Abstract

Ultrashort-pulse evolution inside a optical parametric oscillator is described by using a nonlinear-envelope-equation approach, eliminating the assumptions of fixed frequencies and a single χ(2) process associated with conventional solutions based on the three coupled-amplitude equations. By treating the interacting waves as a single propagating field, the experimentally-observed behaviors of singly and doubly-resonant OPOs are predicted across near-octave-spanning bandwidths, including situations where the nonlinear crystal provides simultaneous phasematching for multiple nonlinear processes.

©2011 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single envelope equation modeling of multi-octave comb arrays in microresonators with quadratic and cubic nonlinearities

Tobias Hansson, François Leo, Miro Erkintalo, Jessienta Anthony, Stéphane Coen, Iolanda Ricciardi, Maurizio De Rosa, and Stefan Wabnitz
J. Opt. Soc. Am. B 33(6) 1207-1215 (2016)

Adiabatic optical parametric oscillators: steady-state and dynamical behavior

C. R. Phillips and M. M. Fejer
Opt. Express 20(3) 2466-2482 (2012)

Mode spectrum of multi-longitudinal mode pumped near-degenerate OPOs with volume Bragg grating output couplers

Markus Henriksson, Lars Sjöqvist, Valdas Pasiskevicius, and Fredrik Laurell
Opt. Express 17(20) 17582-17589 (2009)

References

  • View by:
  • |
  • |
  • |

  1. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
    [Crossref]
  2. M. F. Becker, D. J. Kuizenga, D. W. Phillion, and A. E. Siegman, “Analytic expression for ultrashort pulse generation in mode-locked optical parametric oscillators,” J. Appl. Phys. 45(9), 3996–4005 (1974).
    [Crossref]
  3. E. C. Cheung and J. M. Liu, “Theory of a synchronously pumped optical parametric oscillator in steady-state operation,” J. Opt. Soc. Am. B 7(8), 1385–1401 (1990).
    [Crossref]
  4. B. Ruffing, A. Nebel, and R. Wallenstein, “All-solid-state cw mode-locked picosecond KTiOAsO4 (KTA) optical parametric oscillator,” Appl. Phys. B 67(5), 537–544 (1998).
    [Crossref]
  5. J. E. Schaar, J. S. Pelc, K. L. Vodopyanov, and M. M. Fejer, “Characterization and control of pulse shapes in a doubly resonant synchronously pumped optical parametric oscillator,” Appl. Opt. 49(24), 4489–4493 (2010).
    [Crossref] [PubMed]
  6. M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope equation for broadband optical pulses in quadratic media,” Phys. Rev. A 81(5), 053841 (2010).
    [Crossref]
  7. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  8. T. Brabec and F. Krausz, “Nonlinear Optical Pulse Propagation in the Single-Cycle Regime,” Phys. Rev. Lett. 78(17), 3282–3285 (1997).
    [Crossref]
  9. C. Langrock, M. M. Fejer, I. Hartl, and M. E. Fermann, “Generation of octave-spanning spectra inside reverse-photon-exchanged periodically poled lithium niobate waveguides,” Opt. Lett. 32(17), 2478–2480 (2007).
    [Crossref] [PubMed]
  10. N. Leindecker, A. Marandi, R. L. Byer, and K. L. Vodopyanov, “Broadband degenerate OPO for mid-infrared frequency comb generation,” Opt. Express 19(7), 6296–6302 (2011).
    [Crossref] [PubMed]
  11. S. T. Wong, K. L. Vodopyanov, and R. L. Byer, “Self-phase-locked divide-by-2 optical parametric oscillator as a broadband frequency comb source,” J. Opt. Soc. Am. B 27(5), 876–882 (2010).
    [Crossref]
  12. M. Conforti, F. Baronio, C. De Angelis, M. Marangoni, and G. Cerullo, “Theory and experiments on multistep parametric processes in nonlinear optics,” J. Opt. Soc. Am. B 28(4), 892–895 (2011).
    [Crossref]
  13. J. H. Sun, B. J. S. Gale, and D. T. Reid, “Composite frequency comb spanning 0.4-2.4μm from a phase-controlled femtosecond Ti:sapphire laser and synchronously pumped optical parametric oscillator,” Opt. Lett. 32(11), 1414–1416 (2007).
    [Crossref] [PubMed]
  14. K. L. Vodopyanov, E. Sorokin, I. T. Sorokina, and P. G. Schunemann, “Mid-IR frequency comb source spanning 4.4-5.4 μm based on subharmonic GaAs optical parametric oscillator,” Opt. Lett. 36(12), 2275–2277 (2011).
    [Crossref] [PubMed]
  15. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, 2001).
  16. K. A. Tillman, D. T. Reid, D. Artigas, and T. Y. Jiang, “Idler-resonant femtosecond tandem optical parametric oscillator tuning from 2.1 µm to 4.2 µm,” J. Opt. Soc. Am. B 21(8), 1551–1558 (2004).
    [Crossref]
  17. D. T. Reid, J. M. Dudley, M. Ebrahimzadeh, and W. Sibbett, “Soliton formation in a femtosecond optical parametric oscillator,” Opt. Lett. 19(11), 825–827 (1994).
    [Crossref] [PubMed]

2011 (3)

2010 (3)

2007 (2)

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

2004 (1)

1998 (1)

B. Ruffing, A. Nebel, and R. Wallenstein, “All-solid-state cw mode-locked picosecond KTiOAsO4 (KTA) optical parametric oscillator,” Appl. Phys. B 67(5), 537–544 (1998).
[Crossref]

1997 (1)

T. Brabec and F. Krausz, “Nonlinear Optical Pulse Propagation in the Single-Cycle Regime,” Phys. Rev. Lett. 78(17), 3282–3285 (1997).
[Crossref]

1994 (1)

1990 (1)

1974 (1)

M. F. Becker, D. J. Kuizenga, D. W. Phillion, and A. E. Siegman, “Analytic expression for ultrashort pulse generation in mode-locked optical parametric oscillators,” J. Appl. Phys. 45(9), 3996–4005 (1974).
[Crossref]

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Artigas, D.

Baronio, F.

M. Conforti, F. Baronio, C. De Angelis, M. Marangoni, and G. Cerullo, “Theory and experiments on multistep parametric processes in nonlinear optics,” J. Opt. Soc. Am. B 28(4), 892–895 (2011).
[Crossref]

M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope equation for broadband optical pulses in quadratic media,” Phys. Rev. A 81(5), 053841 (2010).
[Crossref]

Becker, M. F.

M. F. Becker, D. J. Kuizenga, D. W. Phillion, and A. E. Siegman, “Analytic expression for ultrashort pulse generation in mode-locked optical parametric oscillators,” J. Appl. Phys. 45(9), 3996–4005 (1974).
[Crossref]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Brabec, T.

T. Brabec and F. Krausz, “Nonlinear Optical Pulse Propagation in the Single-Cycle Regime,” Phys. Rev. Lett. 78(17), 3282–3285 (1997).
[Crossref]

Byer, R. L.

Cerullo, G.

Cheung, E. C.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Conforti, M.

M. Conforti, F. Baronio, C. De Angelis, M. Marangoni, and G. Cerullo, “Theory and experiments on multistep parametric processes in nonlinear optics,” J. Opt. Soc. Am. B 28(4), 892–895 (2011).
[Crossref]

M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope equation for broadband optical pulses in quadratic media,” Phys. Rev. A 81(5), 053841 (2010).
[Crossref]

De Angelis, C.

M. Conforti, F. Baronio, C. De Angelis, M. Marangoni, and G. Cerullo, “Theory and experiments on multistep parametric processes in nonlinear optics,” J. Opt. Soc. Am. B 28(4), 892–895 (2011).
[Crossref]

M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope equation for broadband optical pulses in quadratic media,” Phys. Rev. A 81(5), 053841 (2010).
[Crossref]

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

D. T. Reid, J. M. Dudley, M. Ebrahimzadeh, and W. Sibbett, “Soliton formation in a femtosecond optical parametric oscillator,” Opt. Lett. 19(11), 825–827 (1994).
[Crossref] [PubMed]

Ebrahimzadeh, M.

Fejer, M. M.

Fermann, M. E.

Gale, B. J. S.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Hartl, I.

Jiang, T. Y.

Krausz, F.

T. Brabec and F. Krausz, “Nonlinear Optical Pulse Propagation in the Single-Cycle Regime,” Phys. Rev. Lett. 78(17), 3282–3285 (1997).
[Crossref]

Kuizenga, D. J.

M. F. Becker, D. J. Kuizenga, D. W. Phillion, and A. E. Siegman, “Analytic expression for ultrashort pulse generation in mode-locked optical parametric oscillators,” J. Appl. Phys. 45(9), 3996–4005 (1974).
[Crossref]

Langrock, C.

Leindecker, N.

Liu, J. M.

Marandi, A.

Marangoni, M.

Nebel, A.

B. Ruffing, A. Nebel, and R. Wallenstein, “All-solid-state cw mode-locked picosecond KTiOAsO4 (KTA) optical parametric oscillator,” Appl. Phys. B 67(5), 537–544 (1998).
[Crossref]

Pelc, J. S.

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Phillion, D. W.

M. F. Becker, D. J. Kuizenga, D. W. Phillion, and A. E. Siegman, “Analytic expression for ultrashort pulse generation in mode-locked optical parametric oscillators,” J. Appl. Phys. 45(9), 3996–4005 (1974).
[Crossref]

Reid, D. T.

Ruffing, B.

B. Ruffing, A. Nebel, and R. Wallenstein, “All-solid-state cw mode-locked picosecond KTiOAsO4 (KTA) optical parametric oscillator,” Appl. Phys. B 67(5), 537–544 (1998).
[Crossref]

Schaar, J. E.

Schunemann, P. G.

Sibbett, W.

Siegman, A. E.

M. F. Becker, D. J. Kuizenga, D. W. Phillion, and A. E. Siegman, “Analytic expression for ultrashort pulse generation in mode-locked optical parametric oscillators,” J. Appl. Phys. 45(9), 3996–4005 (1974).
[Crossref]

Sorokin, E.

Sorokina, I. T.

Sun, J. H.

Tillman, K. A.

Vodopyanov, K. L.

Wallenstein, R.

B. Ruffing, A. Nebel, and R. Wallenstein, “All-solid-state cw mode-locked picosecond KTiOAsO4 (KTA) optical parametric oscillator,” Appl. Phys. B 67(5), 537–544 (1998).
[Crossref]

Wong, S. T.

Appl. Opt. (1)

Appl. Phys. B (1)

B. Ruffing, A. Nebel, and R. Wallenstein, “All-solid-state cw mode-locked picosecond KTiOAsO4 (KTA) optical parametric oscillator,” Appl. Phys. B 67(5), 537–544 (1998).
[Crossref]

J. Appl. Phys. (1)

M. F. Becker, D. J. Kuizenga, D. W. Phillion, and A. E. Siegman, “Analytic expression for ultrashort pulse generation in mode-locked optical parametric oscillators,” J. Appl. Phys. 45(9), 3996–4005 (1974).
[Crossref]

J. Opt. Soc. Am. B (4)

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Phys. Rev. A (1)

M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope equation for broadband optical pulses in quadratic media,” Phys. Rev. A 81(5), 053841 (2010).
[Crossref]

Phys. Rev. Lett. (1)

T. Brabec and F. Krausz, “Nonlinear Optical Pulse Propagation in the Single-Cycle Regime,” Phys. Rev. Lett. 78(17), 3282–3285 (1997).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Output spectrum of the tandem OPO, expressed as a logarithmic density plot, showing its evolution from a weak 50-fs seed pulse, centered at 2.3 µm, into a steady-state output after ~30 cavity roundtrips. (b) Spectral evolution of the field in the tandem OPO crystal once steady-state has been reached, showing the origin of additional waves due to multiple simultaneous sum- and difference-frequency processes (for details, see text).

Fig. 2
Fig. 2

Comparison of the experimental and simulated output-coupled spectra for the tandem OPO described in [16] for a 1-mm grating period of 22.94 µm and a 1.6-mm grating period of 34.71 µm. Sharp features in the simulation result (solid lines) have been filtered (dashed lines) for comparison with the experimental spectrum acquired using a low-resolution spectrometer.

Fig. 3
Fig. 3

(a) Simulated spectrum of the degenerate MgO:PPLN OPO reported in [10], presented on axes allowing a comparison with the previously published experimental data. (b) Spectral evolution of the resonant pulse showing steady-state behavior after 20 cavity roundtrips.

Fig. 4
Fig. 4

Spectral evolution of the resonant pulse in a degenerate OPO similar to that reported in [10], in which the cavity length is detuned from the position corresponding to perfect synchronization of the exactly-phasematched pulse with the pump pulse. The OPO displays spectral oscillations with a period of around 26 cavity roundtrips.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A z + i D A = i χ ( 2 ) ω 0 2 4 β 0 c 2 ( 1 i ω 0 τ ) [ A 2 e i ω 0 τ i ( β 0 β 1 ω 0 ) z + 2 | A | 2 e i ω 0 τ + i ( β 0 β 1 ω 0 ) z ]
χ ( 2 ) ( z ) = χ e f f ( 2 ) sin ( 2 π z / Λ ) / | sin ( 2 π z / Λ ) |
H ( ω ) = R e ln 2 [ 2 ( ω ω 0 ) / Δ ω ] 10 i ( ω ω 0 ) T

Metrics