu, G.

Mukai, D.

Murali, S.

Nakamura, Y.

Nelson, J. S.

Pfefer, T. J.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Z. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Qi, B.

B. Qi, A. O. Himmer, L. M. Gordon, X. D. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a micro-electromechanical mirror,” Opt. Commun. 232(1-6), 123–128 (2004).
[CrossRef]

Ralston, T. S.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[CrossRef]

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution Methods for Mitigation of Transverse Blurring in Optical Coherence Tomography,” IEEE Trans. Image Process. 14(9), 1254–1264 (2005).
[CrossRef] [PubMed]

Rao, B.

Rasakanthan, J.

Ren, H. W.

Rolland, J. P.

Sando, Y.

Sattmann, H.

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus of OCT with depth-independent transversal resolution,” J. Mod. Opt. 46, 541–553 (1999).

Schmitt, J. M.

J. M. Schmitt, “Restoration of optical coherence images of living tissue using the CLEAN algorithm,” J. Biomed. Opt. 3(1), 66–75 (1998).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Z. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Smith, G. N.

Sticker, M.

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus of OCT with depth-independent transversal resolution,” J. Mod. Opt. 46, 541–553 (1999).

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Z. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Su, J.

Sugden, K.

Sugisaka, J. I.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Z. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Tedaldi, M.

P. H. Tomlins, P. Woolliams, M. Tedaldi, A. Beaumont, and C. Hart, “Measurement of the three-dimensional point-spread function in an optical coherence tomography imaging system,” Proc. SPIE 6847, 68472Q, 68472Q-8 (2008).
[CrossRef]

Thomas, C. W.

M. D. Kulkarni, C. W. Thomas, and J. A. Izatt, “Image enhancement in optical coherence tomography using deconvolution,” Electron. Lett. 33(16), 1365–1367 (1997).
[CrossRef]

Thompson, K. P.

Tomlins, P. H.

Tomolins, P. H.

P. H. Tomolins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys. 38(15), 2519–2535 (2005).
[CrossRef]

Vitkin, I. A.

B. Qi, A. O. Himmer, L. M. Gordon, X. D. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a micro-electromechanical mirror,” Opt. Commun. 232(1-6), 123–128 (2004).
[CrossRef]

Wang, Q.

Wang, R. K.

Z. Zhi, Y. Jung, Y. Jia, L. An, and R. K. Wang, “Highly sensitive imaging of renal microcirculation in vivo using ultrahigh sensitive optical microangiography,” Biomed. Opt. Express 2(5), 1059–1068 (2011).
[CrossRef] [PubMed]

R. K. Wang and Z. Ma, “Real-time flow imaging by removing texture pattern artifacts in spectral-domain optical Doppler tomography,” Opt. Lett. 31(20), 3001–3003 (2006).
[CrossRef] [PubMed]

P. H. Tomolins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys. 38(15), 2519–2535 (2005).
[CrossRef]

R. K. Wang, “Resolution improved optical coherence-gating tomography for imaging biological tissue,” J. Mod. Opt. 46, 1905–1913 (1999).

Woolliams, P.

P. H. Tomlins, P. Woolliams, M. Tedaldi, A. Beaumont, and C. Hart, “Measurement of the three-dimensional point-spread function in an optical coherence tomography imaging system,” Proc. SPIE 6847, 68472Q, 68472Q-8 (2008).
[CrossRef]

Woolliams, P. D.

Xie, T.

Yang, X. D.

B. Qi, A. O. Himmer, L. M. Gordon, X. D. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a micro-electromechanical mirror,” Opt. Commun. 232(1-6), 123–128 (2004).
[CrossRef]

Yasuno, Y.

Yatagai, T.

Yu, L.

Zhang, J.

L. Yu, B. Rao, J. Zhang, J. Su, Q. Wang, S. Guo, and Z. Chen, “Improved lateral resolution in optical coherence tomography by digital focusing using two-dimensional numerical diffraction method,” Opt. Express 15(12), 7634–7641 (2007).
[CrossRef] [PubMed]

A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G.-P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[CrossRef]

Zhao, Y. H.

Zhi, Z.

Zhu, X.

Appl. Opt.

Appl. Phys. Lett.

A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G.-P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[CrossRef]

Biomed. Opt. Express

Electron. Lett.

M. D. Kulkarni, C. W. Thomas, and J. A. Izatt, “Image enhancement in optical coherence tomography using deconvolution,” Electron. Lett. 33(16), 1365–1367 (1997).
[CrossRef]

IEEE Trans. Image Process.

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution Methods for Mitigation of Transverse Blurring in Optical Coherence Tomography,” IEEE Trans. Image Process. 14(9), 1254–1264 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt.

J. M. Schmitt, “Restoration of optical coherence images of living tissue using the CLEAN algorithm,” J. Biomed. Opt. 3(1), 66–75 (1998).
[CrossRef]

J. Mod. Opt.

R. K. Wang, “Resolution improved optical coherence-gating tomography for imaging biological tissue,” J. Mod. Opt. 46, 1905–1913 (1999).

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus of OCT with depth-independent transversal resolution,” J. Mod. Opt. 46, 541–553 (1999).

J. Opt. Soc. Am. A

J. Phys. D Appl. Phys.

P. H. Tomolins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys. 38(15), 2519–2535 (2005).
[CrossRef]

Nat. Phys.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[CrossRef]

Opt. Commun.

B. Qi, A. O. Himmer, L. M. Gordon, X. D. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a micro-electromechanical mirror,” Opt. Commun. 232(1-6), 123–128 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

P. H. Tomlins, P. Woolliams, M. Tedaldi, A. Beaumont, and C. Hart, “Measurement of the three-dimensional point-spread function in an optical coherence tomography imaging system,” Proc. SPIE 6847, 68472Q, 68472Q-8 (2008).
[CrossRef]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Z. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Other

J. Holmes and S. Hattersley, “Image blending and speckle noise reduction in multi-beam OCT,” Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIII, Proc. of SPIE Vol. 7168, 71681N (2009).

P. H. Tomlins, R. A. Ferguson, C. Hart, and P. D. Woolliams, “Point-spread function phantoms for optical coherence tomography,” NPL Report OP 2 (National Physical Laboratory, pp: 1754–2944, (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic illustration on the effect of numerical aperture on the desired lateral resolution of OCT images, in the case of (a) low NA, and (b) high NA.

Fig. 2
Fig. 2

Flow diagram for recovering defocused OCT images.

Fig. 3
Fig. 3

The peak of the Laplacian of evaluation function (b) corresponding to the discontinuous point of evaluation function (a) is used to locate the actual beam spot size W z a .

Fig. 4
Fig. 4

When digital phantom was defocused at different Wza , (a) the discontinuous point of evaluation function approximately equals Wza for all Wzas, and (b) the peak of Laplacian of the evaluation function approximately equals Wza for all Wza s.

Fig. 5
Fig. 5

The performance of the proposed method on a digital phantom. (a) Original image. (b) Out of focus image. Out of focus image was then degraded with (c) speckle noise, (d) Poisson noise and (e) both speckle and Poisson noise. Recovered images: (f) without the presence of noise. With the presence of different noise conditions, (g) speckle noise, (h) Poisson noise and (i) both speckle and Poisson noise.

Fig. 6
Fig. 6

Estimation errors when digital phantom was manually defocused at different Wza for different noise conditions. The maximal absolute error is about 0.2 within the range 1 to12 of Wza .

Fig. 7
Fig. 7

Schematic of the OCT system used in this study

Fig. 8
Fig. 8

(a) Original image where the focus is in the center and the upper and lower part of the image is out of focus. (b) De-blurred image. (c) Recovered image knowing that each point is a delta function.

Fig. 9
Fig. 9

(a) The en face image of the onion layer in the focal depth, (b) the defocused same en face image with (a) when the sample was shifted downwards by 1.5 mm, (b) and (d) are recovered noise-suppressed images from (a) and (c) respectively. The axial and lateral resolution is 12 µm and 16 µm respectively.

Fig. 10
Fig. 10

(a-d) Out-of-focus noising images at different depth locations: 1500 µm, 1604 µm, 1725 µm and 1823 µm respectively. (e-h) Recovered images from the corresponding depth locations. The axial and lateral resolution is 12 µm and 16 µm respectively.

Fig. 11
Fig. 11

PSF estimation curve for recovering the image from Fig. 10(a) to Fig. 10(e): (a) the change of the evaluation function with the beam spot size Wz and its discontinuity (pointed by arrow) and (b) the corresponding Laplacian of the evaluation function with the beam spot size Wz and its peak value.

Fig. 12
Fig. 12

The theoretical beam spot size at different depths (dashed line) in the fresh onion sample is compared with estimated beam spot size (solid line). The maximum estimation error is 4.2 µm and the maximum relative error is 12.8% within a depth from 1.5 mm to 2.3 mm.

Fig. 13
Fig. 13

The en-face images obtained from fingertip of a human volunteer, showing a plane cut through the sweat glands at ~90°. (a) Image in focal area. (b) Defocused image after moving ~0.5 mm away from the focal point. (c) Recovered image from (b).

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

R a = l c 2 0.44 λ 0 2 Δ λ
R l = 1.22 λ 0 2 N A o b j
Z D O F = 2 λ 0 n N A o b j 2
h ( x , y ) = exp ( 2 x 2 + y 2 W z 2 )
W z = W 0 [ 1 + ( z z R ) 2 ] 1 2
z R = π W 0 2 λ n
I ( x , y ) = O ( x , y ) h ( x , y ) + n = y x O ( x x 0 , y y 0 ) h ( x 0 , y 0 ) d x 0 d y 0 + n
I = f I = f ( h O + n ) = f h O + f n ( f h ) O = h O
O n + 1 ( x , y ) = O n ( x , y ) [ h ( x , y ) I ( x , y ) h ( x , y ) O n ( x , y ) ]
I ( x , y ) = O ( x , y ) h ( x , y ) = δ ( x , y ) h ( x , y ) = h ( x , y ) = exp ( 2 x 2 + y 2 W z a 2 )
I ( x , y ) = O ( x , y ) h ( x , y ) = O ( x , y ) exp ( 2 x 2 + y 2 W z 2 )
exp ( 2 x 2 + y 2 W z a 2 ) = O ( x , y ) exp ( 2 x 2 + y 2 W z 2 )
O ( x , y ) = 2 W z 2 W z a 2 ( W z 2 W z a 2 ) exp ( 2 x 2 + y 2 W z 2 W z a 2 )
O ( x , y ) = n = 1 N m = 1 M A n m δ ( x n , y m )
E ( O ) = a p ( O ( a ) ) . log ( p ( O ( a ) ) )
E ( I ) = b p ( I ( b ) ) . log ( p ( I ( b ) ) )
E ( O , I ) j o int = a , b p ( I O ( a , b ) ) . log ( p ( I O ( a , b ) ) )
E ( O , I ) m u t u a l = E ( O ) + E ( I ) E ( O , I ) j o int
F ( W z ) = E ( O ) E ( O , I ) j o int E ( O )
I 0 ( x , y ) = O ( x , y ) h 0 ( x , y ) = O ( x , y ) exp ( 2 x 2 + y 2 W 0 2 )
I ( x , y ) = O ( x , y ) h ( x , y ) = O ( x , y ) exp ( 2 x 2 + y 2 W z a 2 )
I 0 ( x , y ) = g ( x , y ) I ( x , y ) = g ( x , y ) O ( x , y ) h ( x , y ) = O ( x , y ) h 0 ( x , y )
g ( x , y ) = 2 W z a 2 W 0 2 ( W z a 2 W 0 2 ) exp ( 2 x 2 + y 2 W z a 2 W 0 2 )

Metrics