Abstract

We demonstrate the fabrication of high-quality LPFGs in simplified hollow-core photonic crystal fibers, composed of a hollow hexagonal core and six crown-like air holes, using CO2-laser-irradiation method. Theoretical and experimental investigations indicate that the LPFGs are originated from the strong mode-coupling between the LP01 and LP11 core modes. And a dominant physical mechanism for the mode-coupling is experimentally confirmed to be the periodic microbends rather than the deformations of the cross-section or other common factors. In addition, the LPFGs are highly sensitive to strain and nearly insensitive to temperature, and are promising candidates for gas sensors and nonlinear optical devices.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Jin, Z. Wang, Y. Liu, G. Kai, and X. Dong, “Ultraviolet-inscribed long period gratings in all-solid photonic bandgap fibers,” Opt. Express 16(25), 21119–21131 (2008).
    [CrossRef] [PubMed]
  2. K. Morishita and Y. Miyake, “Fabrication and resonance wavelengths of long-period gratings written in a pure-silica photonic crystal fiber by the glass structure change,” J. Lightwave Technol. 22(2), 625–630 (2004).
    [CrossRef]
  3. S. Liu, L. Jin, W. Jin, D. Wang, C. Liao, and Y. Wang, “Structural long period gratings made by drilling micro-holes in photonic crystal fibers with a femtosecond infrared laser,” Opt. Express 18(6), 5496–5503 (2010).
    [CrossRef] [PubMed]
  4. Y. Wang, W. Jin, J. Ju, H. Xuan, H. L. Ho, L. Xiao, and D. Wang, “Long period gratings in air-core photonic bandgap fibers,” Opt. Express 16(4), 2784–2790 (2008).
    [CrossRef] [PubMed]
  5. R. Yun-Jiang, W. Yi-Ping, R. Zeng-Ling, and Z. Tao, “Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses,” J. Lightwave Technol. 21(5), 1320–1327 (2003).
    [CrossRef]
  6. D. I. Yeom, P. Steinvurzel, B. J. Eggleton, S. D. Lim, and B. Y. Kim, “Tunable acoustic gratings in solid-core photonic bandgap fiber,” Opt. Express 15(6), 3513–3518 (2007).
    [CrossRef] [PubMed]
  7. P. Steinvurzel, E. D. Moore, E. C. Mägi, B. T. Kuhlmey, and B. J. Eggleton, “Long period grating resonances in photonic bandgap fiber,” Opt. Express 14(7), 3007–3014 (2006).
    [CrossRef] [PubMed]
  8. B. Tai, Z. Wang, Y. Liu, J. Xu, B. Liu, H. Wei, and W. Tong, “High order resonances between core mode and cladding supermodes in long period fiber gratings inscribed in photonic bandgap fibers,” Opt. Express 18(15), 15361–15370 (2010).
    [CrossRef] [PubMed]
  9. H. Xuan, W. Jin, and S. Liu, “Long-period gratings in wavelength-scale microfibers,” Opt. Lett. 35(1), 85–87 (2010).
    [CrossRef] [PubMed]
  10. F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
    [CrossRef] [PubMed]
  11. F. Couny, P. J. Roberts, T. A. Birks, and F. Benabid, “Square-lattice large-pitch hollow-core photonic crystal fiber,” Opt. Express 16(25), 20626–20636 (2008).
    [CrossRef] [PubMed]
  12. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
    [CrossRef] [PubMed]
  13. F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
    [CrossRef] [PubMed]
  14. N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. Wong, F. Biancalana, and P. S. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
    [CrossRef] [PubMed]
  15. F. Gérôme, R. Jamier, J. L. Auguste, G. Humbert, and J. M. Blondy, “Simplified hollow-core photonic crystal fiber,” Opt. Lett. 35(8), 1157–1159 (2010).
    [CrossRef] [PubMed]
  16. S. Février, B. Beaudou, and P. Viale, “Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification,” Opt. Express 18(5), 5142–5150 (2010).
    [CrossRef] [PubMed]
  17. H. W. Lee and K. S. Chiang, “CO2 laser writing of long-period fiber grating in photonic crystal fiber under tension,” Opt. Express 17(6), 4533–4539 (2009).
    [CrossRef] [PubMed]
  18. B. H. Kim, Y. Park, T. J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W. T. Han, “Residual stress relaxation in the core of optical fiber by CO2 laser irradiation,” Opt. Lett. 26(21), 1657–1659 (2001).
    [CrossRef] [PubMed]
  19. L. Jin, W. Jin, J. Ju, and Y. Wang, “Investigation of Long-Period Grating Resonances in Hollow-Core Photonic Bandgap Fibers,” J. Lightwave Technol. 29(11), 1707–1713 (2011).
    [CrossRef]
  20. I. K. Hwang, S. H. Yun, and B. Y. Kim, “Long-period fiber gratings based on periodic microbends,” Opt. Lett. 24(18), 1263–1265 (1999).
    [CrossRef] [PubMed]
  21. Y. Wang, D. N. Wang, W. Jin, Y. Rao, and G. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89(15), 151103 (2006).
    [CrossRef]
  22. M. Vaziri and C. L. Chen, “Optical-fiber strain sensors with asymmetric etched structures,” Appl. Opt. 32(31), 6399–6406 (1993).
    [CrossRef] [PubMed]

2011

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. Wong, F. Biancalana, and P. S. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[CrossRef] [PubMed]

L. Jin, W. Jin, J. Ju, and Y. Wang, “Investigation of Long-Period Grating Resonances in Hollow-Core Photonic Bandgap Fibers,” J. Lightwave Technol. 29(11), 1707–1713 (2011).
[CrossRef]

2010

2009

2008

2007

D. I. Yeom, P. Steinvurzel, B. J. Eggleton, S. D. Lim, and B. Y. Kim, “Tunable acoustic gratings in solid-core photonic bandgap fiber,” Opt. Express 15(6), 3513–3518 (2007).
[CrossRef] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

2006

2004

2003

2002

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

2001

1999

1993

Ahn, T. J.

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Auguste, J. L.

Beaudou, B.

Benabid, F.

F. Couny, P. J. Roberts, T. A. Birks, and F. Benabid, “Square-lattice large-pitch hollow-core photonic crystal fiber,” Opt. Express 16(25), 20626–20636 (2008).
[CrossRef] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Biancalana, F.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. Wong, F. Biancalana, and P. S. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[CrossRef] [PubMed]

Birks, T. A.

Blondy, J. M.

Chang, W.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. Wong, F. Biancalana, and P. S. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[CrossRef] [PubMed]

Chen, C. L.

Chiang, K. S.

Chung, Y.

Couny, F.

Dong, X.

Eggleton, B. J.

Février, S.

Gérôme, F.

Han, W. T.

Ho, H. L.

Hölzer, P.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. Wong, F. Biancalana, and P. S. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[CrossRef] [PubMed]

Humbert, G.

Hwang, I. K.

Jamier, R.

Jin, L.

Jin, W.

Joly, N. Y.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. Wong, F. Biancalana, and P. S. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[CrossRef] [PubMed]

Ju, J.

Kai, G.

Kim, B. H.

Kim, B. Y.

Kim, D. Y.

Knight, J. C.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Kuhlmey, B. T.

Lee, B. H.

Lee, H. W.

Liao, C.

Light, P. S.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
[CrossRef] [PubMed]

Lim, S. D.

Liu, B.

Liu, S.

Liu, Y.

Mägi, E. C.

Miyake, Y.

Moore, E. D.

Morishita, K.

Nazarkin, A.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. Wong, F. Biancalana, and P. S. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[CrossRef] [PubMed]

Nold, J.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. Wong, F. Biancalana, and P. S. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[CrossRef] [PubMed]

Paek, U. C.

Park, Y.

Peng, G.

Y. Wang, D. N. Wang, W. Jin, Y. Rao, and G. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89(15), 151103 (2006).
[CrossRef]

Rao, Y.

Y. Wang, D. N. Wang, W. Jin, Y. Rao, and G. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89(15), 151103 (2006).
[CrossRef]

Raymer, M. G.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

Roberts, P. J.

F. Couny, P. J. Roberts, T. A. Birks, and F. Benabid, “Square-lattice large-pitch hollow-core photonic crystal fiber,” Opt. Express 16(25), 20626–20636 (2008).
[CrossRef] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

Russell, P. S.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. Wong, F. Biancalana, and P. S. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[CrossRef] [PubMed]

Russell, P. S. J.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Steinvurzel, P.

Tai, B.

Tao, Z.

Tong, W.

Vaziri, M.

Viale, P.

Wang, D.

Wang, D. N.

Y. Wang, D. N. Wang, W. Jin, Y. Rao, and G. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89(15), 151103 (2006).
[CrossRef]

Wang, Y.

Wang, Z.

Wei, H.

Wong, G. K.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. Wong, F. Biancalana, and P. S. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[CrossRef] [PubMed]

Xiao, L.

Xu, J.

Xuan, H.

Yeom, D. I.

Yi-Ping, W.

Yun, S. H.

Yun-Jiang, R.

Zeng-Ling, R.

Appl. Opt.

Appl. Phys. Lett.

Y. Wang, D. N. Wang, W. Jin, Y. Rao, and G. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89(15), 151103 (2006).
[CrossRef]

J. Lightwave Technol.

Opt. Express

S. Février, B. Beaudou, and P. Viale, “Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification,” Opt. Express 18(5), 5142–5150 (2010).
[CrossRef] [PubMed]

H. W. Lee and K. S. Chiang, “CO2 laser writing of long-period fiber grating in photonic crystal fiber under tension,” Opt. Express 17(6), 4533–4539 (2009).
[CrossRef] [PubMed]

L. Jin, Z. Wang, Y. Liu, G. Kai, and X. Dong, “Ultraviolet-inscribed long period gratings in all-solid photonic bandgap fibers,” Opt. Express 16(25), 21119–21131 (2008).
[CrossRef] [PubMed]

S. Liu, L. Jin, W. Jin, D. Wang, C. Liao, and Y. Wang, “Structural long period gratings made by drilling micro-holes in photonic crystal fibers with a femtosecond infrared laser,” Opt. Express 18(6), 5496–5503 (2010).
[CrossRef] [PubMed]

Y. Wang, W. Jin, J. Ju, H. Xuan, H. L. Ho, L. Xiao, and D. Wang, “Long period gratings in air-core photonic bandgap fibers,” Opt. Express 16(4), 2784–2790 (2008).
[CrossRef] [PubMed]

F. Couny, P. J. Roberts, T. A. Birks, and F. Benabid, “Square-lattice large-pitch hollow-core photonic crystal fiber,” Opt. Express 16(25), 20626–20636 (2008).
[CrossRef] [PubMed]

D. I. Yeom, P. Steinvurzel, B. J. Eggleton, S. D. Lim, and B. Y. Kim, “Tunable acoustic gratings in solid-core photonic bandgap fiber,” Opt. Express 15(6), 3513–3518 (2007).
[CrossRef] [PubMed]

P. Steinvurzel, E. D. Moore, E. C. Mägi, B. T. Kuhlmey, and B. J. Eggleton, “Long period grating resonances in photonic bandgap fiber,” Opt. Express 14(7), 3007–3014 (2006).
[CrossRef] [PubMed]

B. Tai, Z. Wang, Y. Liu, J. Xu, B. Liu, H. Wei, and W. Tong, “High order resonances between core mode and cladding supermodes in long period fiber gratings inscribed in photonic bandgap fibers,” Opt. Express 18(15), 15361–15370 (2010).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. Lett.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. Wong, F. Biancalana, and P. S. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[CrossRef] [PubMed]

Science

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(Color online) (a) Measured transmission spectrum of a ~15 cm long HC-PCF spliced with SMFs at both ends; (b) Calculated effective refractive indices against wavelength for some representative modes; (c~l) Calculated mode profiles of some representative modes supported by the HC-PCFs. The inset (a) is the optical micrograph of the cross-section of the HC-PCF.

Fig. 2
Fig. 2

(Color online) (a) Calculated grating pitches against the wavelength for the mode-coupling from the LP01 core mode to the LP11 core modes; (b) Measured transmission spectra of the LPFGs with different pitches; (c)~(g) Measured mode profiles of the LPFGs with Λ = 815   μm at A~E, respectively. Measured central wavelength (red) and minimum transmission (blue) of the LPFG against strain (h) and temperature (i).

Fig. 3
Fig. 3

(Color online) (a) Optical micrograph of the cross-section of the LPFG mentioned in section 3; (b, c) Optical micrographs of the cross-section of the LPFG Iand II, respectively; (d) Photos of side views of LPFGs aforementioned; (e) Measured transmission spectra of the LPFG Iand II.

Metrics