Abstract

Electrical, optical and electro-optical simulations are presented for a waveguided, resonant, bus-coupled, p-doped Si micro-donut MOS depletion modulator operating at the 1.55 μm wavelength. To minimize the switching voltage and energy, a high-K dielectric film of HfO2 or ZrO2 is chosen as the gate dielectric, while a narrow ring-shaped layer of p-doped poly-silicon is selected for the gate electrode, rather than metal, to minimize plasmonic loss loading of the fundamental TE mode. In a 6-μm-diam high-Q resonator, an infrared intensity extinction ratio of 6 dB is predicted for a modulation voltage of 2 V and a switching energy of 4 fJ/bit. A speed-of-response around 1 ps is anticipated. For a modulator scaled to operate at 1.3 μm, the estimated switching energy is 2.5 fJ/bit.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. P. Anderson and P. M. Fauchet, “Ultra-low power modulators using MOS depletion in a high-Q SiO₂-clad silicon 2-D photonic crystal resonator,” Opt. Express 18(18), 19129–19140 (2010).
    [CrossRef] [PubMed]
  2. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
    [CrossRef]
  3. Z. Xia, A. A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, “High resolution on-chip spectroscopy based on miniaturized microdonut resonators,” Opt. Express 19(13), 12356–12364 (2011).
    [CrossRef] [PubMed]
  4. W. A. Zortman, M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-power high-speed silicon microdisk modulators,” paper CThJ4, Conference on Lasers and Electro-Optics, San Jose, CA (2010).
  5. M. R. Watts, D. C. Trotter, and R. W. Young, “Maximally confined high-speed second-order silicon microdisk switches,” paper PDP14, OFC/NFOEC, San Diego, CA (2008).
  6. S. J. Emelett and R. A. Soref, “Analysis of dual-microring-resonator cross-connect switches and modulators,” Opt. Express 13(20), 7840–7853 (2005).
    [CrossRef] [PubMed]
  7. M. Jerman, Z. Qiao, and D. Mergel, “Refractive index of thin films of SiO2, ZrO2, and HfO2 as a function of the films’ mass density,” Appl. Opt. 44(15), 3006–3012 (2005).
    [CrossRef] [PubMed]
  8. M. Nedeljkovic, R. Soref, and G. Mashanovich, “Free-carrier electro-refraction and electro-absorption modulation predictions for silicon over the 1 – 14 μm infrared range,” submitted to Opt. Mater. Express (June 2011).
  9. J. Hendrickson, R. Gibson, M. Gehl, J. D. Olitzky, S. Zandbergen, H. M. Gibbs, G. Khitrova, T. Alasaarela, A. Saynatjoki, S. Honkanen, A. Homyk, and A. Scherer, “One-dimensional photonic crystal nanobeam cavities,” Chapter in Quantum Optics with Semiconductor Nanostructures, F. Jahnke ed., (Woodhead Publishing), to be published (2011).
  10. H.-C. Liu, C. Santis, and A. Yariv, “Coupled-resonator optical waveguide (CROWs) based on grating resonators with modulated bandgap,” paper SLTuB2 in OSA Advanced Photonics Conference, Slow Light, Toronto, Canada (12–15 June 2011).
  11. B. Cluzel, K. Foubert, L. Lalouat, E. Picard, J. Dellinger, D. Peyrade, F. de Fornel, and E. Hadji, “Optical field molding within near-field coupled twinned nanobeam cavities,” paper IWB3 in OSA Advanced Photonics Conference, Integrated Photonics Research, Silicon, and Nanophotonics, Toronto, Canada (12–15 June 2011).
  12. B. Schmidt, Q. Xu, J. Shakya, S. Manipatruni, and M. Lipson, “Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes,” Opt. Express 15(6), 3140–3148 (2007).
    [CrossRef] [PubMed]

2011 (2)

Z. Xia, A. A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, “High resolution on-chip spectroscopy based on miniaturized microdonut resonators,” Opt. Express 19(13), 12356–12364 (2011).
[CrossRef] [PubMed]

M. Nedeljkovic, R. Soref, and G. Mashanovich, “Free-carrier electro-refraction and electro-absorption modulation predictions for silicon over the 1 – 14 μm infrared range,” submitted to Opt. Mater. Express (June 2011).

2010 (1)

2007 (1)

2005 (2)

1987 (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Adibi, A.

Anderson, S. P.

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Chamanzar, M.

Eftekhar, A. A.

Emelett, S. J.

Fauchet, P. M.

Jerman, M.

Li, Q.

Lipson, M.

Manipatruni, S.

Mashanovich, G.

M. Nedeljkovic, R. Soref, and G. Mashanovich, “Free-carrier electro-refraction and electro-absorption modulation predictions for silicon over the 1 – 14 μm infrared range,” submitted to Opt. Mater. Express (June 2011).

Mergel, D.

Momeni, B.

Nedeljkovic, M.

M. Nedeljkovic, R. Soref, and G. Mashanovich, “Free-carrier electro-refraction and electro-absorption modulation predictions for silicon over the 1 – 14 μm infrared range,” submitted to Opt. Mater. Express (June 2011).

Qiao, Z.

Schmidt, B.

Shakya, J.

Soltani, M.

Soref, R.

M. Nedeljkovic, R. Soref, and G. Mashanovich, “Free-carrier electro-refraction and electro-absorption modulation predictions for silicon over the 1 – 14 μm infrared range,” submitted to Opt. Mater. Express (June 2011).

Soref, R. A.

S. J. Emelett and R. A. Soref, “Analysis of dual-microring-resonator cross-connect switches and modulators,” Opt. Express 13(20), 7840–7853 (2005).
[CrossRef] [PubMed]

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Xia, Z.

Xu, Q.

Yegnanarayanan, S.

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Opt. Express (4)

Opt. Mater. Express (1)

M. Nedeljkovic, R. Soref, and G. Mashanovich, “Free-carrier electro-refraction and electro-absorption modulation predictions for silicon over the 1 – 14 μm infrared range,” submitted to Opt. Mater. Express (June 2011).

Other (5)

J. Hendrickson, R. Gibson, M. Gehl, J. D. Olitzky, S. Zandbergen, H. M. Gibbs, G. Khitrova, T. Alasaarela, A. Saynatjoki, S. Honkanen, A. Homyk, and A. Scherer, “One-dimensional photonic crystal nanobeam cavities,” Chapter in Quantum Optics with Semiconductor Nanostructures, F. Jahnke ed., (Woodhead Publishing), to be published (2011).

H.-C. Liu, C. Santis, and A. Yariv, “Coupled-resonator optical waveguide (CROWs) based on grating resonators with modulated bandgap,” paper SLTuB2 in OSA Advanced Photonics Conference, Slow Light, Toronto, Canada (12–15 June 2011).

B. Cluzel, K. Foubert, L. Lalouat, E. Picard, J. Dellinger, D. Peyrade, F. de Fornel, and E. Hadji, “Optical field molding within near-field coupled twinned nanobeam cavities,” paper IWB3 in OSA Advanced Photonics Conference, Integrated Photonics Research, Silicon, and Nanophotonics, Toronto, Canada (12–15 June 2011).

W. A. Zortman, M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-power high-speed silicon microdisk modulators,” paper CThJ4, Conference on Lasers and Electro-Optics, San Jose, CA (2010).

M. R. Watts, D. C. Trotter, and R. W. Young, “Maximally confined high-speed second-order silicon microdisk switches,” paper PDP14, OFC/NFOEC, San Diego, CA (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Perspective view of proposed multi-microdonut electro-optical spatial routing switch offering independent signal-gating of 2 x 2 MOS depletion devices.

Fig. 2
Fig. 2

Perspective view of proposed double-microdonut 2 x 2 electrooptical MOS switch and wavelength-multiplexed ROADM.

Fig. 3
Fig. 3

(a) top view of MOS-depletion microdonut modulator and switch, (b) cross-section side view of the device illustrating the ring-shaped high-K dielectric gate, the p-doped poly-silicon gate electrode, and the center-donut p-Si bottom contact region.

Fig. 4
Fig. 4

(a) MOS-modulator “off state” voltage versus tox, and (b) MOS modulator “on state” gate voltage versus tox.

Fig. 5
Fig. 5

Depletion-layer thickness versus Np for SOI microdonut MOS device.

Fig. 6
Fig. 6

(a) MOS modulator “off” state capacitance and (b) “on” state capacitance versus the HfO2 gate thickness tox for a range of p-doping concentration.

Fig. 7
Fig. 7

The off-state to on-state switching energy of the MOS modulator versus the HfO2 gate thickness.

Fig. 8
Fig. 8

Unloaded Q versus tox for the MOS-depletion TE0-mode microdonut modulator whose dimensions are given in the text.

Fig. 9
Fig. 9

Spatial distribution of TE0-mode intensity for the Fig.-3 modulator in its off state.

Fig. 10
Fig. 10

Mode-overlap calculation for the Fig-3 device with 2.2 V applied. The fundamental mode profile is approximated by the Gaussian shape illustrated here.

Fig. 11
Fig. 11

Infrared power transmission of the optimum MOS-depletion modulator in its off and on states.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

V o f f = V f b = ϕ m s Q o x C o x
C o x = ε 0 K o x t o x .
V o n = V f b + 2 q ε 0 K S i N p V s C o x + V s
V s < 2 φ s = 2 k B T q ln N p N i
V o n V t h = V f b + 2 q ε 0 K S i N p φ s C o x + 2 φ s
C o f f = ε 0 K o x K S i K o x L d b + K S i t o x π ( r 1 2 r 2 2 )
L d b = ε 0 K S i k B T q 2 N p
C o n = ε 0 K o x K S i K o x t d + K S i t o x π ( r 1 2 r 2 2 )
t d = 2 ε 0 K S i V s q N p .
E s = 1 2 C o n V o n 2 1 2 C o f f V o f f 2

Metrics