Abstract

We report the relative frequency stabilization of an intracavity frequency doubled singly resonant optical parametric oscillator on a Fabry-Perot étalon. The red/orange radiation produced by the frequency doubling of the intracavity resonant idler is stabilized using the Pound-Drever-Hall locking technique. The relative frequency noise of this orange light, when integrated from 1 Hz to 50 kHz, corresponds to a standard deviation of 700 Hz. The frequency noise of the pump laser is shown experimentally to be transferred to the non resonant signal beam.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid-state light-matter interface at the single-photon level,” Nature 456, 773–777 (2008).
    [CrossRef] [PubMed]
  2. M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
    [CrossRef] [PubMed]
  3. C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011).
    [CrossRef] [PubMed]
  4. E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
    [CrossRef] [PubMed]
  5. R. W. Equall, Y. Sun, R. L. Cone, and R. M. Macfarlane, “Ultraslow optical dephasing in Eu3+:Y2SiO5,” Phys. Rev. Lett. 72, 2179–2182 (1994).
    [CrossRef] [PubMed]
  6. R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52, 3963–3969 (1995).
    [CrossRef]
  7. J. J. Longdell and M. J. Sellars, “Experimental demonstration of quantum-state tomography and qubit-qubit interactions for rare-earth-metal-ion-based solid-state qubits,” Phys. Rev. A 69, 032307 (2004).
    [CrossRef]
  8. J. J. Longdell, M. J. Sellars, and N. B. Manson, “Demonstration of conditional quantum phase shift between ions in a solid,” Phys. Rev. Lett. 93, 130503 (2004).
    [CrossRef] [PubMed]
  9. L. Rippe, M. Nilsson, S. Kröll, R. Klieber, and D. Suter, “Experimental demonstration of efficient and selective population transfer and qubit distillation in a rare-earth-metal-ion-doped crystal,” Phys. Rev. A 71, 062328 (2005).
    [CrossRef]
  10. J. Helmcke, S. A. Lee, and J. L. Hall, “Dye laser spectrometer for ultrahigh spectral resolution: design and performance,” Appl. Opt. 21, 1686–1694 (1982).
    [CrossRef] [PubMed]
  11. J. Hough, D. Hils, M. D. Rayman, L.-S. Ma, L. Hollberg, and J. L. Hall, “Dye-laser frequency stabilization using optical resonators,” Appl. Phys. B 33, 179–185 (1984).
    [CrossRef]
  12. R. Kallenbach, C. Zimmermann, D. H. McIntyre, T. W. Hänsch, and R. G. DeVoe, “A blue dye laser with sub-kilohertz stability,” Opt. Commun. 70, 56–60 (1989).
    [CrossRef]
  13. B. Julsgaard, A. Walther, S. Kröll, and L. Rippe, “Understanding laser stabilization using spectral hole burning,” Opt. Express 15, 11444–11465 (2007).
    [CrossRef] [PubMed]
  14. J.-M. Melkonian, T.-H. My, F. Bretenaker, and C. Drag, “High spectral purity and tunable operation of a continuous singly resonant optical parametric oscillator emitting in the red,” Opt. Lett. 32, 518–520 (2007).
    [CrossRef] [PubMed]
  15. T.-H. My, Ph. Goldner, O. Guillot-Noël, M. Tonelli, and F. Bretenaker, “Single-frequency operation of an orange avalanche upconversion laser for high-resolution laser spectroscopy,” Eur. Phys. J. Appl. Phys. 42, 121–124 (2008).
    [CrossRef]
  16. T.-H. My, C. Drag, and F. Bretenaker, “Single-frequency and tunable operation of a continuous intracavity-frequency-doubled singly resonant optical parametric oscillator,” Opt. Lett. 33, 1455–1457 (2008).
    [CrossRef] [PubMed]
  17. D. Pabœuf, O. Mhibik, F. Bretenaker, Ph. Goldner, D. Parisi, and M. Tonelli, “Diode-pumped Pr:BaY2F8 continuous-wave orange laser,” Opt. Lett. 36, 280–282 (2011).
    [CrossRef] [PubMed]
  18. G. Breitenbach, S. Schiller, and J. Mlynek, “81% conversion efficiency in frequency-stable continuous-wave parametric oscillator,” Opt. Express12, 2095–2097 (1995).
  19. K. Schneider, P. Kramper, S. Schiller, and J. Mlynek, “Toward an optical synthetizer: a single-frequency parametric oscillator using periodically poled LiNbO3,” Opt. Lett. 22, 1293–1295 (1997).
    [CrossRef]
  20. U. Strössner, A. Peters, J. Mlynek, S. Schiller, J.-P. Weyn, and R. Wallenstein, “Single-frequency continuous-wave radiation from 0.77 to 1.73 μm generated by a green-pumped optical parametric oscillator with periodically poled LiTaO3,” Opt. Lett. 24, 1602–1604 (1999).
    [CrossRef]
  21. T. Petelski, R. S. Conroy, K. Bencheikh, J. Mlynek, and S. Schiller, “All-solid-state, tunable, single-frequency source of yellow light for high-resolution spectroscopy,” Opt. Lett. 26, 1013–1015 (2001).
    [CrossRef]
  22. E. V. Kovalchuk, D. Dekorsy, A. I. Lvovsky, C. Braxmaier, J. Mlynek, A. Peters, and S. Schiller, “High-resolution Doppler-free molecular spectroscopy with a continuous-wave optical parametric oscillator,” Opt. Lett. 26, 1430–1432 (2001).
    [CrossRef]
  23. U. Strößner, J.-P. Meyn, R. Wallenstein, P. Urenski, A. Arie, G. Rosenman, J. Mlynek, S. Schiller, and A. Peters, “Single-frequency continuous-wave optical parametric oscillator system with an ultrawide tuning range of 550 to 2830 nm,” J. Opt. Soc. Am. B 19, 1419–1424 (2002).
    [CrossRef]
  24. E. V. Kovalchuk, T. Schuldt, and A. Peters, “Combination of a continuous-wave optical parametric oscillator and a femtosecond frequency comb for optical frequency metrology,” Opt. Lett. 30, 3141–3143 (2005).
    [CrossRef] [PubMed]
  25. A. Lenhard, S. Zaske, J. A. L’huillier, and C. Becher, “Stabilized diode laser pumped, idler-resonant cw optical parametric oscillator,” Appl. Phys. B 102, 757–764 (2011).
    [CrossRef]
  26. S. Zaske, D.-H. Lee, and C. Becher, “Green-pumped cw singly resonant optical parametric oscillator based on MgO:PPLN with frequency stabilization to an atomic resonance,” Appl. Phys. B 98, 729–735 (2010).
    [CrossRef]
  27. O. Mhibik, T.-H. My, D. Pabœuf, F. Bretenaker, and C. Drag, “Frequency stabilization at the kilohertz level of a continuous intracavity frequency-doubled singly resonant optical parametric oscillator,” Opt. Lett. 35, 2364–2366 (2010).
    [CrossRef] [PubMed]
  28. E. Andrieux, T. Zanon, M. Cadoret, A. Rihan, and J.-J. Zondy, “500 GHz mode-hop-free idler tuning range with a frequency-stabilized singly resonant optical parametric oscillator,” Opt. Lett. 36, 1212–1214 (2011).
    [CrossRef] [PubMed]
  29. R. W. P. Drever, J. L. Hall, and F. V. Kowalski, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
    [CrossRef]
  30. J. Helmcke, J. J. Snyder, A. Morinaga, F. Mensing, and M. Gläser, “New ultra-high resolution dye laser spectrometer utilizing a non-tunable reference resonator,” Appl. Phys. B 43, 85–91 (1987).
    [CrossRef]
  31. W. Vassen, C. Zimmermann, R. Kallenbach, and T. W. Hänsch, “A frequency-stabilized titanium sapphire laser for high-resolution spectroscopy,” Opt. Commun. 75, 435–440 (1990).
    [CrossRef]
  32. P. R. Hemmer, A. V. Turukhin, M. S. Shahriar, and J. A. Musser, “Raman-excited spin coherences in nitrogen-vacancy color centers in diamond,” Opt. Lett. 26, 361–363 (2001).
    [CrossRef]

2011 (5)

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011).
[CrossRef] [PubMed]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[CrossRef] [PubMed]

A. Lenhard, S. Zaske, J. A. L’huillier, and C. Becher, “Stabilized diode laser pumped, idler-resonant cw optical parametric oscillator,” Appl. Phys. B 102, 757–764 (2011).
[CrossRef]

D. Pabœuf, O. Mhibik, F. Bretenaker, Ph. Goldner, D. Parisi, and M. Tonelli, “Diode-pumped Pr:BaY2F8 continuous-wave orange laser,” Opt. Lett. 36, 280–282 (2011).
[CrossRef] [PubMed]

E. Andrieux, T. Zanon, M. Cadoret, A. Rihan, and J.-J. Zondy, “500 GHz mode-hop-free idler tuning range with a frequency-stabilized singly resonant optical parametric oscillator,” Opt. Lett. 36, 1212–1214 (2011).
[CrossRef] [PubMed]

2010 (3)

O. Mhibik, T.-H. My, D. Pabœuf, F. Bretenaker, and C. Drag, “Frequency stabilization at the kilohertz level of a continuous intracavity frequency-doubled singly resonant optical parametric oscillator,” Opt. Lett. 35, 2364–2366 (2010).
[CrossRef] [PubMed]

S. Zaske, D.-H. Lee, and C. Becher, “Green-pumped cw singly resonant optical parametric oscillator based on MgO:PPLN with frequency stabilization to an atomic resonance,” Appl. Phys. B 98, 729–735 (2010).
[CrossRef]

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
[CrossRef] [PubMed]

2008 (3)

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid-state light-matter interface at the single-photon level,” Nature 456, 773–777 (2008).
[CrossRef] [PubMed]

T.-H. My, Ph. Goldner, O. Guillot-Noël, M. Tonelli, and F. Bretenaker, “Single-frequency operation of an orange avalanche upconversion laser for high-resolution laser spectroscopy,” Eur. Phys. J. Appl. Phys. 42, 121–124 (2008).
[CrossRef]

T.-H. My, C. Drag, and F. Bretenaker, “Single-frequency and tunable operation of a continuous intracavity-frequency-doubled singly resonant optical parametric oscillator,” Opt. Lett. 33, 1455–1457 (2008).
[CrossRef] [PubMed]

2007 (2)

2005 (2)

E. V. Kovalchuk, T. Schuldt, and A. Peters, “Combination of a continuous-wave optical parametric oscillator and a femtosecond frequency comb for optical frequency metrology,” Opt. Lett. 30, 3141–3143 (2005).
[CrossRef] [PubMed]

L. Rippe, M. Nilsson, S. Kröll, R. Klieber, and D. Suter, “Experimental demonstration of efficient and selective population transfer and qubit distillation in a rare-earth-metal-ion-doped crystal,” Phys. Rev. A 71, 062328 (2005).
[CrossRef]

2004 (2)

J. J. Longdell and M. J. Sellars, “Experimental demonstration of quantum-state tomography and qubit-qubit interactions for rare-earth-metal-ion-based solid-state qubits,” Phys. Rev. A 69, 032307 (2004).
[CrossRef]

J. J. Longdell, M. J. Sellars, and N. B. Manson, “Demonstration of conditional quantum phase shift between ions in a solid,” Phys. Rev. Lett. 93, 130503 (2004).
[CrossRef] [PubMed]

2002 (1)

2001 (3)

1999 (1)

1997 (1)

1995 (1)

R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52, 3963–3969 (1995).
[CrossRef]

1994 (1)

R. W. Equall, Y. Sun, R. L. Cone, and R. M. Macfarlane, “Ultraslow optical dephasing in Eu3+:Y2SiO5,” Phys. Rev. Lett. 72, 2179–2182 (1994).
[CrossRef] [PubMed]

1990 (1)

W. Vassen, C. Zimmermann, R. Kallenbach, and T. W. Hänsch, “A frequency-stabilized titanium sapphire laser for high-resolution spectroscopy,” Opt. Commun. 75, 435–440 (1990).
[CrossRef]

1989 (1)

R. Kallenbach, C. Zimmermann, D. H. McIntyre, T. W. Hänsch, and R. G. DeVoe, “A blue dye laser with sub-kilohertz stability,” Opt. Commun. 70, 56–60 (1989).
[CrossRef]

1987 (1)

J. Helmcke, J. J. Snyder, A. Morinaga, F. Mensing, and M. Gläser, “New ultra-high resolution dye laser spectrometer utilizing a non-tunable reference resonator,” Appl. Phys. B 43, 85–91 (1987).
[CrossRef]

1984 (1)

J. Hough, D. Hils, M. D. Rayman, L.-S. Ma, L. Hollberg, and J. L. Hall, “Dye-laser frequency stabilization using optical resonators,” Appl. Phys. B 33, 179–185 (1984).
[CrossRef]

1983 (1)

R. W. P. Drever, J. L. Hall, and F. V. Kowalski, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

1982 (1)

Afzelius, M.

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011).
[CrossRef] [PubMed]

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid-state light-matter interface at the single-photon level,” Nature 456, 773–777 (2008).
[CrossRef] [PubMed]

Andrieux, E.

Arie, A.

Becher, C.

A. Lenhard, S. Zaske, J. A. L’huillier, and C. Becher, “Stabilized diode laser pumped, idler-resonant cw optical parametric oscillator,” Appl. Phys. B 102, 757–764 (2011).
[CrossRef]

S. Zaske, D.-H. Lee, and C. Becher, “Green-pumped cw singly resonant optical parametric oscillator based on MgO:PPLN with frequency stabilization to an atomic resonance,” Appl. Phys. B 98, 729–735 (2010).
[CrossRef]

Bencheikh, K.

Braxmaier, C.

Breitenbach, G.

G. Breitenbach, S. Schiller, and J. Mlynek, “81% conversion efficiency in frequency-stable continuous-wave parametric oscillator,” Opt. Express12, 2095–2097 (1995).

Bretenaker, F.

Bussières, F.

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011).
[CrossRef] [PubMed]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[CrossRef] [PubMed]

Cadoret, M.

Clausen, C.

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011).
[CrossRef] [PubMed]

Cone, R. L.

R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52, 3963–3969 (1995).
[CrossRef]

R. W. Equall, Y. Sun, R. L. Cone, and R. M. Macfarlane, “Ultraslow optical dephasing in Eu3+:Y2SiO5,” Phys. Rev. Lett. 72, 2179–2182 (1994).
[CrossRef] [PubMed]

Conroy, R. S.

de Riedmatten, H.

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011).
[CrossRef] [PubMed]

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid-state light-matter interface at the single-photon level,” Nature 456, 773–777 (2008).
[CrossRef] [PubMed]

Dekorsy, D.

DeVoe, R. G.

R. Kallenbach, C. Zimmermann, D. H. McIntyre, T. W. Hänsch, and R. G. DeVoe, “A blue dye laser with sub-kilohertz stability,” Opt. Commun. 70, 56–60 (1989).
[CrossRef]

Drag, C.

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, and F. V. Kowalski, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Equall, R. W.

R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52, 3963–3969 (1995).
[CrossRef]

R. W. Equall, Y. Sun, R. L. Cone, and R. M. Macfarlane, “Ultraslow optical dephasing in Eu3+:Y2SiO5,” Phys. Rev. Lett. 72, 2179–2182 (1994).
[CrossRef] [PubMed]

George, M.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[CrossRef] [PubMed]

Gisin, N.

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011).
[CrossRef] [PubMed]

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid-state light-matter interface at the single-photon level,” Nature 456, 773–777 (2008).
[CrossRef] [PubMed]

Gläser, M.

J. Helmcke, J. J. Snyder, A. Morinaga, F. Mensing, and M. Gläser, “New ultra-high resolution dye laser spectrometer utilizing a non-tunable reference resonator,” Appl. Phys. B 43, 85–91 (1987).
[CrossRef]

Goldner, Ph.

D. Pabœuf, O. Mhibik, F. Bretenaker, Ph. Goldner, D. Parisi, and M. Tonelli, “Diode-pumped Pr:BaY2F8 continuous-wave orange laser,” Opt. Lett. 36, 280–282 (2011).
[CrossRef] [PubMed]

T.-H. My, Ph. Goldner, O. Guillot-Noël, M. Tonelli, and F. Bretenaker, “Single-frequency operation of an orange avalanche upconversion laser for high-resolution laser spectroscopy,” Eur. Phys. J. Appl. Phys. 42, 121–124 (2008).
[CrossRef]

Guillot-Noël, O.

T.-H. My, Ph. Goldner, O. Guillot-Noël, M. Tonelli, and F. Bretenaker, “Single-frequency operation of an orange avalanche upconversion laser for high-resolution laser spectroscopy,” Eur. Phys. J. Appl. Phys. 42, 121–124 (2008).
[CrossRef]

Hall, J. L.

J. Hough, D. Hils, M. D. Rayman, L.-S. Ma, L. Hollberg, and J. L. Hall, “Dye-laser frequency stabilization using optical resonators,” Appl. Phys. B 33, 179–185 (1984).
[CrossRef]

R. W. P. Drever, J. L. Hall, and F. V. Kowalski, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

J. Helmcke, S. A. Lee, and J. L. Hall, “Dye laser spectrometer for ultrahigh spectral resolution: design and performance,” Appl. Opt. 21, 1686–1694 (1982).
[CrossRef] [PubMed]

Hänsch, T. W.

W. Vassen, C. Zimmermann, R. Kallenbach, and T. W. Hänsch, “A frequency-stabilized titanium sapphire laser for high-resolution spectroscopy,” Opt. Commun. 75, 435–440 (1990).
[CrossRef]

R. Kallenbach, C. Zimmermann, D. H. McIntyre, T. W. Hänsch, and R. G. DeVoe, “A blue dye laser with sub-kilohertz stability,” Opt. Commun. 70, 56–60 (1989).
[CrossRef]

Hedges, M. P.

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
[CrossRef] [PubMed]

Helmcke, J.

J. Helmcke, J. J. Snyder, A. Morinaga, F. Mensing, and M. Gläser, “New ultra-high resolution dye laser spectrometer utilizing a non-tunable reference resonator,” Appl. Phys. B 43, 85–91 (1987).
[CrossRef]

J. Helmcke, S. A. Lee, and J. L. Hall, “Dye laser spectrometer for ultrahigh spectral resolution: design and performance,” Appl. Opt. 21, 1686–1694 (1982).
[CrossRef] [PubMed]

Hemmer, P. R.

Hils, D.

J. Hough, D. Hils, M. D. Rayman, L.-S. Ma, L. Hollberg, and J. L. Hall, “Dye-laser frequency stabilization using optical resonators,” Appl. Phys. B 33, 179–185 (1984).
[CrossRef]

Hollberg, L.

J. Hough, D. Hils, M. D. Rayman, L.-S. Ma, L. Hollberg, and J. L. Hall, “Dye-laser frequency stabilization using optical resonators,” Appl. Phys. B 33, 179–185 (1984).
[CrossRef]

Hough, J.

J. Hough, D. Hils, M. D. Rayman, L.-S. Ma, L. Hollberg, and J. L. Hall, “Dye-laser frequency stabilization using optical resonators,” Appl. Phys. B 33, 179–185 (1984).
[CrossRef]

Jin, J.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[CrossRef] [PubMed]

Julsgaard, B.

Kallenbach, R.

W. Vassen, C. Zimmermann, R. Kallenbach, and T. W. Hänsch, “A frequency-stabilized titanium sapphire laser for high-resolution spectroscopy,” Opt. Commun. 75, 435–440 (1990).
[CrossRef]

R. Kallenbach, C. Zimmermann, D. H. McIntyre, T. W. Hänsch, and R. G. DeVoe, “A blue dye laser with sub-kilohertz stability,” Opt. Commun. 70, 56–60 (1989).
[CrossRef]

Klieber, R.

L. Rippe, M. Nilsson, S. Kröll, R. Klieber, and D. Suter, “Experimental demonstration of efficient and selective population transfer and qubit distillation in a rare-earth-metal-ion-doped crystal,” Phys. Rev. A 71, 062328 (2005).
[CrossRef]

Kovalchuk, E. V.

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, and F. V. Kowalski, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Kramper, P.

Kröll, S.

B. Julsgaard, A. Walther, S. Kröll, and L. Rippe, “Understanding laser stabilization using spectral hole burning,” Opt. Express 15, 11444–11465 (2007).
[CrossRef] [PubMed]

L. Rippe, M. Nilsson, S. Kröll, R. Klieber, and D. Suter, “Experimental demonstration of efficient and selective population transfer and qubit distillation in a rare-earth-metal-ion-doped crystal,” Phys. Rev. A 71, 062328 (2005).
[CrossRef]

L’huillier, J. A.

A. Lenhard, S. Zaske, J. A. L’huillier, and C. Becher, “Stabilized diode laser pumped, idler-resonant cw optical parametric oscillator,” Appl. Phys. B 102, 757–764 (2011).
[CrossRef]

Lee, D.-H.

S. Zaske, D.-H. Lee, and C. Becher, “Green-pumped cw singly resonant optical parametric oscillator based on MgO:PPLN with frequency stabilization to an atomic resonance,” Appl. Phys. B 98, 729–735 (2010).
[CrossRef]

Lee, S. A.

Lenhard, A.

A. Lenhard, S. Zaske, J. A. L’huillier, and C. Becher, “Stabilized diode laser pumped, idler-resonant cw optical parametric oscillator,” Appl. Phys. B 102, 757–764 (2011).
[CrossRef]

Li, Y.

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
[CrossRef] [PubMed]

Longdell, J. J.

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
[CrossRef] [PubMed]

J. J. Longdell and M. J. Sellars, “Experimental demonstration of quantum-state tomography and qubit-qubit interactions for rare-earth-metal-ion-based solid-state qubits,” Phys. Rev. A 69, 032307 (2004).
[CrossRef]

J. J. Longdell, M. J. Sellars, and N. B. Manson, “Demonstration of conditional quantum phase shift between ions in a solid,” Phys. Rev. Lett. 93, 130503 (2004).
[CrossRef] [PubMed]

Lvovsky, A. I.

Ma, L.-S.

J. Hough, D. Hils, M. D. Rayman, L.-S. Ma, L. Hollberg, and J. L. Hall, “Dye-laser frequency stabilization using optical resonators,” Appl. Phys. B 33, 179–185 (1984).
[CrossRef]

Macfarlane, R. M.

R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52, 3963–3969 (1995).
[CrossRef]

R. W. Equall, Y. Sun, R. L. Cone, and R. M. Macfarlane, “Ultraslow optical dephasing in Eu3+:Y2SiO5,” Phys. Rev. Lett. 72, 2179–2182 (1994).
[CrossRef] [PubMed]

Manson, N. B.

J. J. Longdell, M. J. Sellars, and N. B. Manson, “Demonstration of conditional quantum phase shift between ions in a solid,” Phys. Rev. Lett. 93, 130503 (2004).
[CrossRef] [PubMed]

McIntyre, D. H.

R. Kallenbach, C. Zimmermann, D. H. McIntyre, T. W. Hänsch, and R. G. DeVoe, “A blue dye laser with sub-kilohertz stability,” Opt. Commun. 70, 56–60 (1989).
[CrossRef]

Melkonian, J.-M.

Mensing, F.

J. Helmcke, J. J. Snyder, A. Morinaga, F. Mensing, and M. Gläser, “New ultra-high resolution dye laser spectrometer utilizing a non-tunable reference resonator,” Appl. Phys. B 43, 85–91 (1987).
[CrossRef]

Meyn, J.-P.

Mhibik, O.

Mlynek, J.

Morinaga, A.

J. Helmcke, J. J. Snyder, A. Morinaga, F. Mensing, and M. Gläser, “New ultra-high resolution dye laser spectrometer utilizing a non-tunable reference resonator,” Appl. Phys. B 43, 85–91 (1987).
[CrossRef]

Musser, J. A.

My, T.-H.

Nilsson, M.

L. Rippe, M. Nilsson, S. Kröll, R. Klieber, and D. Suter, “Experimental demonstration of efficient and selective population transfer and qubit distillation in a rare-earth-metal-ion-doped crystal,” Phys. Rev. A 71, 062328 (2005).
[CrossRef]

Oblak, D.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[CrossRef] [PubMed]

Pabœuf, D.

Parisi, D.

Petelski, T.

Peters, A.

Rayman, M. D.

J. Hough, D. Hils, M. D. Rayman, L.-S. Ma, L. Hollberg, and J. L. Hall, “Dye-laser frequency stabilization using optical resonators,” Appl. Phys. B 33, 179–185 (1984).
[CrossRef]

Ricken, R.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[CrossRef] [PubMed]

Rihan, A.

Rippe, L.

B. Julsgaard, A. Walther, S. Kröll, and L. Rippe, “Understanding laser stabilization using spectral hole burning,” Opt. Express 15, 11444–11465 (2007).
[CrossRef] [PubMed]

L. Rippe, M. Nilsson, S. Kröll, R. Klieber, and D. Suter, “Experimental demonstration of efficient and selective population transfer and qubit distillation in a rare-earth-metal-ion-doped crystal,” Phys. Rev. A 71, 062328 (2005).
[CrossRef]

Rosenman, G.

Saglamyurek, E.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[CrossRef] [PubMed]

Sangouard, N.

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011).
[CrossRef] [PubMed]

Schiller, S.

Schneider, K.

Schuldt, T.

Sellars, M. J.

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
[CrossRef] [PubMed]

J. J. Longdell and M. J. Sellars, “Experimental demonstration of quantum-state tomography and qubit-qubit interactions for rare-earth-metal-ion-based solid-state qubits,” Phys. Rev. A 69, 032307 (2004).
[CrossRef]

J. J. Longdell, M. J. Sellars, and N. B. Manson, “Demonstration of conditional quantum phase shift between ions in a solid,” Phys. Rev. Lett. 93, 130503 (2004).
[CrossRef] [PubMed]

Shahriar, M. S.

Simon, C.

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid-state light-matter interface at the single-photon level,” Nature 456, 773–777 (2008).
[CrossRef] [PubMed]

Sinclair, N.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[CrossRef] [PubMed]

Slater, J. A.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[CrossRef] [PubMed]

Snyder, J. J.

J. Helmcke, J. J. Snyder, A. Morinaga, F. Mensing, and M. Gläser, “New ultra-high resolution dye laser spectrometer utilizing a non-tunable reference resonator,” Appl. Phys. B 43, 85–91 (1987).
[CrossRef]

Sohler, W.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[CrossRef] [PubMed]

Staudt, M. U.

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid-state light-matter interface at the single-photon level,” Nature 456, 773–777 (2008).
[CrossRef] [PubMed]

Strößner, U.

Strössner, U.

Sun, Y.

R. W. Equall, Y. Sun, R. L. Cone, and R. M. Macfarlane, “Ultraslow optical dephasing in Eu3+:Y2SiO5,” Phys. Rev. Lett. 72, 2179–2182 (1994).
[CrossRef] [PubMed]

Suter, D.

L. Rippe, M. Nilsson, S. Kröll, R. Klieber, and D. Suter, “Experimental demonstration of efficient and selective population transfer and qubit distillation in a rare-earth-metal-ion-doped crystal,” Phys. Rev. A 71, 062328 (2005).
[CrossRef]

Tittel, W.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[CrossRef] [PubMed]

Tonelli, M.

D. Pabœuf, O. Mhibik, F. Bretenaker, Ph. Goldner, D. Parisi, and M. Tonelli, “Diode-pumped Pr:BaY2F8 continuous-wave orange laser,” Opt. Lett. 36, 280–282 (2011).
[CrossRef] [PubMed]

T.-H. My, Ph. Goldner, O. Guillot-Noël, M. Tonelli, and F. Bretenaker, “Single-frequency operation of an orange avalanche upconversion laser for high-resolution laser spectroscopy,” Eur. Phys. J. Appl. Phys. 42, 121–124 (2008).
[CrossRef]

Turukhin, A. V.

Urenski, P.

Usmani, I.

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011).
[CrossRef] [PubMed]

Vassen, W.

W. Vassen, C. Zimmermann, R. Kallenbach, and T. W. Hänsch, “A frequency-stabilized titanium sapphire laser for high-resolution spectroscopy,” Opt. Commun. 75, 435–440 (1990).
[CrossRef]

Wallenstein, R.

Walther, A.

Weyn, J.-P.

Zanon, T.

Zaske, S.

A. Lenhard, S. Zaske, J. A. L’huillier, and C. Becher, “Stabilized diode laser pumped, idler-resonant cw optical parametric oscillator,” Appl. Phys. B 102, 757–764 (2011).
[CrossRef]

S. Zaske, D.-H. Lee, and C. Becher, “Green-pumped cw singly resonant optical parametric oscillator based on MgO:PPLN with frequency stabilization to an atomic resonance,” Appl. Phys. B 98, 729–735 (2010).
[CrossRef]

Zimmermann, C.

W. Vassen, C. Zimmermann, R. Kallenbach, and T. W. Hänsch, “A frequency-stabilized titanium sapphire laser for high-resolution spectroscopy,” Opt. Commun. 75, 435–440 (1990).
[CrossRef]

R. Kallenbach, C. Zimmermann, D. H. McIntyre, T. W. Hänsch, and R. G. DeVoe, “A blue dye laser with sub-kilohertz stability,” Opt. Commun. 70, 56–60 (1989).
[CrossRef]

Zondy, J.-J.

Appl. Opt. (1)

Appl. Phys. B (5)

J. Hough, D. Hils, M. D. Rayman, L.-S. Ma, L. Hollberg, and J. L. Hall, “Dye-laser frequency stabilization using optical resonators,” Appl. Phys. B 33, 179–185 (1984).
[CrossRef]

A. Lenhard, S. Zaske, J. A. L’huillier, and C. Becher, “Stabilized diode laser pumped, idler-resonant cw optical parametric oscillator,” Appl. Phys. B 102, 757–764 (2011).
[CrossRef]

S. Zaske, D.-H. Lee, and C. Becher, “Green-pumped cw singly resonant optical parametric oscillator based on MgO:PPLN with frequency stabilization to an atomic resonance,” Appl. Phys. B 98, 729–735 (2010).
[CrossRef]

R. W. P. Drever, J. L. Hall, and F. V. Kowalski, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

J. Helmcke, J. J. Snyder, A. Morinaga, F. Mensing, and M. Gläser, “New ultra-high resolution dye laser spectrometer utilizing a non-tunable reference resonator,” Appl. Phys. B 43, 85–91 (1987).
[CrossRef]

Eur. Phys. J. Appl. Phys. (1)

T.-H. My, Ph. Goldner, O. Guillot-Noël, M. Tonelli, and F. Bretenaker, “Single-frequency operation of an orange avalanche upconversion laser for high-resolution laser spectroscopy,” Eur. Phys. J. Appl. Phys. 42, 121–124 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (4)

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid-state light-matter interface at the single-photon level,” Nature 456, 773–777 (2008).
[CrossRef] [PubMed]

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
[CrossRef] [PubMed]

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011).
[CrossRef] [PubMed]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[CrossRef] [PubMed]

Opt. Commun. (2)

R. Kallenbach, C. Zimmermann, D. H. McIntyre, T. W. Hänsch, and R. G. DeVoe, “A blue dye laser with sub-kilohertz stability,” Opt. Commun. 70, 56–60 (1989).
[CrossRef]

W. Vassen, C. Zimmermann, R. Kallenbach, and T. W. Hänsch, “A frequency-stabilized titanium sapphire laser for high-resolution spectroscopy,” Opt. Commun. 75, 435–440 (1990).
[CrossRef]

Opt. Express (1)

Opt. Lett. (11)

T.-H. My, C. Drag, and F. Bretenaker, “Single-frequency and tunable operation of a continuous intracavity-frequency-doubled singly resonant optical parametric oscillator,” Opt. Lett. 33, 1455–1457 (2008).
[CrossRef] [PubMed]

O. Mhibik, T.-H. My, D. Pabœuf, F. Bretenaker, and C. Drag, “Frequency stabilization at the kilohertz level of a continuous intracavity frequency-doubled singly resonant optical parametric oscillator,” Opt. Lett. 35, 2364–2366 (2010).
[CrossRef] [PubMed]

D. Pabœuf, O. Mhibik, F. Bretenaker, Ph. Goldner, D. Parisi, and M. Tonelli, “Diode-pumped Pr:BaY2F8 continuous-wave orange laser,” Opt. Lett. 36, 280–282 (2011).
[CrossRef] [PubMed]

E. Andrieux, T. Zanon, M. Cadoret, A. Rihan, and J.-J. Zondy, “500 GHz mode-hop-free idler tuning range with a frequency-stabilized singly resonant optical parametric oscillator,” Opt. Lett. 36, 1212–1214 (2011).
[CrossRef] [PubMed]

K. Schneider, P. Kramper, S. Schiller, and J. Mlynek, “Toward an optical synthetizer: a single-frequency parametric oscillator using periodically poled LiNbO3,” Opt. Lett. 22, 1293–1295 (1997).
[CrossRef]

U. Strössner, A. Peters, J. Mlynek, S. Schiller, J.-P. Weyn, and R. Wallenstein, “Single-frequency continuous-wave radiation from 0.77 to 1.73 μm generated by a green-pumped optical parametric oscillator with periodically poled LiTaO3,” Opt. Lett. 24, 1602–1604 (1999).
[CrossRef]

P. R. Hemmer, A. V. Turukhin, M. S. Shahriar, and J. A. Musser, “Raman-excited spin coherences in nitrogen-vacancy color centers in diamond,” Opt. Lett. 26, 361–363 (2001).
[CrossRef]

T. Petelski, R. S. Conroy, K. Bencheikh, J. Mlynek, and S. Schiller, “All-solid-state, tunable, single-frequency source of yellow light for high-resolution spectroscopy,” Opt. Lett. 26, 1013–1015 (2001).
[CrossRef]

E. V. Kovalchuk, D. Dekorsy, A. I. Lvovsky, C. Braxmaier, J. Mlynek, A. Peters, and S. Schiller, “High-resolution Doppler-free molecular spectroscopy with a continuous-wave optical parametric oscillator,” Opt. Lett. 26, 1430–1432 (2001).
[CrossRef]

E. V. Kovalchuk, T. Schuldt, and A. Peters, “Combination of a continuous-wave optical parametric oscillator and a femtosecond frequency comb for optical frequency metrology,” Opt. Lett. 30, 3141–3143 (2005).
[CrossRef] [PubMed]

J.-M. Melkonian, T.-H. My, F. Bretenaker, and C. Drag, “High spectral purity and tunable operation of a continuous singly resonant optical parametric oscillator emitting in the red,” Opt. Lett. 32, 518–520 (2007).
[CrossRef] [PubMed]

Phys. Rev. A (2)

J. J. Longdell and M. J. Sellars, “Experimental demonstration of quantum-state tomography and qubit-qubit interactions for rare-earth-metal-ion-based solid-state qubits,” Phys. Rev. A 69, 032307 (2004).
[CrossRef]

L. Rippe, M. Nilsson, S. Kröll, R. Klieber, and D. Suter, “Experimental demonstration of efficient and selective population transfer and qubit distillation in a rare-earth-metal-ion-doped crystal,” Phys. Rev. A 71, 062328 (2005).
[CrossRef]

Phys. Rev. B (1)

R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52, 3963–3969 (1995).
[CrossRef]

Phys. Rev. Lett. (2)

J. J. Longdell, M. J. Sellars, and N. B. Manson, “Demonstration of conditional quantum phase shift between ions in a solid,” Phys. Rev. Lett. 93, 130503 (2004).
[CrossRef] [PubMed]

R. W. Equall, Y. Sun, R. L. Cone, and R. M. Macfarlane, “Ultraslow optical dephasing in Eu3+:Y2SiO5,” Phys. Rev. Lett. 72, 2179–2182 (1994).
[CrossRef] [PubMed]

Other (1)

G. Breitenbach, S. Schiller, and J. Mlynek, “81% conversion efficiency in frequency-stable continuous-wave parametric oscillator,” Opt. Express12, 2095–2097 (1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental set-up. PZT: Piezoelectric transducer; HVA: High-Voltage Amplifier; DM: Dichroic Mirror; HWP: Half Wave Plate; LO: Local Oscillator; f i , 1 ≤ i ≤ 4: Focusing lenses; EOM: Electro Optic Modulator; FC: Fiber Coupler; OI: Optical Isolator; QWP: Quarter Wave Plate; PBS: Polarization Beamsplitter Cube; FP: Fabry-Perot cavity; FPD: Fast Photodiode; PD: Photodiode.

Fig. 2
Fig. 2

(a): Pound-Drever-Hall signal. (b): Signal transmitted by the reference cavity, exhibiting the carrier frequency and the two side bands. Both signals are recorded while the length of the reference cavity is scanned.

Fig. 3
Fig. 3

Spectrum of the relative frequency noise of (a) the pump laser and (b) the free-running SHG-SROPO.

Fig. 4
Fig. 4

Spectrum of the relative frequency noise of the servo-locked SHG-SROPO using the PDH technique. Notice the oscillation peaks between 10 kHz and 20 kHz.

Fig. 5
Fig. 5

Same as Fig. 4 with a phase-lead compensator added in the loop.

Fig. 6
Fig. 6

Spectrum of the relative frequency noise of the non-resonating signal beam while the servo-loop control of the idler frequency is on.

Metrics