Abstract

We present experimental and numerical study of temporal characteristics of injection-locked polarization switching of a conventional-type 1.55-μm wavelength single-mode vertical cavity surface-emitting laser (VCSEL). Delayed recovery response of the main-mode of the VCSEL was observed when short and strong optical injection pulses of an orthogonal polarization to the VCSEL’s main polarization-mode were applied. Numerical analysis based on a spin-flip model describes that the relatively long upper level lifetimes compared to a short injection-pulse width and long cavity photon lifetimes cause delayed recovery response of the main-mode of the VCSEL. An optimum bias current of the VCSEL was also observed for the shortest recovery time of its free-running polarization mode after the orthogonal polarization beam pulse injection.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. San Miguel, Q. Feng, and J. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52(2), 1728–1739 (1995).
    [CrossRef]
  2. W. L. Zhang, W. Pan, B. Luo, M. Y. Wang, and X. H. Zou, “Polarization switching and hysteresis of VCSELs with time-varying optical injection,” IEEE J. Sel. Top. Quantum Electron. 14(3), 889–894 (2008).
    [CrossRef]
  3. J. Martin-Regalado, F. Prati, M. San Miguel, and N. B. Abraham, “Polarization properties of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33(5), 765–783 (1997).
    [CrossRef]
  4. A. Dyson and M. J. Adams, “Spin-polarized properties of optically pumped vertical-cavity surface-emitting lasers,” J. Opt. B Quantum Semiclassical Opt. 5(3), 222–226 (2003).
    [CrossRef]
  5. A. Gahl, S. Balle, and M. S. Miguel, “Polarization dynamics of optically pumped VCSELs,” IEEE J. Quantum Electron. 35(3), 342–351 (1999).
    [CrossRef]
  6. Y. Hong, R. Ju, P. S. Spencer, and K. A. Shore, “Investigation of polarization bistability in vertical-cavity surface-emitting lasers subjected to optical feedback,” IEEE J. Quantum Electron. 41(5), 619–624 (2005).
    [CrossRef]
  7. M. Sciamanna and K. Panajotov, “Route to polarization switching induced by optical injection in vertical-cavity surface-emitting lasers,” Phys. Rev. A 73(2), 023811 (2006).
    [CrossRef]
  8. J. Danckaert, B. Nagler, J. Albert, K. Panajotov, I. Veretennicoff, and T. Erneux, “Minimal rate equations describing polarization switching in vertical-cavity surface-emitting lasers,” Opt. Commun. 201(1-3), 129–137 (2002).
    [CrossRef]
  9. I. Gatare, K. Panajotov, and M. Sciamanna, “Frequency induced polarization bistability in vertical-cavity surface-emitting lasers with orthogonal optical injection,” Phys. Rev. A 75(2), 023804 (2007).
    [CrossRef]
  10. S. Hallstein, J. D. Berger, M. Hilpert, H. C. Schneider, W. W. Rűhle, F. Jahnke, S. W. Koch, H. M. Gibbs, G. Khitrova, and M. Oestreich, “Manifestation of coherent spin precession in stimulated semiconductor emission dynamics,” Phys. Rev. B 56(12), R7076–R7079 (1997).
    [CrossRef]
  11. K. H. Jeong, K. H. Kim, S. H. Lee, M. H. Lee, B. S. Yoo, and K. A. Shore, “Optical injection-induced polarization switching dynamics in 1.5-μm wavelength single-mode vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 20(10), 779–781 (2008).
    [CrossRef]
  12. S. H. Lee, H. W. Jung, K. H. Kim, M. H. Lee, B.-S. Yoo, J. Roh, and K. A. Shore, “1-GHz all-optical flip-flop operation of conventional cylindrical-shaped single-mode VCSELs under low power optical injection,” IEEE Photon. Technol. Lett. 22(23), 1759–1761 (2010).
    [CrossRef]
  13. A. E. Siegman, Lasers (Univ. Sci. Books, 1986), Chaps. 25 and 13.
  14. J.-H. Shin, B.-S. Yoo, W.-S. Han, O.-K. Kwon, Y.-G. Ju, and J.-H. Lee, “CW operation and threshold characteristics of all-monolithic InAlGaAs 1.55-μm VCSELs grown by MOCVD,” IEEE Photon. Technol. Lett. 14(8), 1031–1033 (2002).
    [CrossRef]
  15. M.-R. Park, O.-K. Kwon, W.-S. Han, K.-H. Lee, S.-J. Park, and B.-S. Yoo, “All-monolithic 1.55 µm InAlGaAs/InP vertical cavity surface emitting lasers grown by metal organic chemical vapor deposition,” Jpn. J. Appl. Phys. 45(1), L8–L10 (2006).
    [CrossRef]

2010

S. H. Lee, H. W. Jung, K. H. Kim, M. H. Lee, B.-S. Yoo, J. Roh, and K. A. Shore, “1-GHz all-optical flip-flop operation of conventional cylindrical-shaped single-mode VCSELs under low power optical injection,” IEEE Photon. Technol. Lett. 22(23), 1759–1761 (2010).
[CrossRef]

2008

K. H. Jeong, K. H. Kim, S. H. Lee, M. H. Lee, B. S. Yoo, and K. A. Shore, “Optical injection-induced polarization switching dynamics in 1.5-μm wavelength single-mode vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 20(10), 779–781 (2008).
[CrossRef]

W. L. Zhang, W. Pan, B. Luo, M. Y. Wang, and X. H. Zou, “Polarization switching and hysteresis of VCSELs with time-varying optical injection,” IEEE J. Sel. Top. Quantum Electron. 14(3), 889–894 (2008).
[CrossRef]

2007

I. Gatare, K. Panajotov, and M. Sciamanna, “Frequency induced polarization bistability in vertical-cavity surface-emitting lasers with orthogonal optical injection,” Phys. Rev. A 75(2), 023804 (2007).
[CrossRef]

2006

M.-R. Park, O.-K. Kwon, W.-S. Han, K.-H. Lee, S.-J. Park, and B.-S. Yoo, “All-monolithic 1.55 µm InAlGaAs/InP vertical cavity surface emitting lasers grown by metal organic chemical vapor deposition,” Jpn. J. Appl. Phys. 45(1), L8–L10 (2006).
[CrossRef]

M. Sciamanna and K. Panajotov, “Route to polarization switching induced by optical injection in vertical-cavity surface-emitting lasers,” Phys. Rev. A 73(2), 023811 (2006).
[CrossRef]

2005

Y. Hong, R. Ju, P. S. Spencer, and K. A. Shore, “Investigation of polarization bistability in vertical-cavity surface-emitting lasers subjected to optical feedback,” IEEE J. Quantum Electron. 41(5), 619–624 (2005).
[CrossRef]

2003

A. Dyson and M. J. Adams, “Spin-polarized properties of optically pumped vertical-cavity surface-emitting lasers,” J. Opt. B Quantum Semiclassical Opt. 5(3), 222–226 (2003).
[CrossRef]

2002

J. Danckaert, B. Nagler, J. Albert, K. Panajotov, I. Veretennicoff, and T. Erneux, “Minimal rate equations describing polarization switching in vertical-cavity surface-emitting lasers,” Opt. Commun. 201(1-3), 129–137 (2002).
[CrossRef]

J.-H. Shin, B.-S. Yoo, W.-S. Han, O.-K. Kwon, Y.-G. Ju, and J.-H. Lee, “CW operation and threshold characteristics of all-monolithic InAlGaAs 1.55-μm VCSELs grown by MOCVD,” IEEE Photon. Technol. Lett. 14(8), 1031–1033 (2002).
[CrossRef]

1999

A. Gahl, S. Balle, and M. S. Miguel, “Polarization dynamics of optically pumped VCSELs,” IEEE J. Quantum Electron. 35(3), 342–351 (1999).
[CrossRef]

1997

J. Martin-Regalado, F. Prati, M. San Miguel, and N. B. Abraham, “Polarization properties of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33(5), 765–783 (1997).
[CrossRef]

S. Hallstein, J. D. Berger, M. Hilpert, H. C. Schneider, W. W. Rűhle, F. Jahnke, S. W. Koch, H. M. Gibbs, G. Khitrova, and M. Oestreich, “Manifestation of coherent spin precession in stimulated semiconductor emission dynamics,” Phys. Rev. B 56(12), R7076–R7079 (1997).
[CrossRef]

1995

M. San Miguel, Q. Feng, and J. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52(2), 1728–1739 (1995).
[CrossRef]

Abraham, N. B.

J. Martin-Regalado, F. Prati, M. San Miguel, and N. B. Abraham, “Polarization properties of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33(5), 765–783 (1997).
[CrossRef]

Adams, M. J.

A. Dyson and M. J. Adams, “Spin-polarized properties of optically pumped vertical-cavity surface-emitting lasers,” J. Opt. B Quantum Semiclassical Opt. 5(3), 222–226 (2003).
[CrossRef]

Albert, J.

J. Danckaert, B. Nagler, J. Albert, K. Panajotov, I. Veretennicoff, and T. Erneux, “Minimal rate equations describing polarization switching in vertical-cavity surface-emitting lasers,” Opt. Commun. 201(1-3), 129–137 (2002).
[CrossRef]

Balle, S.

A. Gahl, S. Balle, and M. S. Miguel, “Polarization dynamics of optically pumped VCSELs,” IEEE J. Quantum Electron. 35(3), 342–351 (1999).
[CrossRef]

Berger, J. D.

S. Hallstein, J. D. Berger, M. Hilpert, H. C. Schneider, W. W. Rűhle, F. Jahnke, S. W. Koch, H. M. Gibbs, G. Khitrova, and M. Oestreich, “Manifestation of coherent spin precession in stimulated semiconductor emission dynamics,” Phys. Rev. B 56(12), R7076–R7079 (1997).
[CrossRef]

Danckaert, J.

J. Danckaert, B. Nagler, J. Albert, K. Panajotov, I. Veretennicoff, and T. Erneux, “Minimal rate equations describing polarization switching in vertical-cavity surface-emitting lasers,” Opt. Commun. 201(1-3), 129–137 (2002).
[CrossRef]

Dyson, A.

A. Dyson and M. J. Adams, “Spin-polarized properties of optically pumped vertical-cavity surface-emitting lasers,” J. Opt. B Quantum Semiclassical Opt. 5(3), 222–226 (2003).
[CrossRef]

Erneux, T.

J. Danckaert, B. Nagler, J. Albert, K. Panajotov, I. Veretennicoff, and T. Erneux, “Minimal rate equations describing polarization switching in vertical-cavity surface-emitting lasers,” Opt. Commun. 201(1-3), 129–137 (2002).
[CrossRef]

Feng, Q.

M. San Miguel, Q. Feng, and J. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52(2), 1728–1739 (1995).
[CrossRef]

Gahl, A.

A. Gahl, S. Balle, and M. S. Miguel, “Polarization dynamics of optically pumped VCSELs,” IEEE J. Quantum Electron. 35(3), 342–351 (1999).
[CrossRef]

Gatare, I.

I. Gatare, K. Panajotov, and M. Sciamanna, “Frequency induced polarization bistability in vertical-cavity surface-emitting lasers with orthogonal optical injection,” Phys. Rev. A 75(2), 023804 (2007).
[CrossRef]

Gibbs, H. M.

S. Hallstein, J. D. Berger, M. Hilpert, H. C. Schneider, W. W. Rűhle, F. Jahnke, S. W. Koch, H. M. Gibbs, G. Khitrova, and M. Oestreich, “Manifestation of coherent spin precession in stimulated semiconductor emission dynamics,” Phys. Rev. B 56(12), R7076–R7079 (1997).
[CrossRef]

Hallstein, S.

S. Hallstein, J. D. Berger, M. Hilpert, H. C. Schneider, W. W. Rűhle, F. Jahnke, S. W. Koch, H. M. Gibbs, G. Khitrova, and M. Oestreich, “Manifestation of coherent spin precession in stimulated semiconductor emission dynamics,” Phys. Rev. B 56(12), R7076–R7079 (1997).
[CrossRef]

Han, W.-S.

M.-R. Park, O.-K. Kwon, W.-S. Han, K.-H. Lee, S.-J. Park, and B.-S. Yoo, “All-monolithic 1.55 µm InAlGaAs/InP vertical cavity surface emitting lasers grown by metal organic chemical vapor deposition,” Jpn. J. Appl. Phys. 45(1), L8–L10 (2006).
[CrossRef]

J.-H. Shin, B.-S. Yoo, W.-S. Han, O.-K. Kwon, Y.-G. Ju, and J.-H. Lee, “CW operation and threshold characteristics of all-monolithic InAlGaAs 1.55-μm VCSELs grown by MOCVD,” IEEE Photon. Technol. Lett. 14(8), 1031–1033 (2002).
[CrossRef]

Hilpert, M.

S. Hallstein, J. D. Berger, M. Hilpert, H. C. Schneider, W. W. Rűhle, F. Jahnke, S. W. Koch, H. M. Gibbs, G. Khitrova, and M. Oestreich, “Manifestation of coherent spin precession in stimulated semiconductor emission dynamics,” Phys. Rev. B 56(12), R7076–R7079 (1997).
[CrossRef]

Hong, Y.

Y. Hong, R. Ju, P. S. Spencer, and K. A. Shore, “Investigation of polarization bistability in vertical-cavity surface-emitting lasers subjected to optical feedback,” IEEE J. Quantum Electron. 41(5), 619–624 (2005).
[CrossRef]

Jahnke, F.

S. Hallstein, J. D. Berger, M. Hilpert, H. C. Schneider, W. W. Rűhle, F. Jahnke, S. W. Koch, H. M. Gibbs, G. Khitrova, and M. Oestreich, “Manifestation of coherent spin precession in stimulated semiconductor emission dynamics,” Phys. Rev. B 56(12), R7076–R7079 (1997).
[CrossRef]

Jeong, K. H.

K. H. Jeong, K. H. Kim, S. H. Lee, M. H. Lee, B. S. Yoo, and K. A. Shore, “Optical injection-induced polarization switching dynamics in 1.5-μm wavelength single-mode vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 20(10), 779–781 (2008).
[CrossRef]

Ju, R.

Y. Hong, R. Ju, P. S. Spencer, and K. A. Shore, “Investigation of polarization bistability in vertical-cavity surface-emitting lasers subjected to optical feedback,” IEEE J. Quantum Electron. 41(5), 619–624 (2005).
[CrossRef]

Ju, Y.-G.

J.-H. Shin, B.-S. Yoo, W.-S. Han, O.-K. Kwon, Y.-G. Ju, and J.-H. Lee, “CW operation and threshold characteristics of all-monolithic InAlGaAs 1.55-μm VCSELs grown by MOCVD,” IEEE Photon. Technol. Lett. 14(8), 1031–1033 (2002).
[CrossRef]

Jung, H. W.

S. H. Lee, H. W. Jung, K. H. Kim, M. H. Lee, B.-S. Yoo, J. Roh, and K. A. Shore, “1-GHz all-optical flip-flop operation of conventional cylindrical-shaped single-mode VCSELs under low power optical injection,” IEEE Photon. Technol. Lett. 22(23), 1759–1761 (2010).
[CrossRef]

Khitrova, G.

S. Hallstein, J. D. Berger, M. Hilpert, H. C. Schneider, W. W. Rűhle, F. Jahnke, S. W. Koch, H. M. Gibbs, G. Khitrova, and M. Oestreich, “Manifestation of coherent spin precession in stimulated semiconductor emission dynamics,” Phys. Rev. B 56(12), R7076–R7079 (1997).
[CrossRef]

Kim, K. H.

S. H. Lee, H. W. Jung, K. H. Kim, M. H. Lee, B.-S. Yoo, J. Roh, and K. A. Shore, “1-GHz all-optical flip-flop operation of conventional cylindrical-shaped single-mode VCSELs under low power optical injection,” IEEE Photon. Technol. Lett. 22(23), 1759–1761 (2010).
[CrossRef]

K. H. Jeong, K. H. Kim, S. H. Lee, M. H. Lee, B. S. Yoo, and K. A. Shore, “Optical injection-induced polarization switching dynamics in 1.5-μm wavelength single-mode vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 20(10), 779–781 (2008).
[CrossRef]

Koch, S. W.

S. Hallstein, J. D. Berger, M. Hilpert, H. C. Schneider, W. W. Rűhle, F. Jahnke, S. W. Koch, H. M. Gibbs, G. Khitrova, and M. Oestreich, “Manifestation of coherent spin precession in stimulated semiconductor emission dynamics,” Phys. Rev. B 56(12), R7076–R7079 (1997).
[CrossRef]

Kwon, O.-K.

M.-R. Park, O.-K. Kwon, W.-S. Han, K.-H. Lee, S.-J. Park, and B.-S. Yoo, “All-monolithic 1.55 µm InAlGaAs/InP vertical cavity surface emitting lasers grown by metal organic chemical vapor deposition,” Jpn. J. Appl. Phys. 45(1), L8–L10 (2006).
[CrossRef]

J.-H. Shin, B.-S. Yoo, W.-S. Han, O.-K. Kwon, Y.-G. Ju, and J.-H. Lee, “CW operation and threshold characteristics of all-monolithic InAlGaAs 1.55-μm VCSELs grown by MOCVD,” IEEE Photon. Technol. Lett. 14(8), 1031–1033 (2002).
[CrossRef]

Lee, J.-H.

J.-H. Shin, B.-S. Yoo, W.-S. Han, O.-K. Kwon, Y.-G. Ju, and J.-H. Lee, “CW operation and threshold characteristics of all-monolithic InAlGaAs 1.55-μm VCSELs grown by MOCVD,” IEEE Photon. Technol. Lett. 14(8), 1031–1033 (2002).
[CrossRef]

Lee, K.-H.

M.-R. Park, O.-K. Kwon, W.-S. Han, K.-H. Lee, S.-J. Park, and B.-S. Yoo, “All-monolithic 1.55 µm InAlGaAs/InP vertical cavity surface emitting lasers grown by metal organic chemical vapor deposition,” Jpn. J. Appl. Phys. 45(1), L8–L10 (2006).
[CrossRef]

Lee, M. H.

S. H. Lee, H. W. Jung, K. H. Kim, M. H. Lee, B.-S. Yoo, J. Roh, and K. A. Shore, “1-GHz all-optical flip-flop operation of conventional cylindrical-shaped single-mode VCSELs under low power optical injection,” IEEE Photon. Technol. Lett. 22(23), 1759–1761 (2010).
[CrossRef]

K. H. Jeong, K. H. Kim, S. H. Lee, M. H. Lee, B. S. Yoo, and K. A. Shore, “Optical injection-induced polarization switching dynamics in 1.5-μm wavelength single-mode vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 20(10), 779–781 (2008).
[CrossRef]

Lee, S. H.

S. H. Lee, H. W. Jung, K. H. Kim, M. H. Lee, B.-S. Yoo, J. Roh, and K. A. Shore, “1-GHz all-optical flip-flop operation of conventional cylindrical-shaped single-mode VCSELs under low power optical injection,” IEEE Photon. Technol. Lett. 22(23), 1759–1761 (2010).
[CrossRef]

K. H. Jeong, K. H. Kim, S. H. Lee, M. H. Lee, B. S. Yoo, and K. A. Shore, “Optical injection-induced polarization switching dynamics in 1.5-μm wavelength single-mode vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 20(10), 779–781 (2008).
[CrossRef]

Luo, B.

W. L. Zhang, W. Pan, B. Luo, M. Y. Wang, and X. H. Zou, “Polarization switching and hysteresis of VCSELs with time-varying optical injection,” IEEE J. Sel. Top. Quantum Electron. 14(3), 889–894 (2008).
[CrossRef]

Martin-Regalado, J.

J. Martin-Regalado, F. Prati, M. San Miguel, and N. B. Abraham, “Polarization properties of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33(5), 765–783 (1997).
[CrossRef]

Miguel, M. S.

A. Gahl, S. Balle, and M. S. Miguel, “Polarization dynamics of optically pumped VCSELs,” IEEE J. Quantum Electron. 35(3), 342–351 (1999).
[CrossRef]

Moloney, J.

M. San Miguel, Q. Feng, and J. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52(2), 1728–1739 (1995).
[CrossRef]

Nagler, B.

J. Danckaert, B. Nagler, J. Albert, K. Panajotov, I. Veretennicoff, and T. Erneux, “Minimal rate equations describing polarization switching in vertical-cavity surface-emitting lasers,” Opt. Commun. 201(1-3), 129–137 (2002).
[CrossRef]

Oestreich, M.

S. Hallstein, J. D. Berger, M. Hilpert, H. C. Schneider, W. W. Rűhle, F. Jahnke, S. W. Koch, H. M. Gibbs, G. Khitrova, and M. Oestreich, “Manifestation of coherent spin precession in stimulated semiconductor emission dynamics,” Phys. Rev. B 56(12), R7076–R7079 (1997).
[CrossRef]

Pan, W.

W. L. Zhang, W. Pan, B. Luo, M. Y. Wang, and X. H. Zou, “Polarization switching and hysteresis of VCSELs with time-varying optical injection,” IEEE J. Sel. Top. Quantum Electron. 14(3), 889–894 (2008).
[CrossRef]

Panajotov, K.

I. Gatare, K. Panajotov, and M. Sciamanna, “Frequency induced polarization bistability in vertical-cavity surface-emitting lasers with orthogonal optical injection,” Phys. Rev. A 75(2), 023804 (2007).
[CrossRef]

M. Sciamanna and K. Panajotov, “Route to polarization switching induced by optical injection in vertical-cavity surface-emitting lasers,” Phys. Rev. A 73(2), 023811 (2006).
[CrossRef]

J. Danckaert, B. Nagler, J. Albert, K. Panajotov, I. Veretennicoff, and T. Erneux, “Minimal rate equations describing polarization switching in vertical-cavity surface-emitting lasers,” Opt. Commun. 201(1-3), 129–137 (2002).
[CrossRef]

Park, M.-R.

M.-R. Park, O.-K. Kwon, W.-S. Han, K.-H. Lee, S.-J. Park, and B.-S. Yoo, “All-monolithic 1.55 µm InAlGaAs/InP vertical cavity surface emitting lasers grown by metal organic chemical vapor deposition,” Jpn. J. Appl. Phys. 45(1), L8–L10 (2006).
[CrossRef]

Park, S.-J.

M.-R. Park, O.-K. Kwon, W.-S. Han, K.-H. Lee, S.-J. Park, and B.-S. Yoo, “All-monolithic 1.55 µm InAlGaAs/InP vertical cavity surface emitting lasers grown by metal organic chemical vapor deposition,” Jpn. J. Appl. Phys. 45(1), L8–L10 (2006).
[CrossRef]

Prati, F.

J. Martin-Regalado, F. Prati, M. San Miguel, and N. B. Abraham, “Polarization properties of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33(5), 765–783 (1997).
[CrossRef]

Roh, J.

S. H. Lee, H. W. Jung, K. H. Kim, M. H. Lee, B.-S. Yoo, J. Roh, and K. A. Shore, “1-GHz all-optical flip-flop operation of conventional cylindrical-shaped single-mode VCSELs under low power optical injection,” IEEE Photon. Technol. Lett. 22(23), 1759–1761 (2010).
[CrossRef]

Ruhle, W. W.

S. Hallstein, J. D. Berger, M. Hilpert, H. C. Schneider, W. W. Rűhle, F. Jahnke, S. W. Koch, H. M. Gibbs, G. Khitrova, and M. Oestreich, “Manifestation of coherent spin precession in stimulated semiconductor emission dynamics,” Phys. Rev. B 56(12), R7076–R7079 (1997).
[CrossRef]

San Miguel, M.

J. Martin-Regalado, F. Prati, M. San Miguel, and N. B. Abraham, “Polarization properties of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33(5), 765–783 (1997).
[CrossRef]

M. San Miguel, Q. Feng, and J. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52(2), 1728–1739 (1995).
[CrossRef]

Schneider, H. C.

S. Hallstein, J. D. Berger, M. Hilpert, H. C. Schneider, W. W. Rűhle, F. Jahnke, S. W. Koch, H. M. Gibbs, G. Khitrova, and M. Oestreich, “Manifestation of coherent spin precession in stimulated semiconductor emission dynamics,” Phys. Rev. B 56(12), R7076–R7079 (1997).
[CrossRef]

Sciamanna, M.

I. Gatare, K. Panajotov, and M. Sciamanna, “Frequency induced polarization bistability in vertical-cavity surface-emitting lasers with orthogonal optical injection,” Phys. Rev. A 75(2), 023804 (2007).
[CrossRef]

M. Sciamanna and K. Panajotov, “Route to polarization switching induced by optical injection in vertical-cavity surface-emitting lasers,” Phys. Rev. A 73(2), 023811 (2006).
[CrossRef]

Shin, J.-H.

J.-H. Shin, B.-S. Yoo, W.-S. Han, O.-K. Kwon, Y.-G. Ju, and J.-H. Lee, “CW operation and threshold characteristics of all-monolithic InAlGaAs 1.55-μm VCSELs grown by MOCVD,” IEEE Photon. Technol. Lett. 14(8), 1031–1033 (2002).
[CrossRef]

Shore, K. A.

S. H. Lee, H. W. Jung, K. H. Kim, M. H. Lee, B.-S. Yoo, J. Roh, and K. A. Shore, “1-GHz all-optical flip-flop operation of conventional cylindrical-shaped single-mode VCSELs under low power optical injection,” IEEE Photon. Technol. Lett. 22(23), 1759–1761 (2010).
[CrossRef]

K. H. Jeong, K. H. Kim, S. H. Lee, M. H. Lee, B. S. Yoo, and K. A. Shore, “Optical injection-induced polarization switching dynamics in 1.5-μm wavelength single-mode vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 20(10), 779–781 (2008).
[CrossRef]

Y. Hong, R. Ju, P. S. Spencer, and K. A. Shore, “Investigation of polarization bistability in vertical-cavity surface-emitting lasers subjected to optical feedback,” IEEE J. Quantum Electron. 41(5), 619–624 (2005).
[CrossRef]

Spencer, P. S.

Y. Hong, R. Ju, P. S. Spencer, and K. A. Shore, “Investigation of polarization bistability in vertical-cavity surface-emitting lasers subjected to optical feedback,” IEEE J. Quantum Electron. 41(5), 619–624 (2005).
[CrossRef]

Veretennicoff, I.

J. Danckaert, B. Nagler, J. Albert, K. Panajotov, I. Veretennicoff, and T. Erneux, “Minimal rate equations describing polarization switching in vertical-cavity surface-emitting lasers,” Opt. Commun. 201(1-3), 129–137 (2002).
[CrossRef]

Wang, M. Y.

W. L. Zhang, W. Pan, B. Luo, M. Y. Wang, and X. H. Zou, “Polarization switching and hysteresis of VCSELs with time-varying optical injection,” IEEE J. Sel. Top. Quantum Electron. 14(3), 889–894 (2008).
[CrossRef]

Yoo, B. S.

K. H. Jeong, K. H. Kim, S. H. Lee, M. H. Lee, B. S. Yoo, and K. A. Shore, “Optical injection-induced polarization switching dynamics in 1.5-μm wavelength single-mode vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 20(10), 779–781 (2008).
[CrossRef]

Yoo, B.-S.

S. H. Lee, H. W. Jung, K. H. Kim, M. H. Lee, B.-S. Yoo, J. Roh, and K. A. Shore, “1-GHz all-optical flip-flop operation of conventional cylindrical-shaped single-mode VCSELs under low power optical injection,” IEEE Photon. Technol. Lett. 22(23), 1759–1761 (2010).
[CrossRef]

M.-R. Park, O.-K. Kwon, W.-S. Han, K.-H. Lee, S.-J. Park, and B.-S. Yoo, “All-monolithic 1.55 µm InAlGaAs/InP vertical cavity surface emitting lasers grown by metal organic chemical vapor deposition,” Jpn. J. Appl. Phys. 45(1), L8–L10 (2006).
[CrossRef]

J.-H. Shin, B.-S. Yoo, W.-S. Han, O.-K. Kwon, Y.-G. Ju, and J.-H. Lee, “CW operation and threshold characteristics of all-monolithic InAlGaAs 1.55-μm VCSELs grown by MOCVD,” IEEE Photon. Technol. Lett. 14(8), 1031–1033 (2002).
[CrossRef]

Zhang, W. L.

W. L. Zhang, W. Pan, B. Luo, M. Y. Wang, and X. H. Zou, “Polarization switching and hysteresis of VCSELs with time-varying optical injection,” IEEE J. Sel. Top. Quantum Electron. 14(3), 889–894 (2008).
[CrossRef]

Zou, X. H.

W. L. Zhang, W. Pan, B. Luo, M. Y. Wang, and X. H. Zou, “Polarization switching and hysteresis of VCSELs with time-varying optical injection,” IEEE J. Sel. Top. Quantum Electron. 14(3), 889–894 (2008).
[CrossRef]

IEEE J. Quantum Electron.

J. Martin-Regalado, F. Prati, M. San Miguel, and N. B. Abraham, “Polarization properties of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33(5), 765–783 (1997).
[CrossRef]

A. Gahl, S. Balle, and M. S. Miguel, “Polarization dynamics of optically pumped VCSELs,” IEEE J. Quantum Electron. 35(3), 342–351 (1999).
[CrossRef]

Y. Hong, R. Ju, P. S. Spencer, and K. A. Shore, “Investigation of polarization bistability in vertical-cavity surface-emitting lasers subjected to optical feedback,” IEEE J. Quantum Electron. 41(5), 619–624 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

W. L. Zhang, W. Pan, B. Luo, M. Y. Wang, and X. H. Zou, “Polarization switching and hysteresis of VCSELs with time-varying optical injection,” IEEE J. Sel. Top. Quantum Electron. 14(3), 889–894 (2008).
[CrossRef]

IEEE Photon. Technol. Lett.

K. H. Jeong, K. H. Kim, S. H. Lee, M. H. Lee, B. S. Yoo, and K. A. Shore, “Optical injection-induced polarization switching dynamics in 1.5-μm wavelength single-mode vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 20(10), 779–781 (2008).
[CrossRef]

S. H. Lee, H. W. Jung, K. H. Kim, M. H. Lee, B.-S. Yoo, J. Roh, and K. A. Shore, “1-GHz all-optical flip-flop operation of conventional cylindrical-shaped single-mode VCSELs under low power optical injection,” IEEE Photon. Technol. Lett. 22(23), 1759–1761 (2010).
[CrossRef]

J.-H. Shin, B.-S. Yoo, W.-S. Han, O.-K. Kwon, Y.-G. Ju, and J.-H. Lee, “CW operation and threshold characteristics of all-monolithic InAlGaAs 1.55-μm VCSELs grown by MOCVD,” IEEE Photon. Technol. Lett. 14(8), 1031–1033 (2002).
[CrossRef]

J. Opt. B Quantum Semiclassical Opt.

A. Dyson and M. J. Adams, “Spin-polarized properties of optically pumped vertical-cavity surface-emitting lasers,” J. Opt. B Quantum Semiclassical Opt. 5(3), 222–226 (2003).
[CrossRef]

Jpn. J. Appl. Phys.

M.-R. Park, O.-K. Kwon, W.-S. Han, K.-H. Lee, S.-J. Park, and B.-S. Yoo, “All-monolithic 1.55 µm InAlGaAs/InP vertical cavity surface emitting lasers grown by metal organic chemical vapor deposition,” Jpn. J. Appl. Phys. 45(1), L8–L10 (2006).
[CrossRef]

Opt. Commun.

J. Danckaert, B. Nagler, J. Albert, K. Panajotov, I. Veretennicoff, and T. Erneux, “Minimal rate equations describing polarization switching in vertical-cavity surface-emitting lasers,” Opt. Commun. 201(1-3), 129–137 (2002).
[CrossRef]

Phys. Rev. A

I. Gatare, K. Panajotov, and M. Sciamanna, “Frequency induced polarization bistability in vertical-cavity surface-emitting lasers with orthogonal optical injection,” Phys. Rev. A 75(2), 023804 (2007).
[CrossRef]

M. Sciamanna and K. Panajotov, “Route to polarization switching induced by optical injection in vertical-cavity surface-emitting lasers,” Phys. Rev. A 73(2), 023811 (2006).
[CrossRef]

M. San Miguel, Q. Feng, and J. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52(2), 1728–1739 (1995).
[CrossRef]

Phys. Rev. B

S. Hallstein, J. D. Berger, M. Hilpert, H. C. Schneider, W. W. Rűhle, F. Jahnke, S. W. Koch, H. M. Gibbs, G. Khitrova, and M. Oestreich, “Manifestation of coherent spin precession in stimulated semiconductor emission dynamics,” Phys. Rev. B 56(12), R7076–R7079 (1997).
[CrossRef]

Other

A. E. Siegman, Lasers (Univ. Sci. Books, 1986), Chaps. 25 and 13.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

A schematic diagram of experimental setup. PC: polarization controller, PBS: polarization beam splitter, and DCA: digital communication analyzer.

Fig. 2
Fig. 2

Measured optical spectrum of the SM VCSEL in a free running mode, showing the X- and Y-polarization modes.

Fig. 3
Fig. 3

Measured oscilloscope traces of the X- and Y-polarization outputs of the VCSEL beam from the PBS with the DCA at the zero-detuned injection wavelength. The injection pulse had a pulse width of 51.7 ps. (Time scale = 500 ps/DIV, Vertical scale for X-polarized output = 20 µW/DIV and that for Y-polarized output is 50 µW/DIV.)

Fig. 4
Fig. 4

Variation of recovery time of the X- and Y-polarization-mode output intensities (yellow and violet color traces, respectively) with the bias current of the VCSEL at a constant injection power of 127 μW at the injection wavelength corresponding to the Y-polarization peak of 1554.15 nm. (Time scale = 500 ps/DIV, Vertical scale = 20 µW/DIV, the X-polarized output offset was adjusted to (a) −50 μW, (b) −25 μW, (c) 0 μW and (d) + 25 μW for the VCSEL bias currents of (a) 3.0 mA, (b) 3.5 mA, (c) 4.0 mA and (d) 4.5 mA, respectively). The marks “X off’ indicate the zero-levels of the X-polarization output intensities which correspond the upper traces (yellow color).

Fig. 5
Fig. 5

Temporal variation of the X- and Y-polarization-mode output intensities (yellow and violet color traces, respectively) of the SM VCSEL under a Y-polarization pulse beam injection of various peak powers ((a)~(d)) at a constant bias current of 4.5 mA. (Time scale = 500 ps/DIV, Vertical scale = 20 µW/DIV.) P inj: Injected power in µW. The offset for X-polarized output power was adjusted to 25 μW. The marks “X off’ indicate the zero-levels of the X-polarization output intensities which correspond the upper traces (yellow color).

Fig. 6
Fig. 6

Temporal variation of the X- and Y-polarization-mode output intensities (yellow and violet color traces, respectively) of the SM VCSEL under a Y-polarization pulse beam injection of various peak powers ((a)–(d)) at a constant bias current of 3.5 mA. (Time scale = 500 ps/DIV, Vertical scale = 20 µW/DIV.), P inj: Injection pulse power in µW. The marks “X off’ indicate the zero-levels of the X-polarization output intensities which correspond the upper traces (yellow color).

Fig. 7
Fig. 7

Variation of the X-polarized intensity versus time for various values of kinj in ns−1 at k = 25 ns−1.

Fig. 8
Fig. 8

Temporal intensity variation of the X- and Y-polarization-mode outputs (black and red colors, respectively) of the SM VCSEL under a Y-polarization pulse beam injection for various values of the linear dichroism (γa) and carrier decay rate (γe).

Fig. 9
Fig. 9

Variation of the X-polarization mode intensity of the VCSEL output under a pulsed Y-polarization beam injection for various field decay rates at a fixed spin-flip rate of 50 ns−1. The photon life time is calculated as (1/2k), where k is field decay rate in ns−1.

Fig. 10
Fig. 10

Comparison of experimentally observed oscilloscope traces and numerically calculated plots of the X- and Y-polarization beam dynamics of a SM VCSEL under short pulse injection of a Y-polarization mode beam at various detuning wavelengths. The injection pulse width is 51.70 ps and its peak power is 129 µW. For numerically calculated plots, the injection pulse width is considered as 50 ps. γa is taken as −1 ns−1 for Figs. (g) through (l) and as −1.25 ns−1 for Figs. (m) through (r).

Fig. 11
Fig. 11

Comparison of the measured and calculated (a) turn-off pulse widths of the X-polarization output and (b) turn-on pulse widths of Y-polarized output as functions of the injection wavelength detuning from the Y-polarization peak wavelength of the VCSEL. Black lines with open squares represent experimental results, red lines with open circles represent numerically calculated results for γa = −1 ns−1, and blue lines with open triangles represent numerically calculated results for γa = −1.25 ns−1.

Fig. 12
Fig. 12

Comparison of the measured and calculated (normalized) intensities of (a) the turn-off pulse minimum of the X-polarization output and (b) the turn-on pulse maximum of the Y- polarization output of the VCSEL as functions of wavelength detuning from the Y-polarization output’s spectral peak. Black lines with open squares represent experimental results, red lines with open circles represent numerically calculated results for γa = −1 ns−1, and blue lines with open triangles represent numerically calculated results for γa = −1.25 ns−1.

Fig. 13
Fig. 13

Band structure of a quantum well and selection rules.

Fig. 14
Fig. 14

Intensity variations of the (a) X-polarization and (b) Y-polarization modes, (c) the total population inversion variation, and (d) the difference variation between the population inversions for spin-up and spin-down radiation channels, all as functions of time, under a 50-ps pulse injection in the Y-polarization direction at time zero. The scales on the Y-axes are in normalized linear units.

Fig. 15
Fig. 15

(a) Recovery time of the X-polarization output as a function of the VCSEL bias current at various peak powers of the Y-polarized injection pulse and (b) recovery time for the X-polarization output as a function of peak power of the Y-polarized injection pulse at various VCSEL bias currents.

Tables (1)

Tables Icon

Table 1 Parameter Values used in Theoretical Analysis

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d E x d t = k ( 1 + j α ) ( N E x E x + j n E y ) ( γ a + j γ p + j Δ ω ) E x + β s p ξ x
d E y d t = k ( 1 + j α ) ( N E y E y j n E x ) + ( γ a + j γ p j Δ ω ) E y + β s p ξ y + k i n j E i n j
d N d t = γ e N ( 1 + P ) + γ e μ j γ e n ( E y E x E x E y )
d n d t = γ s n γ e n P j γ e n ( E y E x * E x E y * )
E x = E + + E 2
E y = i E + E 2

Metrics