Abstract

We report on the performance of a system employing a multi-layer coated mirror creating circularly polarized light in a fully reflective setup. With one specially designed mirror we are able to create laser pulses with an ellipticity of more than ε = 98% over the entire spectral bandwidth from initially linearly polarized Titanium:Sapphire femtosecond laser pulses. We tested the homogeneity of the polarization with beam sizes of the order of approximately 10 cm. The damage threshold was determined to be nearly 400 times higher than for a transmissive quartz-wave plate which suggests applications in high intensity laser experiments. Another advantage of the reflective scheme is the absence of nonlinear effects changing the spectrum or the pulse-form and the scalability of coating fabrication to large aperture mirrors.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).
  2. S. Ito and M. Ban, “Phase shifting mirror,” U.S. Patent 4,322,130 (March 30, 1982).
  3. R. Szipocs, K. Ferencz, C. Spielmann, and F. Krausz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19(3), 201–203 (1994).
    [CrossRef] [PubMed]
  4. F. X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, and T. Tschudi, “Design and fabrication of double-chirped mirrors,” Opt. Lett. 22(11), 831–833 (1997).
    [CrossRef] [PubMed]
  5. R. Szipöcs and A. Köhazi-Kis, “Theory and design of chirped dielectric laser mirrors,” Appl. Phys. B 65(2), 115–135 (1997).
    [CrossRef]
  6. A. E. Siegman, Lasers, A. Kelly, ed. (University Science Book, 1986), Chap. 9.
  7. R. M. Wood, Laser-Induced Damage of Optical Materials, T. Spicer, ed. (Institute of Physics Publishing, 2003), Chap. 4.
  8. M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
    [CrossRef]
  9. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
    [CrossRef]
  10. A. A. Said, T. Xia, A. Dogariu, D. J. Hagan, M. J. Soileau, E. W. Van Stryland, and M. Mohebi, “Measurement of the optical damage threshold in fused quartz,” Appl. Opt. 34(18), 3374–3376 (1995).
    [CrossRef] [PubMed]
  11. R. Nitsche and T. Fritz, “Precise determination of the complex optical constant of mica,” Appl. Opt. 43(16), 3263–3270 (2004).
    [CrossRef] [PubMed]

2004 (1)

2001 (1)

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[CrossRef]

1998 (1)

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[CrossRef]

1997 (2)

1995 (1)

1994 (1)

Brodeur, A.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[CrossRef]

Cheng, Z.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[CrossRef]

Dogariu, A.

Ferencz, K.

Fritz, T.

Hagan, D. J.

Haus, H. A.

Heine, C.

Kärtner, F. X.

Kautek, W.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[CrossRef]

Keller, U.

Köhazi-Kis, A.

R. Szipöcs and A. Köhazi-Kis, “Theory and design of chirped dielectric laser mirrors,” Appl. Phys. B 65(2), 115–135 (1997).
[CrossRef]

Krausz, F.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[CrossRef]

R. Szipocs, K. Ferencz, C. Spielmann, and F. Krausz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19(3), 201–203 (1994).
[CrossRef] [PubMed]

Krüger, J.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[CrossRef]

Lenzner, M.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[CrossRef]

Matuschek, N.

Mazur, E.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[CrossRef]

Mohebi, M.

Morf, R.

Mourou, G.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[CrossRef]

Nitsche, R.

Said, A. A.

Sartania, S.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[CrossRef]

Schaffer, C. B.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[CrossRef]

Scheuer, V.

Schibli, T.

Soileau, M. J.

Spielmann, C.

Spielmann, Ch.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[CrossRef]

Szipocs, R.

Szipöcs, R.

R. Szipöcs and A. Köhazi-Kis, “Theory and design of chirped dielectric laser mirrors,” Appl. Phys. B 65(2), 115–135 (1997).
[CrossRef]

Tilsch, M.

Tschudi, T.

Van Stryland, E. W.

Xia, T.

Appl. Opt. (2)

Appl. Phys. B (1)

R. Szipöcs and A. Köhazi-Kis, “Theory and design of chirped dielectric laser mirrors,” Appl. Phys. B 65(2), 115–135 (1997).
[CrossRef]

Meas. Sci. Technol. (1)

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[CrossRef]

Other (4)

A. E. Siegman, Lasers, A. Kelly, ed. (University Science Book, 1986), Chap. 9.

R. M. Wood, Laser-Induced Damage of Optical Materials, T. Spicer, ed. (Institute of Physics Publishing, 2003), Chap. 4.

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).

S. Ito and M. Ban, “Phase shifting mirror,” U.S. Patent 4,322,130 (March 30, 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Principle of a dielectric multilayer coating: a) p-polarized (green) and s-polarized (blue) field components are reflected at each surface of an alternating multi-layer stack with a refractive index n 1 and n 2. b) The amplitude and the phase of the reflected wave are given by the superposition of the partial waves. In a simplified picture a certain boundary layer has a major reflection of the p-polarized component and vice versa. The final complex reflectivity of a multilayer coating can be tailored by tuning the optical path n i d i of each layer. The thicknesses d i of the multilayer coating determine the phase shift between the p- and s-polarized field component thus making, e.g., a 90°-phase shift possible. With this coating property circularly polarized light can be created when linearly polarized light is reflected upon a PSM with an equal amount of the p- and s-polarized field component.

Fig. 2
Fig. 2

Calculated reflectivity (a)) and phase-shift (b)) for the design of the PSM for an angle of incidence of 45°. The reflectivity exceeds 98% for both polarization components while maintaining an almost linear spectral phase. Particular emphasis has been put on a homogeneous phase shift ΔΦ of 90° over a large bandwidth.

Fig. 3
Fig. 3

Setup for measuring the phase-shift. a) Planar view of the beam before and after the PSM. b) General setup for the experiment: The amount of the s- or p-polarization component projected in the incidence plane of the PSM can be changed by rotating the wave-plate and the PBS in front of the PSM. The polarization state can be measured with a PBS after the PSM used as an analyzer.

Fig. 4
Fig. 4

Plot of the field distribution measured for the [a)] phase-rotating mirror and the [b)] λ/4 plate for the full spectrum of the laser at one position of both devices. The blue line is a fit, the grey line shows the 0.9 confidence interval. The calculated ellipticities related to these fits are (98.3 ± 0.6) % (PSM) and (83.6 ± 0.3) % (λ/4 plate).

Fig. 5
Fig. 5

Measurement of the laser spectrum compared to the spectrum using the PSM and using the wave-plate.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε = I M i n I M a x
E ( φ ) = A sin ( φ + φ 1 ) + B sin ( 2 φ + φ 2 ) + C
τ F i n a l = τ 0 1 + ( 4 ln ( 2 ) D 2 τ 0 2 ) 2

Metrics