Abstract

We report an experimental observation of all-optical switching in an N-type atom-cavity system with a rubidium atomic vapor cell inside an optical ring cavity. Both absorptive and dispersive switching can be realized on dark- or bright-polariton peaks by a weak switching laser beam (with the extinction ratio better than 20:1). The switching mechanism can be explained as the combination of quantum interference and intracavity dispersion properties.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Gibbs, Optical Bistability: Controlling Light with Light (Academic, New York, 1985).
  2. S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81(17), 3611–3614 (1998).
    [CrossRef]
  3. M. Yan, E. G. Rickey, and Y. Zhu, “Observation of absorptive photon switching by quantum interference,” Phys. Rev. A 64(4), 041801(R) (2001).
    [CrossRef]
  4. D. A. Braje, V. Balić, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68(4), 041801(R) (2003).
    [CrossRef]
  5. Y.-F. Chen, Z.-H. Tsai, Y.-C. Liu, and I. A. Yu, “Low-light-level photon switching by quantum interference,” Opt. Lett. 30(23), 3207–3209 (2005).
    [CrossRef] [PubMed]
  6. W. Jiang, Q.-F. Chen, Y.-S. Zhang, and G.-C. Guo, “Optical pumping-assisted electromagnetically induced transparency,” Phys. Rev. A 73(5), 053804 (2006).
    [CrossRef]
  7. M. G. Bason, A. K. Mohapatra, K. J. Weatherill, and C. S. Adams, “Narrow absorptive resonances in a four-level atomic system,” J. Phys. B 42(7), 075503 (2009).
    [CrossRef]
  8. H. Wang, D. Goorskey, and M. Xiao, “Controlling the cavity field with enhanced Kerr nonlinearity in three-level atoms,” Phys. Rev. A 65(5), 051802(R) (2002).
    [CrossRef]
  9. A. Brown, A. Joshi, and M. Xiao, “Controlled steady-state switching in optical Bistability,” Appl. Phys. Lett. 83(7), 1301–1303 (2003).
    [CrossRef]
  10. A. Brown and M. Xiao, “All-optical switching and routing based on an electromagnetically induced absorption grating,” Opt. Lett. 30(7), 699–701 (2005).
    [CrossRef] [PubMed]
  11. A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308(5722), 672–674 (2005).
    [CrossRef] [PubMed]
  12. H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, “Phase-controlled light switching at low light levels,” Phys. Rev. A 73(1), 011802(R) (2006).
    [CrossRef]
  13. X. Wei, J. Zhang, and Y. Zhu, “All-optical switching in a coupled cavity-atom system,” Phys. Rev. A 82(3), 033808 (2010).
    [CrossRef]
  14. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36 (1997).
    [CrossRef]
  15. H. Schmidt and A. Imamogdlu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21(23), 1936–1938 (1996).
    [CrossRef] [PubMed]
  16. H. Kang and Y. Zhu, “Observation of large Kerr nonlinearity at low light intensities,” Phys. Rev. Lett. 91(9), 093601 (2003).
    [CrossRef] [PubMed]
  17. H.-Y. Lo, Y.-C. Chen, P.-C. Su, H.-C. Chen, J.-X. Chen, Y.-C. Chen, I. Yu, and Y.-F. Chen, “Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels,” Phys. Rev. A 83(4), 041804(R) (2011).
    [CrossRef]
  18. C. Y. Ye, A. S. Zibrov, Y. V. Rostovtsev, and M. O. Scully, “Unexpected Doppler-free resonance in generalized double dark states,” Phys. Rev. A 65(4), 043805 (2002).
    [CrossRef]
  19. H. Wu, J. Gea-Banacloche, and M. Xiao, “Observation of intracavity electromagnetically induced transparency and polariton resonances in a Doppler-broadened medium,” Phys. Rev. Lett. 100(17), 173602 (2008).
    [CrossRef] [PubMed]
  20. J. Sheng, H. Wu, M. Mumba, J. Gea-Banacloche, and M. Xiao, “Understanding cavity resonances with intracavity dispersion properties,” Phys. Rev. A 83(2), 023829 (2011).
    [CrossRef]
  21. T. Y. Abi-Salloum, B. Henry, J. Davis, and F. Narducci, “Resonances and excitation pathways in four-level N-scheme atomic systems,” Phys. Rev. A 82(1), 013834 (2010).
    [CrossRef]

2011 (2)

H.-Y. Lo, Y.-C. Chen, P.-C. Su, H.-C. Chen, J.-X. Chen, Y.-C. Chen, I. Yu, and Y.-F. Chen, “Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels,” Phys. Rev. A 83(4), 041804(R) (2011).
[CrossRef]

J. Sheng, H. Wu, M. Mumba, J. Gea-Banacloche, and M. Xiao, “Understanding cavity resonances with intracavity dispersion properties,” Phys. Rev. A 83(2), 023829 (2011).
[CrossRef]

2010 (2)

T. Y. Abi-Salloum, B. Henry, J. Davis, and F. Narducci, “Resonances and excitation pathways in four-level N-scheme atomic systems,” Phys. Rev. A 82(1), 013834 (2010).
[CrossRef]

X. Wei, J. Zhang, and Y. Zhu, “All-optical switching in a coupled cavity-atom system,” Phys. Rev. A 82(3), 033808 (2010).
[CrossRef]

2009 (1)

M. G. Bason, A. K. Mohapatra, K. J. Weatherill, and C. S. Adams, “Narrow absorptive resonances in a four-level atomic system,” J. Phys. B 42(7), 075503 (2009).
[CrossRef]

2008 (1)

H. Wu, J. Gea-Banacloche, and M. Xiao, “Observation of intracavity electromagnetically induced transparency and polariton resonances in a Doppler-broadened medium,” Phys. Rev. Lett. 100(17), 173602 (2008).
[CrossRef] [PubMed]

2006 (2)

W. Jiang, Q.-F. Chen, Y.-S. Zhang, and G.-C. Guo, “Optical pumping-assisted electromagnetically induced transparency,” Phys. Rev. A 73(5), 053804 (2006).
[CrossRef]

H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, “Phase-controlled light switching at low light levels,” Phys. Rev. A 73(1), 011802(R) (2006).
[CrossRef]

2005 (3)

2003 (3)

D. A. Braje, V. Balić, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68(4), 041801(R) (2003).
[CrossRef]

A. Brown, A. Joshi, and M. Xiao, “Controlled steady-state switching in optical Bistability,” Appl. Phys. Lett. 83(7), 1301–1303 (2003).
[CrossRef]

H. Kang and Y. Zhu, “Observation of large Kerr nonlinearity at low light intensities,” Phys. Rev. Lett. 91(9), 093601 (2003).
[CrossRef] [PubMed]

2002 (2)

C. Y. Ye, A. S. Zibrov, Y. V. Rostovtsev, and M. O. Scully, “Unexpected Doppler-free resonance in generalized double dark states,” Phys. Rev. A 65(4), 043805 (2002).
[CrossRef]

H. Wang, D. Goorskey, and M. Xiao, “Controlling the cavity field with enhanced Kerr nonlinearity in three-level atoms,” Phys. Rev. A 65(5), 051802(R) (2002).
[CrossRef]

2001 (1)

M. Yan, E. G. Rickey, and Y. Zhu, “Observation of absorptive photon switching by quantum interference,” Phys. Rev. A 64(4), 041801(R) (2001).
[CrossRef]

1998 (1)

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81(17), 3611–3614 (1998).
[CrossRef]

1997 (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36 (1997).
[CrossRef]

1996 (1)

Abi-Salloum, T. Y.

T. Y. Abi-Salloum, B. Henry, J. Davis, and F. Narducci, “Resonances and excitation pathways in four-level N-scheme atomic systems,” Phys. Rev. A 82(1), 013834 (2010).
[CrossRef]

Adams, C. S.

M. G. Bason, A. K. Mohapatra, K. J. Weatherill, and C. S. Adams, “Narrow absorptive resonances in a four-level atomic system,” J. Phys. B 42(7), 075503 (2009).
[CrossRef]

Balic, V.

D. A. Braje, V. Balić, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68(4), 041801(R) (2003).
[CrossRef]

Bason, M. G.

M. G. Bason, A. K. Mohapatra, K. J. Weatherill, and C. S. Adams, “Narrow absorptive resonances in a four-level atomic system,” J. Phys. B 42(7), 075503 (2009).
[CrossRef]

Braje, D. A.

D. A. Braje, V. Balić, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68(4), 041801(R) (2003).
[CrossRef]

Brown, A.

A. Brown and M. Xiao, “All-optical switching and routing based on an electromagnetically induced absorption grating,” Opt. Lett. 30(7), 699–701 (2005).
[CrossRef] [PubMed]

A. Brown, A. Joshi, and M. Xiao, “Controlled steady-state switching in optical Bistability,” Appl. Phys. Lett. 83(7), 1301–1303 (2003).
[CrossRef]

Chen, H.-C.

H.-Y. Lo, Y.-C. Chen, P.-C. Su, H.-C. Chen, J.-X. Chen, Y.-C. Chen, I. Yu, and Y.-F. Chen, “Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels,” Phys. Rev. A 83(4), 041804(R) (2011).
[CrossRef]

Chen, J.-X.

H.-Y. Lo, Y.-C. Chen, P.-C. Su, H.-C. Chen, J.-X. Chen, Y.-C. Chen, I. Yu, and Y.-F. Chen, “Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels,” Phys. Rev. A 83(4), 041804(R) (2011).
[CrossRef]

Chen, Q.-F.

W. Jiang, Q.-F. Chen, Y.-S. Zhang, and G.-C. Guo, “Optical pumping-assisted electromagnetically induced transparency,” Phys. Rev. A 73(5), 053804 (2006).
[CrossRef]

Chen, Y.-C.

H.-Y. Lo, Y.-C. Chen, P.-C. Su, H.-C. Chen, J.-X. Chen, Y.-C. Chen, I. Yu, and Y.-F. Chen, “Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels,” Phys. Rev. A 83(4), 041804(R) (2011).
[CrossRef]

H.-Y. Lo, Y.-C. Chen, P.-C. Su, H.-C. Chen, J.-X. Chen, Y.-C. Chen, I. Yu, and Y.-F. Chen, “Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels,” Phys. Rev. A 83(4), 041804(R) (2011).
[CrossRef]

Chen, Y.-F.

H.-Y. Lo, Y.-C. Chen, P.-C. Su, H.-C. Chen, J.-X. Chen, Y.-C. Chen, I. Yu, and Y.-F. Chen, “Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels,” Phys. Rev. A 83(4), 041804(R) (2011).
[CrossRef]

Y.-F. Chen, Z.-H. Tsai, Y.-C. Liu, and I. A. Yu, “Low-light-level photon switching by quantum interference,” Opt. Lett. 30(23), 3207–3209 (2005).
[CrossRef] [PubMed]

Clark, S. M.

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308(5722), 672–674 (2005).
[CrossRef] [PubMed]

Davis, J.

T. Y. Abi-Salloum, B. Henry, J. Davis, and F. Narducci, “Resonances and excitation pathways in four-level N-scheme atomic systems,” Phys. Rev. A 82(1), 013834 (2010).
[CrossRef]

Dawes, A. M. C.

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308(5722), 672–674 (2005).
[CrossRef] [PubMed]

Gauthier, D. J.

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308(5722), 672–674 (2005).
[CrossRef] [PubMed]

Gea-Banacloche, J.

J. Sheng, H. Wu, M. Mumba, J. Gea-Banacloche, and M. Xiao, “Understanding cavity resonances with intracavity dispersion properties,” Phys. Rev. A 83(2), 023829 (2011).
[CrossRef]

H. Wu, J. Gea-Banacloche, and M. Xiao, “Observation of intracavity electromagnetically induced transparency and polariton resonances in a Doppler-broadened medium,” Phys. Rev. Lett. 100(17), 173602 (2008).
[CrossRef] [PubMed]

Goorskey, D.

H. Wang, D. Goorskey, and M. Xiao, “Controlling the cavity field with enhanced Kerr nonlinearity in three-level atoms,” Phys. Rev. A 65(5), 051802(R) (2002).
[CrossRef]

Guo, G.-C.

W. Jiang, Q.-F. Chen, Y.-S. Zhang, and G.-C. Guo, “Optical pumping-assisted electromagnetically induced transparency,” Phys. Rev. A 73(5), 053804 (2006).
[CrossRef]

Harris, S. E.

D. A. Braje, V. Balić, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68(4), 041801(R) (2003).
[CrossRef]

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81(17), 3611–3614 (1998).
[CrossRef]

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36 (1997).
[CrossRef]

Henry, B.

T. Y. Abi-Salloum, B. Henry, J. Davis, and F. Narducci, “Resonances and excitation pathways in four-level N-scheme atomic systems,” Phys. Rev. A 82(1), 013834 (2010).
[CrossRef]

Hernandez, G.

H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, “Phase-controlled light switching at low light levels,” Phys. Rev. A 73(1), 011802(R) (2006).
[CrossRef]

Illing, L.

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308(5722), 672–674 (2005).
[CrossRef] [PubMed]

Imamogdlu, A.

Jiang, W.

W. Jiang, Q.-F. Chen, Y.-S. Zhang, and G.-C. Guo, “Optical pumping-assisted electromagnetically induced transparency,” Phys. Rev. A 73(5), 053804 (2006).
[CrossRef]

Joshi, A.

A. Brown, A. Joshi, and M. Xiao, “Controlled steady-state switching in optical Bistability,” Appl. Phys. Lett. 83(7), 1301–1303 (2003).
[CrossRef]

Kang, H.

H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, “Phase-controlled light switching at low light levels,” Phys. Rev. A 73(1), 011802(R) (2006).
[CrossRef]

H. Kang and Y. Zhu, “Observation of large Kerr nonlinearity at low light intensities,” Phys. Rev. Lett. 91(9), 093601 (2003).
[CrossRef] [PubMed]

Liu, Y.-C.

Lo, H.-Y.

H.-Y. Lo, Y.-C. Chen, P.-C. Su, H.-C. Chen, J.-X. Chen, Y.-C. Chen, I. Yu, and Y.-F. Chen, “Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels,” Phys. Rev. A 83(4), 041804(R) (2011).
[CrossRef]

Mohapatra, A. K.

M. G. Bason, A. K. Mohapatra, K. J. Weatherill, and C. S. Adams, “Narrow absorptive resonances in a four-level atomic system,” J. Phys. B 42(7), 075503 (2009).
[CrossRef]

Mumba, M.

J. Sheng, H. Wu, M. Mumba, J. Gea-Banacloche, and M. Xiao, “Understanding cavity resonances with intracavity dispersion properties,” Phys. Rev. A 83(2), 023829 (2011).
[CrossRef]

Narducci, F.

T. Y. Abi-Salloum, B. Henry, J. Davis, and F. Narducci, “Resonances and excitation pathways in four-level N-scheme atomic systems,” Phys. Rev. A 82(1), 013834 (2010).
[CrossRef]

Rickey, E. G.

M. Yan, E. G. Rickey, and Y. Zhu, “Observation of absorptive photon switching by quantum interference,” Phys. Rev. A 64(4), 041801(R) (2001).
[CrossRef]

Rostovtsev, Y. V.

C. Y. Ye, A. S. Zibrov, Y. V. Rostovtsev, and M. O. Scully, “Unexpected Doppler-free resonance in generalized double dark states,” Phys. Rev. A 65(4), 043805 (2002).
[CrossRef]

Schmidt, H.

Scully, M. O.

C. Y. Ye, A. S. Zibrov, Y. V. Rostovtsev, and M. O. Scully, “Unexpected Doppler-free resonance in generalized double dark states,” Phys. Rev. A 65(4), 043805 (2002).
[CrossRef]

Sheng, J.

J. Sheng, H. Wu, M. Mumba, J. Gea-Banacloche, and M. Xiao, “Understanding cavity resonances with intracavity dispersion properties,” Phys. Rev. A 83(2), 023829 (2011).
[CrossRef]

Su, P.-C.

H.-Y. Lo, Y.-C. Chen, P.-C. Su, H.-C. Chen, J.-X. Chen, Y.-C. Chen, I. Yu, and Y.-F. Chen, “Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels,” Phys. Rev. A 83(4), 041804(R) (2011).
[CrossRef]

Tsai, Z.-H.

Wang, H.

H. Wang, D. Goorskey, and M. Xiao, “Controlling the cavity field with enhanced Kerr nonlinearity in three-level atoms,” Phys. Rev. A 65(5), 051802(R) (2002).
[CrossRef]

Weatherill, K. J.

M. G. Bason, A. K. Mohapatra, K. J. Weatherill, and C. S. Adams, “Narrow absorptive resonances in a four-level atomic system,” J. Phys. B 42(7), 075503 (2009).
[CrossRef]

Wei, X.

X. Wei, J. Zhang, and Y. Zhu, “All-optical switching in a coupled cavity-atom system,” Phys. Rev. A 82(3), 033808 (2010).
[CrossRef]

Wu, H.

J. Sheng, H. Wu, M. Mumba, J. Gea-Banacloche, and M. Xiao, “Understanding cavity resonances with intracavity dispersion properties,” Phys. Rev. A 83(2), 023829 (2011).
[CrossRef]

H. Wu, J. Gea-Banacloche, and M. Xiao, “Observation of intracavity electromagnetically induced transparency and polariton resonances in a Doppler-broadened medium,” Phys. Rev. Lett. 100(17), 173602 (2008).
[CrossRef] [PubMed]

Xiao, M.

J. Sheng, H. Wu, M. Mumba, J. Gea-Banacloche, and M. Xiao, “Understanding cavity resonances with intracavity dispersion properties,” Phys. Rev. A 83(2), 023829 (2011).
[CrossRef]

H. Wu, J. Gea-Banacloche, and M. Xiao, “Observation of intracavity electromagnetically induced transparency and polariton resonances in a Doppler-broadened medium,” Phys. Rev. Lett. 100(17), 173602 (2008).
[CrossRef] [PubMed]

A. Brown and M. Xiao, “All-optical switching and routing based on an electromagnetically induced absorption grating,” Opt. Lett. 30(7), 699–701 (2005).
[CrossRef] [PubMed]

A. Brown, A. Joshi, and M. Xiao, “Controlled steady-state switching in optical Bistability,” Appl. Phys. Lett. 83(7), 1301–1303 (2003).
[CrossRef]

H. Wang, D. Goorskey, and M. Xiao, “Controlling the cavity field with enhanced Kerr nonlinearity in three-level atoms,” Phys. Rev. A 65(5), 051802(R) (2002).
[CrossRef]

Yamamoto, Y.

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81(17), 3611–3614 (1998).
[CrossRef]

Yan, M.

M. Yan, E. G. Rickey, and Y. Zhu, “Observation of absorptive photon switching by quantum interference,” Phys. Rev. A 64(4), 041801(R) (2001).
[CrossRef]

Ye, C. Y.

C. Y. Ye, A. S. Zibrov, Y. V. Rostovtsev, and M. O. Scully, “Unexpected Doppler-free resonance in generalized double dark states,” Phys. Rev. A 65(4), 043805 (2002).
[CrossRef]

Yin, G. Y.

D. A. Braje, V. Balić, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68(4), 041801(R) (2003).
[CrossRef]

Yu, I.

H.-Y. Lo, Y.-C. Chen, P.-C. Su, H.-C. Chen, J.-X. Chen, Y.-C. Chen, I. Yu, and Y.-F. Chen, “Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels,” Phys. Rev. A 83(4), 041804(R) (2011).
[CrossRef]

Yu, I. A.

Zhang, J.

X. Wei, J. Zhang, and Y. Zhu, “All-optical switching in a coupled cavity-atom system,” Phys. Rev. A 82(3), 033808 (2010).
[CrossRef]

H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, “Phase-controlled light switching at low light levels,” Phys. Rev. A 73(1), 011802(R) (2006).
[CrossRef]

Zhang, Y.-S.

W. Jiang, Q.-F. Chen, Y.-S. Zhang, and G.-C. Guo, “Optical pumping-assisted electromagnetically induced transparency,” Phys. Rev. A 73(5), 053804 (2006).
[CrossRef]

Zhu, Y.

X. Wei, J. Zhang, and Y. Zhu, “All-optical switching in a coupled cavity-atom system,” Phys. Rev. A 82(3), 033808 (2010).
[CrossRef]

H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, “Phase-controlled light switching at low light levels,” Phys. Rev. A 73(1), 011802(R) (2006).
[CrossRef]

H. Kang and Y. Zhu, “Observation of large Kerr nonlinearity at low light intensities,” Phys. Rev. Lett. 91(9), 093601 (2003).
[CrossRef] [PubMed]

M. Yan, E. G. Rickey, and Y. Zhu, “Observation of absorptive photon switching by quantum interference,” Phys. Rev. A 64(4), 041801(R) (2001).
[CrossRef]

Zibrov, A. S.

C. Y. Ye, A. S. Zibrov, Y. V. Rostovtsev, and M. O. Scully, “Unexpected Doppler-free resonance in generalized double dark states,” Phys. Rev. A 65(4), 043805 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

A. Brown, A. Joshi, and M. Xiao, “Controlled steady-state switching in optical Bistability,” Appl. Phys. Lett. 83(7), 1301–1303 (2003).
[CrossRef]

J. Phys. B (1)

M. G. Bason, A. K. Mohapatra, K. J. Weatherill, and C. S. Adams, “Narrow absorptive resonances in a four-level atomic system,” J. Phys. B 42(7), 075503 (2009).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (10)

H.-Y. Lo, Y.-C. Chen, P.-C. Su, H.-C. Chen, J.-X. Chen, Y.-C. Chen, I. Yu, and Y.-F. Chen, “Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels,” Phys. Rev. A 83(4), 041804(R) (2011).
[CrossRef]

C. Y. Ye, A. S. Zibrov, Y. V. Rostovtsev, and M. O. Scully, “Unexpected Doppler-free resonance in generalized double dark states,” Phys. Rev. A 65(4), 043805 (2002).
[CrossRef]

H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, “Phase-controlled light switching at low light levels,” Phys. Rev. A 73(1), 011802(R) (2006).
[CrossRef]

X. Wei, J. Zhang, and Y. Zhu, “All-optical switching in a coupled cavity-atom system,” Phys. Rev. A 82(3), 033808 (2010).
[CrossRef]

W. Jiang, Q.-F. Chen, Y.-S. Zhang, and G.-C. Guo, “Optical pumping-assisted electromagnetically induced transparency,” Phys. Rev. A 73(5), 053804 (2006).
[CrossRef]

H. Wang, D. Goorskey, and M. Xiao, “Controlling the cavity field with enhanced Kerr nonlinearity in three-level atoms,” Phys. Rev. A 65(5), 051802(R) (2002).
[CrossRef]

M. Yan, E. G. Rickey, and Y. Zhu, “Observation of absorptive photon switching by quantum interference,” Phys. Rev. A 64(4), 041801(R) (2001).
[CrossRef]

D. A. Braje, V. Balić, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68(4), 041801(R) (2003).
[CrossRef]

J. Sheng, H. Wu, M. Mumba, J. Gea-Banacloche, and M. Xiao, “Understanding cavity resonances with intracavity dispersion properties,” Phys. Rev. A 83(2), 023829 (2011).
[CrossRef]

T. Y. Abi-Salloum, B. Henry, J. Davis, and F. Narducci, “Resonances and excitation pathways in four-level N-scheme atomic systems,” Phys. Rev. A 82(1), 013834 (2010).
[CrossRef]

Phys. Rev. Lett. (3)

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81(17), 3611–3614 (1998).
[CrossRef]

H. Wu, J. Gea-Banacloche, and M. Xiao, “Observation of intracavity electromagnetically induced transparency and polariton resonances in a Doppler-broadened medium,” Phys. Rev. Lett. 100(17), 173602 (2008).
[CrossRef] [PubMed]

H. Kang and Y. Zhu, “Observation of large Kerr nonlinearity at low light intensities,” Phys. Rev. Lett. 91(9), 093601 (2003).
[CrossRef] [PubMed]

Phys. Today (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36 (1997).
[CrossRef]

Science (1)

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308(5722), 672–674 (2005).
[CrossRef] [PubMed]

Other (1)

H. Gibbs, Optical Bistability: Controlling Light with Light (Academic, New York, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(Color online) (a) Experimental setup. PBS1 & PBS2: polarization beam splitters; M1-M3: cavity mirrors; APD: avalanche photodiode detector; and PZT: piezoelectric transducer. (b) Four-level atomic system in 87Rb and the corresponding laser coupling scheme. (c) Atomic energy levels in the dressed-state picture with both coupling and switching lasers on resonance.

Fig. 2
Fig. 2

Measured cavity transmission spectra versus the probe laser detuning. (a) The switching laser is off. (b) The switching laser is on with Ps = 0.7 mW and Δs = 0. (c) The switching laser is on with Ps = 3.3 mW and Δs = 0. Other experimental parameters are T = 74 °C, Pp = 0.5 mW, Pc = 13.5 mW, Δc = 0, and Δθ = 0. The cavity transmission is normalized to the central peak height when the switching laser power is zero.

Fig. 3
Fig. 3

Measured central peak heights in the cavity transmission spectra as a function of switching laser power. The central peak heights are normalized to the highest peak when the switching laser power is zero. Other experimental parameters are the same as in Fig. 2.

Fig. 4
Fig. 4

All-optical switching of the cavity transmission controlled by the switching laser. (a) The switching laser power as a function of time. (b)-(d) The cavity transmissions as a function of time, with the probe laser frequency fixed at (b) Δp ≈0, (c) Δp ≈220 MHz, and (d) Δp ≈50 MHz, respectively. The cavity transmission is normalized to the central peak height when the switching laser power is zero. Other experimental parameters are the same as in Fig. 2.

Metrics