Abstract

We develop a dynamic multi-band OFDM subcarrier allocation scheme to fully utilize the available bandwidth under the restriction of dispersion- and chirp-related power fading. The experimental results successfully demonstrate an intensity-modulation-direct-detection 34.78-Gbps OFDM signal transmissions over 100-km long-reach (LR) passive-optical networks (PONs) based on a cost-effective 10-GHz EAM and a 10-GHz PIN. Considering 0–100-km transmission bandwidth of a 10-GHz EAM, the narrowest bandwidth is theoretically evaluated to occur at ~40 km, instead of 100 km. Consequently, the performances of 20–100-km PONs are experimentally investigated, and at least 33-Gbps capacity is achieved to support LR-PONs of all possible 20–100-km radii.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Koonen, “Fiber to the home/fiber to the premises: what, where, and when?” Proc. IEEE 94(5), 911–934 (2006).
    [CrossRef]
  2. P. D. Townsend, G. Talli, C. W. Chow, E. M. MacHale, C. Antony, R. Davey, T. De Ridder, X. Z. Qiu, P. Ossieur, H. G. Krimmel, D. W. Smith, I. Lealman, A. Poustie, S. Randel, and H. Rohde, “Long Reach Passive Optical Networks,” in The 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society,2007. LEOS 2007 (IEEE-LEOS, 2007), pp. 868–869.
  3. R. Lin, “Next generation PON in emerging networks,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OWH1.
  4. R. P. Davey, D. B. Grossman, M. Rasztovits-Wiech, D. B. Payne, D. Nesset, A. E. Kelly, A. Rafel, S. Appathurai, and S. H. Yang, “Long-reach passive optical networks,” J. Lightwave Technol. 27(3), 273–291 (2009).
    [CrossRef]
  5. K. Y. Cho, K. Tanaka, T. Sano, S. P. Jung, J. H. Chang, Y. Takushima, A. Agata, Y. Horiuchi, M. Suzuki, and Y. C. Chung, “Long-reach coherent WDM PON employing self-polarization-stabilization technique,” J. Lightwave Technol. 29(4), 456–462 (2011).
    [CrossRef]
  6. D. Shea and J. Mitchell, “A 10 Gb/s 1024-way-split 100-km long-reach optical-access network,” J. Lightwave Technol. 25(3), 685–693 (2007).
    [CrossRef]
  7. N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s Optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
    [CrossRef]
  8. U. H. Hong, K. Y. Cho, Y. Takushima, and Y. C. Chung, “Maximum reach of long-reach RSOA-based WDM PON employing remote EDFA,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OMP1.
  9. K. Y. Cho, B. S. Choi, Y. Takushima, and Y. C. Chung, “25.78-Gb/s Operation of RSOA for next-generation optical access networks,” IEEE Photon. Technol. Lett. 23(8), 495–497 (2011).
    [CrossRef]
  10. http://www.itu.int/rec/T-REC-G.987.1-201001-I/en
  11. D. Z. Hsu, C. C. Wei, H. Y. Chen, J. Chen, M. C. Yuang, S. H. Lin, and W. Y. Li, “21 Gb/s after 100 km OFDM long-reach PON transmission using a cost-effective electro-absorption modulator,” Opt. Express 18(26), 27758–27763 (2010).
    [CrossRef] [PubMed]
  12. A. Gharba, P. Chanclou, M. Ouzzif, J. L. Masson, L. A. Neto, R. Xia, N. Genay, B. Charbonnier, M. Hélard, E. Grard, and V. Rodrigues, “Optical transmission performance for DML considering laser chirp and fiber dispersion using AMOOFDM,” in 2010 International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT) (2010), pp. 1022–1026.
  13. T. Watanabe, N. Sakaida, H. Yasaka, F. Kano, and M. Koga, “Transmission performance of chirp-controlled signal by using semiconductor optical amplifier,” J. Lightwave Technol. 18(8), 1069–1077 (2000).
    [CrossRef]
  14. H. S. Chung, Y. G. Jang, and Y. C. Chung, “Directly modulated 10-Gb/s signal transmission over 320 km of negative dispersion fiber for regional metro network,” IEEE Photon. Technol. Lett. 15(9), 1306–1308 (2003).
    [CrossRef]
  15. Z. Liu, Y. Xin, and G. B. Giannakis, “Space-time-frequency coded OFDM over frequency-selective fading channels,” IEEE Trans. Signal Process. 50(10), 2465–2476 (2002).
    [CrossRef]
  16. Z. Cao, J. Yu, W. Wang, L. Chen, and Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,” IEEE Photon. Technol. Lett. 22(11), 736–738 (2010).
    [CrossRef]
  17. C. C. Wei, “Small-signal analysis of OOFDM signal transmission with directly modulated laser and direct detection,” Opt. Lett. 36(2), 151–153 (2011).
    [CrossRef] [PubMed]
  18. http://www.itu.int/dms_pub/itu-t/oth/06/13/T06130000200001PDFE.pdf
  19. J. Wang and K. Petermann, “Small signal analysis for dispersive optical fiber communication systems,” J. Lightwave Technol. 10(1), 96–100 (1992).
    [CrossRef]
  20. F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol. 11(12), 1937–1940 (1993).
    [CrossRef]

2011

2010

D. Z. Hsu, C. C. Wei, H. Y. Chen, J. Chen, M. C. Yuang, S. H. Lin, and W. Y. Li, “21 Gb/s after 100 km OFDM long-reach PON transmission using a cost-effective electro-absorption modulator,” Opt. Express 18(26), 27758–27763 (2010).
[CrossRef] [PubMed]

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s Optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
[CrossRef]

Z. Cao, J. Yu, W. Wang, L. Chen, and Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,” IEEE Photon. Technol. Lett. 22(11), 736–738 (2010).
[CrossRef]

2009

2007

2006

T. Koonen, “Fiber to the home/fiber to the premises: what, where, and when?” Proc. IEEE 94(5), 911–934 (2006).
[CrossRef]

2003

H. S. Chung, Y. G. Jang, and Y. C. Chung, “Directly modulated 10-Gb/s signal transmission over 320 km of negative dispersion fiber for regional metro network,” IEEE Photon. Technol. Lett. 15(9), 1306–1308 (2003).
[CrossRef]

2002

Z. Liu, Y. Xin, and G. B. Giannakis, “Space-time-frequency coded OFDM over frequency-selective fading channels,” IEEE Trans. Signal Process. 50(10), 2465–2476 (2002).
[CrossRef]

2000

1993

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol. 11(12), 1937–1940 (1993).
[CrossRef]

1992

J. Wang and K. Petermann, “Small signal analysis for dispersive optical fiber communication systems,” J. Lightwave Technol. 10(1), 96–100 (1992).
[CrossRef]

Agata, A.

Appathurai, S.

Cao, Z.

Z. Cao, J. Yu, W. Wang, L. Chen, and Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,” IEEE Photon. Technol. Lett. 22(11), 736–738 (2010).
[CrossRef]

Chang, J. H.

Chen, H. Y.

Chen, J.

Chen, L.

Z. Cao, J. Yu, W. Wang, L. Chen, and Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,” IEEE Photon. Technol. Lett. 22(11), 736–738 (2010).
[CrossRef]

Cho, K. Y.

K. Y. Cho, K. Tanaka, T. Sano, S. P. Jung, J. H. Chang, Y. Takushima, A. Agata, Y. Horiuchi, M. Suzuki, and Y. C. Chung, “Long-reach coherent WDM PON employing self-polarization-stabilization technique,” J. Lightwave Technol. 29(4), 456–462 (2011).
[CrossRef]

K. Y. Cho, B. S. Choi, Y. Takushima, and Y. C. Chung, “25.78-Gb/s Operation of RSOA for next-generation optical access networks,” IEEE Photon. Technol. Lett. 23(8), 495–497 (2011).
[CrossRef]

Choi, B. S.

K. Y. Cho, B. S. Choi, Y. Takushima, and Y. C. Chung, “25.78-Gb/s Operation of RSOA for next-generation optical access networks,” IEEE Photon. Technol. Lett. 23(8), 495–497 (2011).
[CrossRef]

Chung, H. S.

H. S. Chung, Y. G. Jang, and Y. C. Chung, “Directly modulated 10-Gb/s signal transmission over 320 km of negative dispersion fiber for regional metro network,” IEEE Photon. Technol. Lett. 15(9), 1306–1308 (2003).
[CrossRef]

Chung, Y. C.

K. Y. Cho, B. S. Choi, Y. Takushima, and Y. C. Chung, “25.78-Gb/s Operation of RSOA for next-generation optical access networks,” IEEE Photon. Technol. Lett. 23(8), 495–497 (2011).
[CrossRef]

K. Y. Cho, K. Tanaka, T. Sano, S. P. Jung, J. H. Chang, Y. Takushima, A. Agata, Y. Horiuchi, M. Suzuki, and Y. C. Chung, “Long-reach coherent WDM PON employing self-polarization-stabilization technique,” J. Lightwave Technol. 29(4), 456–462 (2011).
[CrossRef]

H. S. Chung, Y. G. Jang, and Y. C. Chung, “Directly modulated 10-Gb/s signal transmission over 320 km of negative dispersion fiber for regional metro network,” IEEE Photon. Technol. Lett. 15(9), 1306–1308 (2003).
[CrossRef]

Cvijetic, N.

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s Optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
[CrossRef]

Davey, R. P.

Devaux, F.

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol. 11(12), 1937–1940 (1993).
[CrossRef]

Dong, Z.

Z. Cao, J. Yu, W. Wang, L. Chen, and Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,” IEEE Photon. Technol. Lett. 22(11), 736–738 (2010).
[CrossRef]

Giannakis, G. B.

Z. Liu, Y. Xin, and G. B. Giannakis, “Space-time-frequency coded OFDM over frequency-selective fading channels,” IEEE Trans. Signal Process. 50(10), 2465–2476 (2002).
[CrossRef]

Grossman, D. B.

Horiuchi, Y.

Hsu, D. Z.

Hu, J.

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s Optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
[CrossRef]

Jang, Y. G.

H. S. Chung, Y. G. Jang, and Y. C. Chung, “Directly modulated 10-Gb/s signal transmission over 320 km of negative dispersion fiber for regional metro network,” IEEE Photon. Technol. Lett. 15(9), 1306–1308 (2003).
[CrossRef]

Jung, S. P.

Kano, F.

Kelly, A. E.

Kerdiles, J. F.

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol. 11(12), 1937–1940 (1993).
[CrossRef]

Koga, M.

Koonen, T.

T. Koonen, “Fiber to the home/fiber to the premises: what, where, and when?” Proc. IEEE 94(5), 911–934 (2006).
[CrossRef]

Li, W. Y.

Lin, S. H.

Liu, Z.

Z. Liu, Y. Xin, and G. B. Giannakis, “Space-time-frequency coded OFDM over frequency-selective fading channels,” IEEE Trans. Signal Process. 50(10), 2465–2476 (2002).
[CrossRef]

Mitchell, J.

Nesset, D.

Payne, D. B.

Petermann, K.

J. Wang and K. Petermann, “Small signal analysis for dispersive optical fiber communication systems,” J. Lightwave Technol. 10(1), 96–100 (1992).
[CrossRef]

Qian, D.

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s Optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
[CrossRef]

Rafel, A.

Rasztovits-Wiech, M.

Sakaida, N.

Sano, T.

Shea, D.

Sorel, Y.

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol. 11(12), 1937–1940 (1993).
[CrossRef]

Suzuki, M.

Takushima, Y.

K. Y. Cho, K. Tanaka, T. Sano, S. P. Jung, J. H. Chang, Y. Takushima, A. Agata, Y. Horiuchi, M. Suzuki, and Y. C. Chung, “Long-reach coherent WDM PON employing self-polarization-stabilization technique,” J. Lightwave Technol. 29(4), 456–462 (2011).
[CrossRef]

K. Y. Cho, B. S. Choi, Y. Takushima, and Y. C. Chung, “25.78-Gb/s Operation of RSOA for next-generation optical access networks,” IEEE Photon. Technol. Lett. 23(8), 495–497 (2011).
[CrossRef]

Tanaka, K.

Wang, J.

J. Wang and K. Petermann, “Small signal analysis for dispersive optical fiber communication systems,” J. Lightwave Technol. 10(1), 96–100 (1992).
[CrossRef]

Wang, W.

Z. Cao, J. Yu, W. Wang, L. Chen, and Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,” IEEE Photon. Technol. Lett. 22(11), 736–738 (2010).
[CrossRef]

Watanabe, T.

Wei, C. C.

Xin, Y.

Z. Liu, Y. Xin, and G. B. Giannakis, “Space-time-frequency coded OFDM over frequency-selective fading channels,” IEEE Trans. Signal Process. 50(10), 2465–2476 (2002).
[CrossRef]

Yang, S. H.

Yasaka, H.

Yu, J.

Z. Cao, J. Yu, W. Wang, L. Chen, and Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,” IEEE Photon. Technol. Lett. 22(11), 736–738 (2010).
[CrossRef]

Yuang, M. C.

IEEE Commun. Mag.

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s Optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

K. Y. Cho, B. S. Choi, Y. Takushima, and Y. C. Chung, “25.78-Gb/s Operation of RSOA for next-generation optical access networks,” IEEE Photon. Technol. Lett. 23(8), 495–497 (2011).
[CrossRef]

H. S. Chung, Y. G. Jang, and Y. C. Chung, “Directly modulated 10-Gb/s signal transmission over 320 km of negative dispersion fiber for regional metro network,” IEEE Photon. Technol. Lett. 15(9), 1306–1308 (2003).
[CrossRef]

Z. Cao, J. Yu, W. Wang, L. Chen, and Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,” IEEE Photon. Technol. Lett. 22(11), 736–738 (2010).
[CrossRef]

IEEE Trans. Signal Process.

Z. Liu, Y. Xin, and G. B. Giannakis, “Space-time-frequency coded OFDM over frequency-selective fading channels,” IEEE Trans. Signal Process. 50(10), 2465–2476 (2002).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Proc. IEEE

T. Koonen, “Fiber to the home/fiber to the premises: what, where, and when?” Proc. IEEE 94(5), 911–934 (2006).
[CrossRef]

Other

P. D. Townsend, G. Talli, C. W. Chow, E. M. MacHale, C. Antony, R. Davey, T. De Ridder, X. Z. Qiu, P. Ossieur, H. G. Krimmel, D. W. Smith, I. Lealman, A. Poustie, S. Randel, and H. Rohde, “Long Reach Passive Optical Networks,” in The 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society,2007. LEOS 2007 (IEEE-LEOS, 2007), pp. 868–869.

R. Lin, “Next generation PON in emerging networks,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OWH1.

U. H. Hong, K. Y. Cho, Y. Takushima, and Y. C. Chung, “Maximum reach of long-reach RSOA-based WDM PON employing remote EDFA,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OMP1.

http://www.itu.int/rec/T-REC-G.987.1-201001-I/en

A. Gharba, P. Chanclou, M. Ouzzif, J. L. Masson, L. A. Neto, R. Xia, N. Genay, B. Charbonnier, M. Hélard, E. Grard, and V. Rodrigues, “Optical transmission performance for DML considering laser chirp and fiber dispersion using AMOOFDM,” in 2010 International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT) (2010), pp. 1022–1026.

http://www.itu.int/dms_pub/itu-t/oth/06/13/T06130000200001PDFE.pdf

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Wavelength allocations of current G-PON/XG-PON and proposed LR-PON. (DS: downstream; US: upstream)

Fig. 2
Fig. 2

Proposed feasible architecture for a cost-effective LR-PON.

Fig. 3
Fig. 3

Frequency responses of 20–100-km SMF transmissions.

Fig. 4
Fig. 4

Simulation results of (a) the passbands and forbidden bands and (b) the 1st-passband bandwidth and the total bandwidth of passbands <10 GHz, with α of 0.53.

Fig. 5
Fig. 5

Experimental setup with spectrum illustration. (a) channel 1, (b) channel 2, (c) channel 2 after up-conversion, and (d) combination of channels 1 and 2.

Fig. 6
Fig. 6

Relative received powers and SNR penalties of each subcarrier after (a) 40 km and (b) 100 km.

Fig. 7
Fig. 7

SNR of each subcarrier and constellations of (a) 40-km and (b) 100-km SMF transmissions.

Fig. 8
Fig. 8

Experimental measured and simulated electrical spectra of (a) 1st band of optical B-to-B, (b) 1st band after 100-km SMF transmission and (c) 1st and 2nd bands after 100-km SMF transmission.

Fig. 9
Fig. 9

BERs of OFDM signals before and after 40-km and 100-km SMF transmissions.

Tables (1)

Tables Icon

Table 1 OFDM subcarrier allocations, data rates, power penalties, receiver sensitivities and power budgets of 20–100-km SMF transmissions

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P r = ( 1 + α 2 ) cos 2 ( 2 π 2 β 2 L f 2 tan 1 α ) × P s ,
f m = m 2 π ( 1 ) m tan 1 1 + 2 α 2 tan 1 α 2 π 2 | β 2 | L ,
P SSII P s 2 8 P c ( 1 + α 2 ) 2 ( N s n 2 ) × [ 1+ 2 cos 2 ( n 2 θ D ) + sinc ( 4 n θ D ( N s n 2 ) ) 4   cos ( n 2 θ D ) sinc ( 2 n θ D ( N s n 2 ) ) ] ,

Metrics