Abstract

We report the first demonstration of efficient, octave spanning soliton self-frequency shift. In order to achieve this we used a photonic crystal fiber with reduced OH absorption and widely spaced zero-dispersion wavelengths. To our knowledge, this is the largest reported frequency span for a tunable, fiber-based source. In addition, we observe the generation of light above 2 μm directly from a Ti:Sapphire laser in the form of Cerenkov emission by the soliton when the red-shift saturates at the edge of the anomalous dispersion region.

© 2011 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Kato, K. Fujiura, and T. Kurihara, “Asynchronous all-optical bit-by-bit self-signal recognition and demultiplexing from overlapped signals achieved by self-frequency shift of raman soliton,” Electron. Lett. 40, 381–382 (2004).
    [CrossRef]
  2. S. Oda and A. Maruta, “All-optical tunable delay line based on soliton self-frequency shift and filtering broadened spectrum due to self-phase modulation,” Opt. Express 14, 7895–7902 (2006).
    [CrossRef] [PubMed]
  3. J. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
    [CrossRef]
  4. K. Sumimura, Y. Genda, T. Ohta, K. Itoh, and N. Nishizawa, “Quasi-supercontinuum generation using 1.06 μm ultrashort-pulse laser system for ultrahigh-resolution optical-coherence tomography,” Opt. Lett. 35, 3631–3633 (2010).
    [CrossRef] [PubMed]
  5. T. Konishi, K. Takahashi, H. Matsui, T. Satoh, and K. Itoh, “Five-bit parallel operation of optical quantization and coding for photonic analog-to-digital conversion,” Opt. Express 19, 16106–16114 (2011).
    [CrossRef] [PubMed]
  6. F. Mitschke and L. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986).
    [CrossRef] [PubMed]
  7. J. M. Dudley and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [CrossRef]
  8. X. Liu, C. Xu, W. Knox, J. Chandalia, B. Eggleton, S. Kosinski, and R. Windeler, “Soliton self-frequency shift in a short tapered air–silica microstructure fiber,” Opt. Lett. 26, 358–360 (2001).
    [CrossRef]
  9. N. Nishizawa and T. Goto, “Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers,” IEEE J. Sel. Top. Quantum Electron. 7, 518–524 (2001).
    [CrossRef]
  10. S. Kobtsev, S. Kukarin, N. Fateev, and S. Smirnov, “Generation of self-frequency-shifted solitons in tapered fibers in the presence of femtosecond pumping,” Laser Phys. 14, 748–751 (2004).
  11. N. Ishii, C. Teisset, S. Köhler, E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuška, and A. Zheltikov, “Widely tunable soliton frequency shifting of few-cycle laser pulses,” Phys. Rev. E 74, 36617 (2006).
    [CrossRef]
  12. J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, “1.0–1.7μm wavelength-tunable ultrashort-pulse generation using femtosecond Yb-doped fiber laser and photonic crystal fiber,” IEEE Photon. Technol. Lett. 18(21), 2284–2286 (2006).
    [CrossRef]
  13. J. van Howe, J. Lee, S. Zhou, F. Wise, C. Xu, S. Ramachandran, S. Ghalmi, and M. Yan, “Demonstration of soliton self-frequency shift below 1300nm in higher-order mode, solid silica-based fiber,” Opt. Lett. 32, 340–342 (2007).
    [CrossRef] [PubMed]
  14. M. Chan, S. Chia, T. Liu, T. Tsai, M. Ho, A. Ivanov, A. Zheltikov, J. Liu, H. Liu, and C. Sun, “1.2–2.2μm tunable raman soliton source based on a Cr: Forsterite-laser and a photonic-crystal fiber,” IEEE Photon. Technol. Lett. 20, 900–902 (2008).
    [CrossRef]
  15. I. Gris-Sánchez, B. Mangan, and J. Knight, “Reducing spectral attenuation in small-core photonic crystal fibers,” Opt. Mater. Express 1, 179–184 (2011).
    [CrossRef]
  16. M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82, 2197–2199 (2003).
    [CrossRef]
  17. Y. Yong-Qin, R. Shuang-Chen, D. Chen-Lin, and Y. Jian-Quan, “Supercontinuum generation using a polarization-maintaining photonic crystal fibre by a regeneratively amplified Ti:sapphire laser,” Chin. Phys. Lett. 22, 384–387 (2005).
    [CrossRef]
  18. J. Travers, R. Kennedy, S. Popov, J. Taylor, H. Sabert, and B. Mangan, “Extended continuous-wave supercontinuum generation in a low-water-loss holey fiber,” Opt. Lett. 30, 1938–1940 (2005).
    [CrossRef] [PubMed]
  19. A. Mussot and A. Kudlinski, “19.5 W CW-pumped supercontinuum source from 0.65 to 1.38 μm,” Electron. Lett. 45, 29–30 (2009).
    [CrossRef]
  20. A. Kiryanov, V. Minkovich, I. Mel’nikov, and A. Sotsky, “Infrared supercontinuum generation in cladding of a hollow-core fiber pumped with a 1 ns 1.06 μm Nd3+: YAG/Cr4+: YAG microchip laser,” Open Opt. J. 4, 29–36 (2010).
  21. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Supercontinuum generation spanning over three octaves from UV to 3.85 μm in a fluoride fiber,” Opt. Lett. 34, 2015–2017 (2009).
    [CrossRef] [PubMed]
  22. S. A. Dekker, R. Pant, A. C. Judge, C. M. de Sterke, B. J. Eggleton, I. Gris-Sánchez, and J. C. Knight, “Highly-efficient, octave spanning soliton self-frequency shift using a photonic crystal fiber with low OH loss,” in “Frontiers in Optics,” (Optical Society of America, 2010), PDPB6.
  23. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
    [CrossRef] [PubMed]
  24. D. Skryabin, F. Luan, J. Knight, and P. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
    [CrossRef] [PubMed]
  25. J. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986).
    [CrossRef] [PubMed]
  26. R. Pant, A. C. Judge, E. C. Mägi, B. T. Kuhlmey, M. de Sterke, and B. J. Eggleton, “Characterization and optimization of photonic crystal fibers for enhanced soliton self-frequency shift,” J. Opt. Soc. Am. B 27, 1894–1901 (2010).
    [CrossRef]
  27. A. Monteville, D. Landais, O. L. Goffic, D. Tregoat, N. J. Traynor, T.-N. Nguyen, S. Lobo, T. Chartier, and J.-C. Simon, “Low loss, low OH, highly non-linear holey fiber for Raman amplification,” in “Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies,” (Optical Society of America, 2006), CMC1.

2011 (2)

2010 (4)

R. Pant, A. C. Judge, E. C. Mägi, B. T. Kuhlmey, M. de Sterke, and B. J. Eggleton, “Characterization and optimization of photonic crystal fibers for enhanced soliton self-frequency shift,” J. Opt. Soc. Am. B 27, 1894–1901 (2010).
[CrossRef]

K. Sumimura, Y. Genda, T. Ohta, K. Itoh, and N. Nishizawa, “Quasi-supercontinuum generation using 1.06 μm ultrashort-pulse laser system for ultrahigh-resolution optical-coherence tomography,” Opt. Lett. 35, 3631–3633 (2010).
[CrossRef] [PubMed]

A. Kiryanov, V. Minkovich, I. Mel’nikov, and A. Sotsky, “Infrared supercontinuum generation in cladding of a hollow-core fiber pumped with a 1 ns 1.06 μm Nd3+: YAG/Cr4+: YAG microchip laser,” Open Opt. J. 4, 29–36 (2010).

S. A. Dekker, R. Pant, A. C. Judge, C. M. de Sterke, B. J. Eggleton, I. Gris-Sánchez, and J. C. Knight, “Highly-efficient, octave spanning soliton self-frequency shift using a photonic crystal fiber with low OH loss,” in “Frontiers in Optics,” (Optical Society of America, 2010), PDPB6.

2009 (2)

2008 (2)

J. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
[CrossRef]

M. Chan, S. Chia, T. Liu, T. Tsai, M. Ho, A. Ivanov, A. Zheltikov, J. Liu, H. Liu, and C. Sun, “1.2–2.2μm tunable raman soliton source based on a Cr: Forsterite-laser and a photonic-crystal fiber,” IEEE Photon. Technol. Lett. 20, 900–902 (2008).
[CrossRef]

2007 (1)

2006 (4)

S. Oda and A. Maruta, “All-optical tunable delay line based on soliton self-frequency shift and filtering broadened spectrum due to self-phase modulation,” Opt. Express 14, 7895–7902 (2006).
[CrossRef] [PubMed]

N. Ishii, C. Teisset, S. Köhler, E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuška, and A. Zheltikov, “Widely tunable soliton frequency shifting of few-cycle laser pulses,” Phys. Rev. E 74, 36617 (2006).
[CrossRef]

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, “1.0–1.7μm wavelength-tunable ultrashort-pulse generation using femtosecond Yb-doped fiber laser and photonic crystal fiber,” IEEE Photon. Technol. Lett. 18(21), 2284–2286 (2006).
[CrossRef]

J. M. Dudley and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

2005 (2)

Y. Yong-Qin, R. Shuang-Chen, D. Chen-Lin, and Y. Jian-Quan, “Supercontinuum generation using a polarization-maintaining photonic crystal fibre by a regeneratively amplified Ti:sapphire laser,” Chin. Phys. Lett. 22, 384–387 (2005).
[CrossRef]

J. Travers, R. Kennedy, S. Popov, J. Taylor, H. Sabert, and B. Mangan, “Extended continuous-wave supercontinuum generation in a low-water-loss holey fiber,” Opt. Lett. 30, 1938–1940 (2005).
[CrossRef] [PubMed]

2004 (2)

M. Kato, K. Fujiura, and T. Kurihara, “Asynchronous all-optical bit-by-bit self-signal recognition and demultiplexing from overlapped signals achieved by self-frequency shift of raman soliton,” Electron. Lett. 40, 381–382 (2004).
[CrossRef]

S. Kobtsev, S. Kukarin, N. Fateev, and S. Smirnov, “Generation of self-frequency-shifted solitons in tapered fibers in the presence of femtosecond pumping,” Laser Phys. 14, 748–751 (2004).

2003 (2)

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82, 2197–2199 (2003).
[CrossRef]

D. Skryabin, F. Luan, J. Knight, and P. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

2001 (2)

X. Liu, C. Xu, W. Knox, J. Chandalia, B. Eggleton, S. Kosinski, and R. Windeler, “Soliton self-frequency shift in a short tapered air–silica microstructure fiber,” Opt. Lett. 26, 358–360 (2001).
[CrossRef]

N. Nishizawa and T. Goto, “Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers,” IEEE J. Sel. Top. Quantum Electron. 7, 518–524 (2001).
[CrossRef]

1995 (1)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[CrossRef] [PubMed]

1986 (2)

Akhmediev, N.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[CrossRef] [PubMed]

Baltuška, A.

N. Ishii, C. Teisset, S. Köhler, E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuška, and A. Zheltikov, “Widely tunable soliton frequency shifting of few-cycle laser pulses,” Phys. Rev. E 74, 36617 (2006).
[CrossRef]

Chan, M.

M. Chan, S. Chia, T. Liu, T. Tsai, M. Ho, A. Ivanov, A. Zheltikov, J. Liu, H. Liu, and C. Sun, “1.2–2.2μm tunable raman soliton source based on a Cr: Forsterite-laser and a photonic-crystal fiber,” IEEE Photon. Technol. Lett. 20, 900–902 (2008).
[CrossRef]

Chandalia, J.

Chartier, T.

A. Monteville, D. Landais, O. L. Goffic, D. Tregoat, N. J. Traynor, T.-N. Nguyen, S. Lobo, T. Chartier, and J.-C. Simon, “Low loss, low OH, highly non-linear holey fiber for Raman amplification,” in “Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies,” (Optical Society of America, 2006), CMC1.

Chaudhari, C.

Chen-Lin, D.

Y. Yong-Qin, R. Shuang-Chen, D. Chen-Lin, and Y. Jian-Quan, “Supercontinuum generation using a polarization-maintaining photonic crystal fibre by a regeneratively amplified Ti:sapphire laser,” Chin. Phys. Lett. 22, 384–387 (2005).
[CrossRef]

Chia, S.

M. Chan, S. Chia, T. Liu, T. Tsai, M. Ho, A. Ivanov, A. Zheltikov, J. Liu, H. Liu, and C. Sun, “1.2–2.2μm tunable raman soliton source based on a Cr: Forsterite-laser and a photonic-crystal fiber,” IEEE Photon. Technol. Lett. 20, 900–902 (2008).
[CrossRef]

Coen, S.

J. M. Dudley and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

de Sterke, C. M.

S. A. Dekker, R. Pant, A. C. Judge, C. M. de Sterke, B. J. Eggleton, I. Gris-Sánchez, and J. C. Knight, “Highly-efficient, octave spanning soliton self-frequency shift using a photonic crystal fiber with low OH loss,” in “Frontiers in Optics,” (Optical Society of America, 2010), PDPB6.

de Sterke, M.

Dekker, S. A.

S. A. Dekker, R. Pant, A. C. Judge, C. M. de Sterke, B. J. Eggleton, I. Gris-Sánchez, and J. C. Knight, “Highly-efficient, octave spanning soliton self-frequency shift using a photonic crystal fiber with low OH loss,” in “Frontiers in Optics,” (Optical Society of America, 2010), PDPB6.

Dudley, J. M.

J. M. Dudley and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Eggleton, B.

Eggleton, B. J.

S. A. Dekker, R. Pant, A. C. Judge, C. M. de Sterke, B. J. Eggleton, I. Gris-Sánchez, and J. C. Knight, “Highly-efficient, octave spanning soliton self-frequency shift using a photonic crystal fiber with low OH loss,” in “Frontiers in Optics,” (Optical Society of America, 2010), PDPB6.

R. Pant, A. C. Judge, E. C. Mägi, B. T. Kuhlmey, M. de Sterke, and B. J. Eggleton, “Characterization and optimization of photonic crystal fibers for enhanced soliton self-frequency shift,” J. Opt. Soc. Am. B 27, 1894–1901 (2010).
[CrossRef]

Fateev, N.

S. Kobtsev, S. Kukarin, N. Fateev, and S. Smirnov, “Generation of self-frequency-shifted solitons in tapered fibers in the presence of femtosecond pumping,” Laser Phys. 14, 748–751 (2004).

Fuji, T.

N. Ishii, C. Teisset, S. Köhler, E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuška, and A. Zheltikov, “Widely tunable soliton frequency shifting of few-cycle laser pulses,” Phys. Rev. E 74, 36617 (2006).
[CrossRef]

Fujiura, K.

M. Kato, K. Fujiura, and T. Kurihara, “Asynchronous all-optical bit-by-bit self-signal recognition and demultiplexing from overlapped signals achieved by self-frequency shift of raman soliton,” Electron. Lett. 40, 381–382 (2004).
[CrossRef]

Genda, Y.

Genty, G.

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82, 2197–2199 (2003).
[CrossRef]

Ghalmi, S.

Goffic, O. L.

A. Monteville, D. Landais, O. L. Goffic, D. Tregoat, N. J. Traynor, T.-N. Nguyen, S. Lobo, T. Chartier, and J.-C. Simon, “Low loss, low OH, highly non-linear holey fiber for Raman amplification,” in “Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies,” (Optical Society of America, 2006), CMC1.

Gordon, J.

Goto, T.

N. Nishizawa and T. Goto, “Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers,” IEEE J. Sel. Top. Quantum Electron. 7, 518–524 (2001).
[CrossRef]

Gris-Sánchez, I.

I. Gris-Sánchez, B. Mangan, and J. Knight, “Reducing spectral attenuation in small-core photonic crystal fibers,” Opt. Mater. Express 1, 179–184 (2011).
[CrossRef]

S. A. Dekker, R. Pant, A. C. Judge, C. M. de Sterke, B. J. Eggleton, I. Gris-Sánchez, and J. C. Knight, “Highly-efficient, octave spanning soliton self-frequency shift using a photonic crystal fiber with low OH loss,” in “Frontiers in Optics,” (Optical Society of America, 2010), PDPB6.

Ho, M.

M. Chan, S. Chia, T. Liu, T. Tsai, M. Ho, A. Ivanov, A. Zheltikov, J. Liu, H. Liu, and C. Sun, “1.2–2.2μm tunable raman soliton source based on a Cr: Forsterite-laser and a photonic-crystal fiber,” IEEE Photon. Technol. Lett. 20, 900–902 (2008).
[CrossRef]

Ishii, N.

N. Ishii, C. Teisset, S. Köhler, E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuška, and A. Zheltikov, “Widely tunable soliton frequency shifting of few-cycle laser pulses,” Phys. Rev. E 74, 36617 (2006).
[CrossRef]

Itoh, K.

Ivanov, A.

M. Chan, S. Chia, T. Liu, T. Tsai, M. Ho, A. Ivanov, A. Zheltikov, J. Liu, H. Liu, and C. Sun, “1.2–2.2μm tunable raman soliton source based on a Cr: Forsterite-laser and a photonic-crystal fiber,” IEEE Photon. Technol. Lett. 20, 900–902 (2008).
[CrossRef]

Jian-Quan, Y.

Y. Yong-Qin, R. Shuang-Chen, D. Chen-Lin, and Y. Jian-Quan, “Supercontinuum generation using a polarization-maintaining photonic crystal fibre by a regeneratively amplified Ti:sapphire laser,” Chin. Phys. Lett. 22, 384–387 (2005).
[CrossRef]

Judge, A. C.

S. A. Dekker, R. Pant, A. C. Judge, C. M. de Sterke, B. J. Eggleton, I. Gris-Sánchez, and J. C. Knight, “Highly-efficient, octave spanning soliton self-frequency shift using a photonic crystal fiber with low OH loss,” in “Frontiers in Optics,” (Optical Society of America, 2010), PDPB6.

R. Pant, A. C. Judge, E. C. Mägi, B. T. Kuhlmey, M. de Sterke, and B. J. Eggleton, “Characterization and optimization of photonic crystal fibers for enhanced soliton self-frequency shift,” J. Opt. Soc. Am. B 27, 1894–1901 (2010).
[CrossRef]

Kaivola, M.

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82, 2197–2199 (2003).
[CrossRef]

Karlsson, M.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[CrossRef] [PubMed]

Kato, M.

M. Kato, K. Fujiura, and T. Kurihara, “Asynchronous all-optical bit-by-bit self-signal recognition and demultiplexing from overlapped signals achieved by self-frequency shift of raman soliton,” Electron. Lett. 40, 381–382 (2004).
[CrossRef]

Kennedy, R.

Kiryanov, A.

A. Kiryanov, V. Minkovich, I. Mel’nikov, and A. Sotsky, “Infrared supercontinuum generation in cladding of a hollow-core fiber pumped with a 1 ns 1.06 μm Nd3+: YAG/Cr4+: YAG microchip laser,” Open Opt. J. 4, 29–36 (2010).

Kito, C.

Knight, J.

I. Gris-Sánchez, B. Mangan, and J. Knight, “Reducing spectral attenuation in small-core photonic crystal fibers,” Opt. Mater. Express 1, 179–184 (2011).
[CrossRef]

D. Skryabin, F. Luan, J. Knight, and P. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

Knight, J. C.

S. A. Dekker, R. Pant, A. C. Judge, C. M. de Sterke, B. J. Eggleton, I. Gris-Sánchez, and J. C. Knight, “Highly-efficient, octave spanning soliton self-frequency shift using a photonic crystal fiber with low OH loss,” in “Frontiers in Optics,” (Optical Society of America, 2010), PDPB6.

Knox, W.

Kobtsev, S.

S. Kobtsev, S. Kukarin, N. Fateev, and S. Smirnov, “Generation of self-frequency-shifted solitons in tapered fibers in the presence of femtosecond pumping,” Laser Phys. 14, 748–751 (2004).

Köhler, S.

N. Ishii, C. Teisset, S. Köhler, E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuška, and A. Zheltikov, “Widely tunable soliton frequency shifting of few-cycle laser pulses,” Phys. Rev. E 74, 36617 (2006).
[CrossRef]

Konishi, T.

Kosinski, S.

Krausz, F.

N. Ishii, C. Teisset, S. Köhler, E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuška, and A. Zheltikov, “Widely tunable soliton frequency shifting of few-cycle laser pulses,” Phys. Rev. E 74, 36617 (2006).
[CrossRef]

Kudlinski, A.

A. Mussot and A. Kudlinski, “19.5 W CW-pumped supercontinuum source from 0.65 to 1.38 μm,” Electron. Lett. 45, 29–30 (2009).
[CrossRef]

Kuhlmey, B. T.

Kukarin, S.

S. Kobtsev, S. Kukarin, N. Fateev, and S. Smirnov, “Generation of self-frequency-shifted solitons in tapered fibers in the presence of femtosecond pumping,” Laser Phys. 14, 748–751 (2004).

Kurihara, T.

M. Kato, K. Fujiura, and T. Kurihara, “Asynchronous all-optical bit-by-bit self-signal recognition and demultiplexing from overlapped signals achieved by self-frequency shift of raman soliton,” Electron. Lett. 40, 381–382 (2004).
[CrossRef]

Landais, D.

A. Monteville, D. Landais, O. L. Goffic, D. Tregoat, N. J. Traynor, T.-N. Nguyen, S. Lobo, T. Chartier, and J.-C. Simon, “Low loss, low OH, highly non-linear holey fiber for Raman amplification,” in “Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies,” (Optical Society of America, 2006), CMC1.

Lee, J.

J. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
[CrossRef]

J. van Howe, J. Lee, S. Zhou, F. Wise, C. Xu, S. Ramachandran, S. Ghalmi, and M. Yan, “Demonstration of soliton self-frequency shift below 1300nm in higher-order mode, solid silica-based fiber,” Opt. Lett. 32, 340–342 (2007).
[CrossRef] [PubMed]

Lehtonen, M.

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82, 2197–2199 (2003).
[CrossRef]

Liao, M.

Liu, H.

M. Chan, S. Chia, T. Liu, T. Tsai, M. Ho, A. Ivanov, A. Zheltikov, J. Liu, H. Liu, and C. Sun, “1.2–2.2μm tunable raman soliton source based on a Cr: Forsterite-laser and a photonic-crystal fiber,” IEEE Photon. Technol. Lett. 20, 900–902 (2008).
[CrossRef]

Liu, J.

M. Chan, S. Chia, T. Liu, T. Tsai, M. Ho, A. Ivanov, A. Zheltikov, J. Liu, H. Liu, and C. Sun, “1.2–2.2μm tunable raman soliton source based on a Cr: Forsterite-laser and a photonic-crystal fiber,” IEEE Photon. Technol. Lett. 20, 900–902 (2008).
[CrossRef]

Liu, T.

M. Chan, S. Chia, T. Liu, T. Tsai, M. Ho, A. Ivanov, A. Zheltikov, J. Liu, H. Liu, and C. Sun, “1.2–2.2μm tunable raman soliton source based on a Cr: Forsterite-laser and a photonic-crystal fiber,” IEEE Photon. Technol. Lett. 20, 900–902 (2008).
[CrossRef]

Liu, X.

J. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
[CrossRef]

X. Liu, C. Xu, W. Knox, J. Chandalia, B. Eggleton, S. Kosinski, and R. Windeler, “Soliton self-frequency shift in a short tapered air–silica microstructure fiber,” Opt. Lett. 26, 358–360 (2001).
[CrossRef]

Lobo, S.

A. Monteville, D. Landais, O. L. Goffic, D. Tregoat, N. J. Traynor, T.-N. Nguyen, S. Lobo, T. Chartier, and J.-C. Simon, “Low loss, low OH, highly non-linear holey fiber for Raman amplification,” in “Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies,” (Optical Society of America, 2006), CMC1.

Luan, F.

D. Skryabin, F. Luan, J. Knight, and P. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

Ludvigsen, H.

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82, 2197–2199 (2003).
[CrossRef]

Mägi, E. C.

Mangan, B.

Maruta, A.

Matsui, H.

Mel’nikov, I.

A. Kiryanov, V. Minkovich, I. Mel’nikov, and A. Sotsky, “Infrared supercontinuum generation in cladding of a hollow-core fiber pumped with a 1 ns 1.06 μm Nd3+: YAG/Cr4+: YAG microchip laser,” Open Opt. J. 4, 29–36 (2010).

Metzger, T.

N. Ishii, C. Teisset, S. Köhler, E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuška, and A. Zheltikov, “Widely tunable soliton frequency shifting of few-cycle laser pulses,” Phys. Rev. E 74, 36617 (2006).
[CrossRef]

Minkovich, V.

A. Kiryanov, V. Minkovich, I. Mel’nikov, and A. Sotsky, “Infrared supercontinuum generation in cladding of a hollow-core fiber pumped with a 1 ns 1.06 μm Nd3+: YAG/Cr4+: YAG microchip laser,” Open Opt. J. 4, 29–36 (2010).

Mitschke, F.

Mollenauer, L.

Monteville, A.

A. Monteville, D. Landais, O. L. Goffic, D. Tregoat, N. J. Traynor, T.-N. Nguyen, S. Lobo, T. Chartier, and J.-C. Simon, “Low loss, low OH, highly non-linear holey fiber for Raman amplification,” in “Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies,” (Optical Society of America, 2006), CMC1.

Mussot, A.

A. Mussot and A. Kudlinski, “19.5 W CW-pumped supercontinuum source from 0.65 to 1.38 μm,” Electron. Lett. 45, 29–30 (2009).
[CrossRef]

Nguyen, T.-N.

A. Monteville, D. Landais, O. L. Goffic, D. Tregoat, N. J. Traynor, T.-N. Nguyen, S. Lobo, T. Chartier, and J.-C. Simon, “Low loss, low OH, highly non-linear holey fiber for Raman amplification,” in “Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies,” (Optical Society of America, 2006), CMC1.

Nishizawa, N.

K. Sumimura, Y. Genda, T. Ohta, K. Itoh, and N. Nishizawa, “Quasi-supercontinuum generation using 1.06 μm ultrashort-pulse laser system for ultrahigh-resolution optical-coherence tomography,” Opt. Lett. 35, 3631–3633 (2010).
[CrossRef] [PubMed]

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, “1.0–1.7μm wavelength-tunable ultrashort-pulse generation using femtosecond Yb-doped fiber laser and photonic crystal fiber,” IEEE Photon. Technol. Lett. 18(21), 2284–2286 (2006).
[CrossRef]

N. Nishizawa and T. Goto, “Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers,” IEEE J. Sel. Top. Quantum Electron. 7, 518–524 (2001).
[CrossRef]

Oda, S.

Ohishi, Y.

Ohta, T.

Pant, R.

S. A. Dekker, R. Pant, A. C. Judge, C. M. de Sterke, B. J. Eggleton, I. Gris-Sánchez, and J. C. Knight, “Highly-efficient, octave spanning soliton self-frequency shift using a photonic crystal fiber with low OH loss,” in “Frontiers in Optics,” (Optical Society of America, 2010), PDPB6.

R. Pant, A. C. Judge, E. C. Mägi, B. T. Kuhlmey, M. de Sterke, and B. J. Eggleton, “Characterization and optimization of photonic crystal fibers for enhanced soliton self-frequency shift,” J. Opt. Soc. Am. B 27, 1894–1901 (2010).
[CrossRef]

Popov, S.

Qin, G.

Ramachandran, S.

Russell, P.

D. Skryabin, F. Luan, J. Knight, and P. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

Sabert, H.

Satoh, T.

Serebryannikov, E.

N. Ishii, C. Teisset, S. Köhler, E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuška, and A. Zheltikov, “Widely tunable soliton frequency shifting of few-cycle laser pulses,” Phys. Rev. E 74, 36617 (2006).
[CrossRef]

Shuang-Chen, R.

Y. Yong-Qin, R. Shuang-Chen, D. Chen-Lin, and Y. Jian-Quan, “Supercontinuum generation using a polarization-maintaining photonic crystal fibre by a regeneratively amplified Ti:sapphire laser,” Chin. Phys. Lett. 22, 384–387 (2005).
[CrossRef]

Simon, J.-C.

A. Monteville, D. Landais, O. L. Goffic, D. Tregoat, N. J. Traynor, T.-N. Nguyen, S. Lobo, T. Chartier, and J.-C. Simon, “Low loss, low OH, highly non-linear holey fiber for Raman amplification,” in “Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies,” (Optical Society of America, 2006), CMC1.

Skryabin, D.

D. Skryabin, F. Luan, J. Knight, and P. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

Smirnov, S.

S. Kobtsev, S. Kukarin, N. Fateev, and S. Smirnov, “Generation of self-frequency-shifted solitons in tapered fibers in the presence of femtosecond pumping,” Laser Phys. 14, 748–751 (2004).

Sotsky, A.

A. Kiryanov, V. Minkovich, I. Mel’nikov, and A. Sotsky, “Infrared supercontinuum generation in cladding of a hollow-core fiber pumped with a 1 ns 1.06 μm Nd3+: YAG/Cr4+: YAG microchip laser,” Open Opt. J. 4, 29–36 (2010).

Sugiura, T.

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, “1.0–1.7μm wavelength-tunable ultrashort-pulse generation using femtosecond Yb-doped fiber laser and photonic crystal fiber,” IEEE Photon. Technol. Lett. 18(21), 2284–2286 (2006).
[CrossRef]

Sumimura, K.

Sun, C.

M. Chan, S. Chia, T. Liu, T. Tsai, M. Ho, A. Ivanov, A. Zheltikov, J. Liu, H. Liu, and C. Sun, “1.2–2.2μm tunable raman soliton source based on a Cr: Forsterite-laser and a photonic-crystal fiber,” IEEE Photon. Technol. Lett. 20, 900–902 (2008).
[CrossRef]

Suzuki, T.

Takahashi, K.

Takayanagi, J.

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, “1.0–1.7μm wavelength-tunable ultrashort-pulse generation using femtosecond Yb-doped fiber laser and photonic crystal fiber,” IEEE Photon. Technol. Lett. 18(21), 2284–2286 (2006).
[CrossRef]

Taylor, J.

Teisset, C.

N. Ishii, C. Teisset, S. Köhler, E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuška, and A. Zheltikov, “Widely tunable soliton frequency shifting of few-cycle laser pulses,” Phys. Rev. E 74, 36617 (2006).
[CrossRef]

Travers, J.

Traynor, N. J.

A. Monteville, D. Landais, O. L. Goffic, D. Tregoat, N. J. Traynor, T.-N. Nguyen, S. Lobo, T. Chartier, and J.-C. Simon, “Low loss, low OH, highly non-linear holey fiber for Raman amplification,” in “Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies,” (Optical Society of America, 2006), CMC1.

Tregoat, D.

A. Monteville, D. Landais, O. L. Goffic, D. Tregoat, N. J. Traynor, T.-N. Nguyen, S. Lobo, T. Chartier, and J.-C. Simon, “Low loss, low OH, highly non-linear holey fiber for Raman amplification,” in “Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies,” (Optical Society of America, 2006), CMC1.

Tsai, T.

M. Chan, S. Chia, T. Liu, T. Tsai, M. Ho, A. Ivanov, A. Zheltikov, J. Liu, H. Liu, and C. Sun, “1.2–2.2μm tunable raman soliton source based on a Cr: Forsterite-laser and a photonic-crystal fiber,” IEEE Photon. Technol. Lett. 20, 900–902 (2008).
[CrossRef]

van Howe, J.

J. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
[CrossRef]

J. van Howe, J. Lee, S. Zhou, F. Wise, C. Xu, S. Ramachandran, S. Ghalmi, and M. Yan, “Demonstration of soliton self-frequency shift below 1300nm in higher-order mode, solid silica-based fiber,” Opt. Lett. 32, 340–342 (2007).
[CrossRef] [PubMed]

Windeler, R.

Wise, F.

Xu, C.

Yan, M.

Yan, X.

Yong-Qin, Y.

Y. Yong-Qin, R. Shuang-Chen, D. Chen-Lin, and Y. Jian-Quan, “Supercontinuum generation using a polarization-maintaining photonic crystal fibre by a regeneratively amplified Ti:sapphire laser,” Chin. Phys. Lett. 22, 384–387 (2005).
[CrossRef]

Yoshida, M.

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, “1.0–1.7μm wavelength-tunable ultrashort-pulse generation using femtosecond Yb-doped fiber laser and photonic crystal fiber,” IEEE Photon. Technol. Lett. 18(21), 2284–2286 (2006).
[CrossRef]

Zheltikov, A.

M. Chan, S. Chia, T. Liu, T. Tsai, M. Ho, A. Ivanov, A. Zheltikov, J. Liu, H. Liu, and C. Sun, “1.2–2.2μm tunable raman soliton source based on a Cr: Forsterite-laser and a photonic-crystal fiber,” IEEE Photon. Technol. Lett. 20, 900–902 (2008).
[CrossRef]

N. Ishii, C. Teisset, S. Köhler, E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuška, and A. Zheltikov, “Widely tunable soliton frequency shifting of few-cycle laser pulses,” Phys. Rev. E 74, 36617 (2006).
[CrossRef]

Zhou, S.

Appl. Phys. Lett. (1)

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82, 2197–2199 (2003).
[CrossRef]

Chin. Phys. Lett. (1)

Y. Yong-Qin, R. Shuang-Chen, D. Chen-Lin, and Y. Jian-Quan, “Supercontinuum generation using a polarization-maintaining photonic crystal fibre by a regeneratively amplified Ti:sapphire laser,” Chin. Phys. Lett. 22, 384–387 (2005).
[CrossRef]

Electron. Lett. (2)

A. Mussot and A. Kudlinski, “19.5 W CW-pumped supercontinuum source from 0.65 to 1.38 μm,” Electron. Lett. 45, 29–30 (2009).
[CrossRef]

M. Kato, K. Fujiura, and T. Kurihara, “Asynchronous all-optical bit-by-bit self-signal recognition and demultiplexing from overlapped signals achieved by self-frequency shift of raman soliton,” Electron. Lett. 40, 381–382 (2004).
[CrossRef]

Frontiers in Optics (1)

S. A. Dekker, R. Pant, A. C. Judge, C. M. de Sterke, B. J. Eggleton, I. Gris-Sánchez, and J. C. Knight, “Highly-efficient, octave spanning soliton self-frequency shift using a photonic crystal fiber with low OH loss,” in “Frontiers in Optics,” (Optical Society of America, 2010), PDPB6.

IEEE J. Sel. Top. Quantum Electron. (2)

J. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
[CrossRef]

N. Nishizawa and T. Goto, “Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers,” IEEE J. Sel. Top. Quantum Electron. 7, 518–524 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, “1.0–1.7μm wavelength-tunable ultrashort-pulse generation using femtosecond Yb-doped fiber laser and photonic crystal fiber,” IEEE Photon. Technol. Lett. 18(21), 2284–2286 (2006).
[CrossRef]

M. Chan, S. Chia, T. Liu, T. Tsai, M. Ho, A. Ivanov, A. Zheltikov, J. Liu, H. Liu, and C. Sun, “1.2–2.2μm tunable raman soliton source based on a Cr: Forsterite-laser and a photonic-crystal fiber,” IEEE Photon. Technol. Lett. 20, 900–902 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Phys. (1)

S. Kobtsev, S. Kukarin, N. Fateev, and S. Smirnov, “Generation of self-frequency-shifted solitons in tapered fibers in the presence of femtosecond pumping,” Laser Phys. 14, 748–751 (2004).

Open Opt. J. (1)

A. Kiryanov, V. Minkovich, I. Mel’nikov, and A. Sotsky, “Infrared supercontinuum generation in cladding of a hollow-core fiber pumped with a 1 ns 1.06 μm Nd3+: YAG/Cr4+: YAG microchip laser,” Open Opt. J. 4, 29–36 (2010).

Opt. Express (2)

Opt. Lett. (7)

Opt. Mater. Express (1)

Phys. Rev. A (1)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[CrossRef] [PubMed]

Phys. Rev. E (1)

N. Ishii, C. Teisset, S. Köhler, E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuška, and A. Zheltikov, “Widely tunable soliton frequency shifting of few-cycle laser pulses,” Phys. Rev. E 74, 36617 (2006).
[CrossRef]

Rev. Mod. Phys. (1)

J. M. Dudley and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Science (1)

D. Skryabin, F. Luan, J. Knight, and P. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

Other (1)

A. Monteville, D. Landais, O. L. Goffic, D. Tregoat, N. J. Traynor, T.-N. Nguyen, S. Lobo, T. Chartier, and J.-C. Simon, “Low loss, low OH, highly non-linear holey fiber for Raman amplification,” in “Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies,” (Optical Society of America, 2006), CMC1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics