Abstract

We report Carrier Envelope Offset (CEO) frequency measurements of a 10 GHz harmonically mode-locked, Fabry-Perot etalon-stabilized, semiconductor optical frequency comb source. A modified multi-heterodyne mixing technique with a reference frequency comb was utilized for the measurement. Also, preliminary results from an attempt at f-2f self-referencing measurement are presented. The CEO frequency was found to be ~1.47 GHz for the particular etalon that was used.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Ye, S. Cundiff, “Femtosecond Optical Frequency Comb Technology”, (Springer 2004).
  2. I. R. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
    [CrossRef] [PubMed]
  3. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
    [CrossRef] [PubMed]
  4. C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
    [CrossRef] [PubMed]
  5. W. C. Swann and N. R. Newbury, “Frequency-resolved coherent lidar using a femtosecond fiber laser,” Opt. Lett. 31(6), 826–828 (2006).
    [CrossRef] [PubMed]
  6. P. J. Delfyett, S. Gee, M. Choi, H. Izadpanah, W. Lee, S. Ozharar, F. Quinlan, and T. Yilmaz, “Optical Frequency Combs From Semiconductor Lasers and Applications in Ultrawideband Signal Processing and Communications,” J. Lightwave Technol. 24(7), 2701–2719 (2006).
    [CrossRef]
  7. P.J. Delfyett, I. Ozdur, N. Hoghooghi, M. Akbulut, J. Davila-Rodriguez, S. Bhooplapur, “Advanced Ultrafast Technologies Based on Optical Frequency Combs”, IEEE JSTQE, Invited paper accepted for publication (2011).
  8. M. Akbulut, S. Bhooplapur, I. Ozdur, J. Davila-Rodriguez, and P. J. Delfyett, “Dynamic line-by-line pulse shaping with GHz update rate,” Opt. Express 18(17), 18284–18291 (2010).
    [CrossRef] [PubMed]
  9. Z. Jiang, D. E. Leaird, and A. M. Weiner, “Optical Arbitrary Waveform Generation and Characterization Using Spectral Line-by-Line Control,” J. Lightwave Technol. 24(7), 2487–2494 (2006).
    [CrossRef]
  10. Z. Jiang, C. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
    [CrossRef]
  11. R. P. Scott, N. K. Fontaine, J. P. Heritage, and S. J. B. Yoo, “Dynamic optical arbitrary waveform generation and measurement,” Opt. Express 18(18), 18655–18670 (2010).
    [CrossRef] [PubMed]
  12. A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326(5953), 681 (2009).
    [CrossRef] [PubMed]
  13. I. Hartl, H. A. Mckay , R. Thapa , B. K. Thomas , L. Dong , and M. E. Fermann , “GHz Yb-femtosecond-fiber laser frequency comb,” Proceedings of CLEO (2009).
  14. F. J. Quinlan, G. Ycas, S. Osterman, and S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum. 81(6), 063105 (2010).
    [CrossRef] [PubMed]
  15. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
    [CrossRef] [PubMed]
  16. F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, “Harmonically mode-locked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources,” J. Opt. A, Pure Appl. Opt. 11(10), 103001 (2009).
    [CrossRef]
  17. I. Ozdur, M. Akbulut, N. Hoghooghi, D. Mandridis, S. Ozharar, and P. J. Delfyett, “A Semiconductor-Based 10-GHz Optical Comb Source With Sub 3-fs Shot-Noise-Limited Timing Jitter and 500-Hz Comb Linewidth,” IEEE Photon. Technol. Lett. 22(6), 431–433 (2010).
    [CrossRef]
  18. I. Ozdur, S. Ozharar, F. Quinlan, S. Gee, and P. J. Delfyett, “Modified Pound-Drever-Hall scheme for high-precision free spectral range measurement of Fabry-Perot etalon,” Electron. Lett. 44(15), 927–928 (2008).
    [CrossRef]
  19. J. Davila-Rodriguez, C. Williams, M. Akbulut, and P. J. Delfyett, “Multi-Heterodyne Characterization of Multi-Gigahertz Spaced Optical Frequency Comb Sources,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CTuA1.
  20. L. Ma, M. Zucco, S. Picard, L. Robertsson, and R. S. Windeler, “A New Method to Determine the Absolute Mode Number of a Mode-Locked Femtosecond-Laser Comb Used for Absolute Optical Frequency Measurements,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1066–1071 (2003).
    [CrossRef]

2011 (1)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[CrossRef] [PubMed]

2010 (4)

I. Ozdur, M. Akbulut, N. Hoghooghi, D. Mandridis, S. Ozharar, and P. J. Delfyett, “A Semiconductor-Based 10-GHz Optical Comb Source With Sub 3-fs Shot-Noise-Limited Timing Jitter and 500-Hz Comb Linewidth,” IEEE Photon. Technol. Lett. 22(6), 431–433 (2010).
[CrossRef]

M. Akbulut, S. Bhooplapur, I. Ozdur, J. Davila-Rodriguez, and P. J. Delfyett, “Dynamic line-by-line pulse shaping with GHz update rate,” Opt. Express 18(17), 18284–18291 (2010).
[CrossRef] [PubMed]

R. P. Scott, N. K. Fontaine, J. P. Heritage, and S. J. B. Yoo, “Dynamic optical arbitrary waveform generation and measurement,” Opt. Express 18(18), 18655–18670 (2010).
[CrossRef] [PubMed]

F. J. Quinlan, G. Ycas, S. Osterman, and S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum. 81(6), 063105 (2010).
[CrossRef] [PubMed]

2009 (2)

F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, “Harmonically mode-locked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources,” J. Opt. A, Pure Appl. Opt. 11(10), 103001 (2009).
[CrossRef]

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326(5953), 681 (2009).
[CrossRef] [PubMed]

2008 (3)

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[CrossRef] [PubMed]

I. R. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[CrossRef] [PubMed]

I. Ozdur, S. Ozharar, F. Quinlan, S. Gee, and P. J. Delfyett, “Modified Pound-Drever-Hall scheme for high-precision free spectral range measurement of Fabry-Perot etalon,” Electron. Lett. 44(15), 927–928 (2008).
[CrossRef]

2007 (2)

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[CrossRef] [PubMed]

Z. Jiang, C. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

2006 (3)

2003 (1)

L. Ma, M. Zucco, S. Picard, L. Robertsson, and R. S. Windeler, “A New Method to Determine the Absolute Mode Number of a Mode-Locked Femtosecond-Laser Comb Used for Absolute Optical Frequency Measurements,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1066–1071 (2003).
[CrossRef]

Akbulut, M.

I. Ozdur, M. Akbulut, N. Hoghooghi, D. Mandridis, S. Ozharar, and P. J. Delfyett, “A Semiconductor-Based 10-GHz Optical Comb Source With Sub 3-fs Shot-Noise-Limited Timing Jitter and 500-Hz Comb Linewidth,” IEEE Photon. Technol. Lett. 22(6), 431–433 (2010).
[CrossRef]

M. Akbulut, S. Bhooplapur, I. Ozdur, J. Davila-Rodriguez, and P. J. Delfyett, “Dynamic line-by-line pulse shaping with GHz update rate,” Opt. Express 18(17), 18284–18291 (2010).
[CrossRef] [PubMed]

Bartels, A.

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326(5953), 681 (2009).
[CrossRef] [PubMed]

Benedick, A. J.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Bhooplapur, S.

Choi, M.

Coddington, I. R.

I. R. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[CrossRef] [PubMed]

Davila-Rodriguez, J.

Delfyett, P. J.

M. Akbulut, S. Bhooplapur, I. Ozdur, J. Davila-Rodriguez, and P. J. Delfyett, “Dynamic line-by-line pulse shaping with GHz update rate,” Opt. Express 18(17), 18284–18291 (2010).
[CrossRef] [PubMed]

I. Ozdur, M. Akbulut, N. Hoghooghi, D. Mandridis, S. Ozharar, and P. J. Delfyett, “A Semiconductor-Based 10-GHz Optical Comb Source With Sub 3-fs Shot-Noise-Limited Timing Jitter and 500-Hz Comb Linewidth,” IEEE Photon. Technol. Lett. 22(6), 431–433 (2010).
[CrossRef]

F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, “Harmonically mode-locked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources,” J. Opt. A, Pure Appl. Opt. 11(10), 103001 (2009).
[CrossRef]

I. Ozdur, S. Ozharar, F. Quinlan, S. Gee, and P. J. Delfyett, “Modified Pound-Drever-Hall scheme for high-precision free spectral range measurement of Fabry-Perot etalon,” Electron. Lett. 44(15), 927–928 (2008).
[CrossRef]

P. J. Delfyett, S. Gee, M. Choi, H. Izadpanah, W. Lee, S. Ozharar, F. Quinlan, and T. Yilmaz, “Optical Frequency Combs From Semiconductor Lasers and Applications in Ultrawideband Signal Processing and Communications,” J. Lightwave Technol. 24(7), 2701–2719 (2006).
[CrossRef]

Diddams, S. A.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[CrossRef] [PubMed]

F. J. Quinlan, G. Ycas, S. Osterman, and S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum. 81(6), 063105 (2010).
[CrossRef] [PubMed]

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326(5953), 681 (2009).
[CrossRef] [PubMed]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[CrossRef] [PubMed]

Fendel, P.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Fontaine, N. K.

Gee, S.

F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, “Harmonically mode-locked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources,” J. Opt. A, Pure Appl. Opt. 11(10), 103001 (2009).
[CrossRef]

I. Ozdur, S. Ozharar, F. Quinlan, S. Gee, and P. J. Delfyett, “Modified Pound-Drever-Hall scheme for high-precision free spectral range measurement of Fabry-Perot etalon,” Electron. Lett. 44(15), 927–928 (2008).
[CrossRef]

P. J. Delfyett, S. Gee, M. Choi, H. Izadpanah, W. Lee, S. Ozharar, F. Quinlan, and T. Yilmaz, “Optical Frequency Combs From Semiconductor Lasers and Applications in Ultrawideband Signal Processing and Communications,” J. Lightwave Technol. 24(7), 2701–2719 (2006).
[CrossRef]

Glenday, A. G.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Heinecke, D.

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326(5953), 681 (2009).
[CrossRef] [PubMed]

Heritage, J. P.

Hoghooghi, N.

I. Ozdur, M. Akbulut, N. Hoghooghi, D. Mandridis, S. Ozharar, and P. J. Delfyett, “A Semiconductor-Based 10-GHz Optical Comb Source With Sub 3-fs Shot-Noise-Limited Timing Jitter and 500-Hz Comb Linewidth,” IEEE Photon. Technol. Lett. 22(6), 431–433 (2010).
[CrossRef]

Hollberg, L.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[CrossRef] [PubMed]

Holzwarth, R.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[CrossRef] [PubMed]

Huang, C.

Z. Jiang, C. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

Izadpanah, H.

Jiang, Z.

Z. Jiang, C. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

Z. Jiang, D. E. Leaird, and A. M. Weiner, “Optical Arbitrary Waveform Generation and Characterization Using Spectral Line-by-Line Control,” J. Lightwave Technol. 24(7), 2487–2494 (2006).
[CrossRef]

Kärtner, F. X.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Kippenberg, T. J.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[CrossRef] [PubMed]

Leaird, D. E.

Z. Jiang, C. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

Z. Jiang, D. E. Leaird, and A. M. Weiner, “Optical Arbitrary Waveform Generation and Characterization Using Spectral Line-by-Line Control,” J. Lightwave Technol. 24(7), 2487–2494 (2006).
[CrossRef]

Lee, W.

Li, C. H.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Ma, L.

L. Ma, M. Zucco, S. Picard, L. Robertsson, and R. S. Windeler, “A New Method to Determine the Absolute Mode Number of a Mode-Locked Femtosecond-Laser Comb Used for Absolute Optical Frequency Measurements,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1066–1071 (2003).
[CrossRef]

Mandridis, D.

I. Ozdur, M. Akbulut, N. Hoghooghi, D. Mandridis, S. Ozharar, and P. J. Delfyett, “A Semiconductor-Based 10-GHz Optical Comb Source With Sub 3-fs Shot-Noise-Limited Timing Jitter and 500-Hz Comb Linewidth,” IEEE Photon. Technol. Lett. 22(6), 431–433 (2010).
[CrossRef]

Mbele, V.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[CrossRef] [PubMed]

Newbury, N. R.

I. R. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[CrossRef] [PubMed]

W. C. Swann and N. R. Newbury, “Frequency-resolved coherent lidar using a femtosecond fiber laser,” Opt. Lett. 31(6), 826–828 (2006).
[CrossRef] [PubMed]

Osterman, S.

F. J. Quinlan, G. Ycas, S. Osterman, and S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum. 81(6), 063105 (2010).
[CrossRef] [PubMed]

Ozdur, I.

I. Ozdur, M. Akbulut, N. Hoghooghi, D. Mandridis, S. Ozharar, and P. J. Delfyett, “A Semiconductor-Based 10-GHz Optical Comb Source With Sub 3-fs Shot-Noise-Limited Timing Jitter and 500-Hz Comb Linewidth,” IEEE Photon. Technol. Lett. 22(6), 431–433 (2010).
[CrossRef]

M. Akbulut, S. Bhooplapur, I. Ozdur, J. Davila-Rodriguez, and P. J. Delfyett, “Dynamic line-by-line pulse shaping with GHz update rate,” Opt. Express 18(17), 18284–18291 (2010).
[CrossRef] [PubMed]

I. Ozdur, S. Ozharar, F. Quinlan, S. Gee, and P. J. Delfyett, “Modified Pound-Drever-Hall scheme for high-precision free spectral range measurement of Fabry-Perot etalon,” Electron. Lett. 44(15), 927–928 (2008).
[CrossRef]

Ozharar, S.

I. Ozdur, M. Akbulut, N. Hoghooghi, D. Mandridis, S. Ozharar, and P. J. Delfyett, “A Semiconductor-Based 10-GHz Optical Comb Source With Sub 3-fs Shot-Noise-Limited Timing Jitter and 500-Hz Comb Linewidth,” IEEE Photon. Technol. Lett. 22(6), 431–433 (2010).
[CrossRef]

F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, “Harmonically mode-locked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources,” J. Opt. A, Pure Appl. Opt. 11(10), 103001 (2009).
[CrossRef]

I. Ozdur, S. Ozharar, F. Quinlan, S. Gee, and P. J. Delfyett, “Modified Pound-Drever-Hall scheme for high-precision free spectral range measurement of Fabry-Perot etalon,” Electron. Lett. 44(15), 927–928 (2008).
[CrossRef]

P. J. Delfyett, S. Gee, M. Choi, H. Izadpanah, W. Lee, S. Ozharar, F. Quinlan, and T. Yilmaz, “Optical Frequency Combs From Semiconductor Lasers and Applications in Ultrawideband Signal Processing and Communications,” J. Lightwave Technol. 24(7), 2701–2719 (2006).
[CrossRef]

Phillips, D. F.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Picard, S.

L. Ma, M. Zucco, S. Picard, L. Robertsson, and R. S. Windeler, “A New Method to Determine the Absolute Mode Number of a Mode-Locked Femtosecond-Laser Comb Used for Absolute Optical Frequency Measurements,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1066–1071 (2003).
[CrossRef]

Quinlan, F.

F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, “Harmonically mode-locked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources,” J. Opt. A, Pure Appl. Opt. 11(10), 103001 (2009).
[CrossRef]

I. Ozdur, S. Ozharar, F. Quinlan, S. Gee, and P. J. Delfyett, “Modified Pound-Drever-Hall scheme for high-precision free spectral range measurement of Fabry-Perot etalon,” Electron. Lett. 44(15), 927–928 (2008).
[CrossRef]

P. J. Delfyett, S. Gee, M. Choi, H. Izadpanah, W. Lee, S. Ozharar, F. Quinlan, and T. Yilmaz, “Optical Frequency Combs From Semiconductor Lasers and Applications in Ultrawideband Signal Processing and Communications,” J. Lightwave Technol. 24(7), 2701–2719 (2006).
[CrossRef]

Quinlan, F. J.

F. J. Quinlan, G. Ycas, S. Osterman, and S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum. 81(6), 063105 (2010).
[CrossRef] [PubMed]

Robertsson, L.

L. Ma, M. Zucco, S. Picard, L. Robertsson, and R. S. Windeler, “A New Method to Determine the Absolute Mode Number of a Mode-Locked Femtosecond-Laser Comb Used for Absolute Optical Frequency Measurements,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1066–1071 (2003).
[CrossRef]

Sasselov, D.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Scott, R. P.

Swann, W. C.

I. R. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[CrossRef] [PubMed]

W. C. Swann and N. R. Newbury, “Frequency-resolved coherent lidar using a femtosecond fiber laser,” Opt. Lett. 31(6), 826–828 (2006).
[CrossRef] [PubMed]

Szentgyorgyi, A.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Walsworth, R. L.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Weiner, A. M.

Z. Jiang, C. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

Z. Jiang, D. E. Leaird, and A. M. Weiner, “Optical Arbitrary Waveform Generation and Characterization Using Spectral Line-by-Line Control,” J. Lightwave Technol. 24(7), 2487–2494 (2006).
[CrossRef]

Windeler, R. S.

L. Ma, M. Zucco, S. Picard, L. Robertsson, and R. S. Windeler, “A New Method to Determine the Absolute Mode Number of a Mode-Locked Femtosecond-Laser Comb Used for Absolute Optical Frequency Measurements,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1066–1071 (2003).
[CrossRef]

Ycas, G.

F. J. Quinlan, G. Ycas, S. Osterman, and S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum. 81(6), 063105 (2010).
[CrossRef] [PubMed]

Yilmaz, T.

Yoo, S. J. B.

Zucco, M.

L. Ma, M. Zucco, S. Picard, L. Robertsson, and R. S. Windeler, “A New Method to Determine the Absolute Mode Number of a Mode-Locked Femtosecond-Laser Comb Used for Absolute Optical Frequency Measurements,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1066–1071 (2003).
[CrossRef]

Electron. Lett. (1)

I. Ozdur, S. Ozharar, F. Quinlan, S. Gee, and P. J. Delfyett, “Modified Pound-Drever-Hall scheme for high-precision free spectral range measurement of Fabry-Perot etalon,” Electron. Lett. 44(15), 927–928 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Ma, M. Zucco, S. Picard, L. Robertsson, and R. S. Windeler, “A New Method to Determine the Absolute Mode Number of a Mode-Locked Femtosecond-Laser Comb Used for Absolute Optical Frequency Measurements,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1066–1071 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

I. Ozdur, M. Akbulut, N. Hoghooghi, D. Mandridis, S. Ozharar, and P. J. Delfyett, “A Semiconductor-Based 10-GHz Optical Comb Source With Sub 3-fs Shot-Noise-Limited Timing Jitter and 500-Hz Comb Linewidth,” IEEE Photon. Technol. Lett. 22(6), 431–433 (2010).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. A, Pure Appl. Opt. (1)

F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, “Harmonically mode-locked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources,” J. Opt. A, Pure Appl. Opt. 11(10), 103001 (2009).
[CrossRef]

Nat. Photonics (1)

Z. Jiang, C. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

Nature (2)

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[CrossRef] [PubMed]

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

I. R. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

F. J. Quinlan, G. Ycas, S. Osterman, and S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum. 81(6), 063105 (2010).
[CrossRef] [PubMed]

Science (2)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[CrossRef] [PubMed]

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326(5953), 681 (2009).
[CrossRef] [PubMed]

Other (4)

I. Hartl, H. A. Mckay , R. Thapa , B. K. Thomas , L. Dong , and M. E. Fermann , “GHz Yb-femtosecond-fiber laser frequency comb,” Proceedings of CLEO (2009).

J. Ye, S. Cundiff, “Femtosecond Optical Frequency Comb Technology”, (Springer 2004).

P.J. Delfyett, I. Ozdur, N. Hoghooghi, M. Akbulut, J. Davila-Rodriguez, S. Bhooplapur, “Advanced Ultrafast Technologies Based on Optical Frequency Combs”, IEEE JSTQE, Invited paper accepted for publication (2011).

J. Davila-Rodriguez, C. Williams, M. Akbulut, and P. J. Delfyett, “Multi-Heterodyne Characterization of Multi-Gigahertz Spaced Optical Frequency Comb Sources,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CTuA1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic of the comb source (top) with the PDH loop shown in the blue rectangle, photograph of the comb source on the optical table (bottom left), and photograph of the etalon (bottom right)

Fig. 2
Fig. 2

(a) Optical comb source output showing optical spectrum, (b) autocorrelation, and (c) phase noise (blue trace) and integrated residual jitter (orange trace)

Fig. 3
Fig. 3

Illustration of the etalon-stabilization of the optical frequency comb source

Fig. 4
Fig. 4

Illustration of the optical multi-heterodyne mixing of two optical comb sources

Fig. 5
Fig. 5

Experiment Setup for CEO frequency measurement through multi-heterodyne beating

Fig. 6
Fig. 6

(a) Multi-heterodyne RF beat tones showing CEO frequency, (b) 17 MHz resolution optical spectrum trace of photodetector input, (c) max-hold for 2 minutes of a single RF beat tone, and (d) RF beat drift over 1.5 hours

Fig. 7
Fig. 7

Modified experimental setup for CEO frequency measurement through multi-heterodyne beating

Fig. 8
Fig. 8

Optical spectrum of the comb sources of Fig. 7. (top), and multi-heterodyne RF beat tones (bottom) for various tunable optical filter settings. The dashed arrow shows the correlation between optical and RF domains.

Fig. 9
Fig. 9

Multi-heterodyne RF beat notes observed during various shifts of Menlo comb repetition rate

Fig. 10
Fig. 10

Optical octave generation at 10 GHz by direct amplification of comb source (top), and evolution of the octave as a function of peak power (bottom)

Fig. 11
Fig. 11

High resolution optical spectrum showing optical comb contrast as a function of output peak power

Fig. 12
Fig. 12

Measurement of the electrical gate use for multiplexing showing non-ideal zero level (top), and experiment setup for f-2f CEO frequency measurement

Fig. 13
Fig. 13

(a) Pulse picked laser autocorrelation, (b) Sample octave, (c) f-2f signals, (d) RF spectrum with and without correct delay alignment

Fig. 14
Fig. 14

Octave generation (left) and f-2f CEO frequency measurement (right) using a passively mode-locked fiber laser

Metrics