Abstract

We describe the theory and report the first experimental demonstration of Cavity Resonance Lithography (CRL); a double pattering (DP) technique that can generate patterns on a photoresist 1) with twice the spatial frequency of that of the diffraction limited lithography mask, and 2) at an offset distance that is in the far field of the mask. CRL requires only a single exposure and development step and does not require any additional processes. With commercially available photoresists (PR) and developers, we have recorded a 32.5 nm half-pitch pattern (which is well below the diffraction limit) at an offset distance of 180 nm (which is well beyond the evanescent decay length scales) using 193 nm illumination. We also discuss strategies to improve the minimum feature size and potential implementation schemes.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Zimmerman, “Double patterning lithography: double the trouble or double the fun?” SPIE Newsroom (2009), http://spie.org/documents/Newsroom/Imported/1691/1691_5999_0_2009-06-24.pdf .
  2. E. S. Putna, T. R. Younkin, M. Chandhok, and K. Frasure, “EUV lithography for 30nm half pitch and beyond: exploring resolution, sensitivity, and LWR tradeoffs,” Proc. SPIE 7273, 72731L (2009).
    [CrossRef]
  3. C.-M. Lim, “Positive and negative tone double patterning lithography for 50nm flash memory,” Proc. SPIE 6154, 615410 (2006).
    [CrossRef]
  4. M. Hori, T. Nagai, A. Nakamura, T. Abe, G. Wakamatsu, T. Kakizawa, Y. Anno, M. Sugiura, S. Kusumoto, Y. Yamaguchi, and T. Shimokawa, “Sub-40-nm half-pitch double patterning with resist freezing process,” Proc. SPIE 6923, 69230H (2008).
    [CrossRef]
  5. W. H. Arnold, “Toward 3nm overlay and critical dimension uniformity: an integrated error budget for double patterning lithography,” Proc. SPIE 6924, 692404 (2008).
    [CrossRef]
  6. J. Finders, M. Dusa, B. Vleeming, H. Megens, B. Hepp, M. Maenhoudt, S. Cheng, and T. Vandeweyer, “Double patterning for 32nm and below: an update,” Proc. SPIE 6924, 692408 (2008).
    [CrossRef]
  7. A. K. Raub, D. Li, A. Frauenglass, and S. R. J. Brueck, “Fabrication of 22 nm half-pitch silicon lines by single-exposure self-aligned spatial-frequency doubling,” J. Vac. Sci. Technol. B 25(6), 2224–2227 (2007).
    [CrossRef]
  8. C. Bencher, Y. Chen, H. Dai, W. Montgomery, and L. Huli, “22 nm half-pitch patterning by CVD spacer self alignment double patterning (SADP),” Proc. SPIE 6924, 69244E (2008).
    [CrossRef]
  9. S. Lee, J. Byers, K. Jen, P. Zimmerman, B. Rice, N. J. Turro, and C. G. Willson, “An analysis of double exposure lithography options,” Proc. SPIE 6924, 69242A (2008).
    [CrossRef]
  10. X. Gu, A. J. Berro, Y. Cho, K. Jen, S. Lee, T. Ngai, T. Ogata, W. J. Durand, A. Sundaresan, J. R. Lancaster, S. Jockusch, P. Zimmerman, N. J. Turro, and C. G. Willson, “Fundamental study of optical threshold layer approach towards double exposure lithography,” Proc. SPIE 7273, 72731C (2009).
    [CrossRef]
  11. C. Fonseca, M. Somervell, S. Scheer, W. Printz, K. Nafus, S. Hatakeyama, Y. Kuwahara, T. Niwa, S. Bernard, and R. Gronheid, “Advances and challenges in dual-tone development process optimization,” Proc. SPIE 7274, 72740I (2009).
    [CrossRef]
  12. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [CrossRef] [PubMed]
  13. D. Melville and R. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13(6), 2127–2134 (2005).
    [CrossRef] [PubMed]
  14. Z. Shi, V. Kochergin, and F. Wang, “193nm Superlens imaging structure for 20 nm lithography node,” Opt. Express 17(14), 11309–11314 (2009).
    [CrossRef] [PubMed]
  15. H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005).
    [CrossRef]
  16. T. E. Jewell and D. L. White, “Spatial frequency doubling lithography (SFDL) of periodic structures for integrated optical circuit technology,” J. Lightwave Technol. 7(9), 1386–1393 (1989).
    [CrossRef]
  17. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University Press, 1999).
  18. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1997).
  19. The refractive index of 200 nm thick PR coated on a bare Si wafer was measured at λ = 193 nm using ellipsometry; J. A. Woollam Co., Inc.
  20. A. Yariv, Optical Electronics (Holt McDougal, 1984)
  21. M. K. Yang, S. G. Kaplan, R. H. French, and J. H. Burnett, “Index of refraction of high-index lithographic immersion fluids and its variability,” J. Micro/Nanolithogr. MEMS MOEMS 8(2), 023005 (2009).
    [CrossRef]
  22. K. Matsumoto, E. A. Costner, I. Nishimura, M. Ueda, and C. G. Willson, “High index resist for 193 nm immersion lithography,” Macromolecules 41(15), 5674–5680 (2008).
    [CrossRef]

2009 (5)

E. S. Putna, T. R. Younkin, M. Chandhok, and K. Frasure, “EUV lithography for 30nm half pitch and beyond: exploring resolution, sensitivity, and LWR tradeoffs,” Proc. SPIE 7273, 72731L (2009).
[CrossRef]

X. Gu, A. J. Berro, Y. Cho, K. Jen, S. Lee, T. Ngai, T. Ogata, W. J. Durand, A. Sundaresan, J. R. Lancaster, S. Jockusch, P. Zimmerman, N. J. Turro, and C. G. Willson, “Fundamental study of optical threshold layer approach towards double exposure lithography,” Proc. SPIE 7273, 72731C (2009).
[CrossRef]

C. Fonseca, M. Somervell, S. Scheer, W. Printz, K. Nafus, S. Hatakeyama, Y. Kuwahara, T. Niwa, S. Bernard, and R. Gronheid, “Advances and challenges in dual-tone development process optimization,” Proc. SPIE 7274, 72740I (2009).
[CrossRef]

M. K. Yang, S. G. Kaplan, R. H. French, and J. H. Burnett, “Index of refraction of high-index lithographic immersion fluids and its variability,” J. Micro/Nanolithogr. MEMS MOEMS 8(2), 023005 (2009).
[CrossRef]

Z. Shi, V. Kochergin, and F. Wang, “193nm Superlens imaging structure for 20 nm lithography node,” Opt. Express 17(14), 11309–11314 (2009).
[CrossRef] [PubMed]

2008 (6)

K. Matsumoto, E. A. Costner, I. Nishimura, M. Ueda, and C. G. Willson, “High index resist for 193 nm immersion lithography,” Macromolecules 41(15), 5674–5680 (2008).
[CrossRef]

C. Bencher, Y. Chen, H. Dai, W. Montgomery, and L. Huli, “22 nm half-pitch patterning by CVD spacer self alignment double patterning (SADP),” Proc. SPIE 6924, 69244E (2008).
[CrossRef]

S. Lee, J. Byers, K. Jen, P. Zimmerman, B. Rice, N. J. Turro, and C. G. Willson, “An analysis of double exposure lithography options,” Proc. SPIE 6924, 69242A (2008).
[CrossRef]

M. Hori, T. Nagai, A. Nakamura, T. Abe, G. Wakamatsu, T. Kakizawa, Y. Anno, M. Sugiura, S. Kusumoto, Y. Yamaguchi, and T. Shimokawa, “Sub-40-nm half-pitch double patterning with resist freezing process,” Proc. SPIE 6923, 69230H (2008).
[CrossRef]

W. H. Arnold, “Toward 3nm overlay and critical dimension uniformity: an integrated error budget for double patterning lithography,” Proc. SPIE 6924, 692404 (2008).
[CrossRef]

J. Finders, M. Dusa, B. Vleeming, H. Megens, B. Hepp, M. Maenhoudt, S. Cheng, and T. Vandeweyer, “Double patterning for 32nm and below: an update,” Proc. SPIE 6924, 692408 (2008).
[CrossRef]

2007 (1)

A. K. Raub, D. Li, A. Frauenglass, and S. R. J. Brueck, “Fabrication of 22 nm half-pitch silicon lines by single-exposure self-aligned spatial-frequency doubling,” J. Vac. Sci. Technol. B 25(6), 2224–2227 (2007).
[CrossRef]

2006 (1)

C.-M. Lim, “Positive and negative tone double patterning lithography for 50nm flash memory,” Proc. SPIE 6154, 615410 (2006).
[CrossRef]

2005 (3)

D. Melville and R. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13(6), 2127–2134 (2005).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005).
[CrossRef]

1989 (1)

T. E. Jewell and D. L. White, “Spatial frequency doubling lithography (SFDL) of periodic structures for integrated optical circuit technology,” J. Lightwave Technol. 7(9), 1386–1393 (1989).
[CrossRef]

Abe, T.

M. Hori, T. Nagai, A. Nakamura, T. Abe, G. Wakamatsu, T. Kakizawa, Y. Anno, M. Sugiura, S. Kusumoto, Y. Yamaguchi, and T. Shimokawa, “Sub-40-nm half-pitch double patterning with resist freezing process,” Proc. SPIE 6923, 69230H (2008).
[CrossRef]

Ambati, M.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005).
[CrossRef]

Anno, Y.

M. Hori, T. Nagai, A. Nakamura, T. Abe, G. Wakamatsu, T. Kakizawa, Y. Anno, M. Sugiura, S. Kusumoto, Y. Yamaguchi, and T. Shimokawa, “Sub-40-nm half-pitch double patterning with resist freezing process,” Proc. SPIE 6923, 69230H (2008).
[CrossRef]

Arnold, W. H.

W. H. Arnold, “Toward 3nm overlay and critical dimension uniformity: an integrated error budget for double patterning lithography,” Proc. SPIE 6924, 692404 (2008).
[CrossRef]

Bencher, C.

C. Bencher, Y. Chen, H. Dai, W. Montgomery, and L. Huli, “22 nm half-pitch patterning by CVD spacer self alignment double patterning (SADP),” Proc. SPIE 6924, 69244E (2008).
[CrossRef]

Bernard, S.

C. Fonseca, M. Somervell, S. Scheer, W. Printz, K. Nafus, S. Hatakeyama, Y. Kuwahara, T. Niwa, S. Bernard, and R. Gronheid, “Advances and challenges in dual-tone development process optimization,” Proc. SPIE 7274, 72740I (2009).
[CrossRef]

Berro, A. J.

X. Gu, A. J. Berro, Y. Cho, K. Jen, S. Lee, T. Ngai, T. Ogata, W. J. Durand, A. Sundaresan, J. R. Lancaster, S. Jockusch, P. Zimmerman, N. J. Turro, and C. G. Willson, “Fundamental study of optical threshold layer approach towards double exposure lithography,” Proc. SPIE 7273, 72731C (2009).
[CrossRef]

Blaikie, R.

Brueck, S. R. J.

A. K. Raub, D. Li, A. Frauenglass, and S. R. J. Brueck, “Fabrication of 22 nm half-pitch silicon lines by single-exposure self-aligned spatial-frequency doubling,” J. Vac. Sci. Technol. B 25(6), 2224–2227 (2007).
[CrossRef]

Burnett, J. H.

M. K. Yang, S. G. Kaplan, R. H. French, and J. H. Burnett, “Index of refraction of high-index lithographic immersion fluids and its variability,” J. Micro/Nanolithogr. MEMS MOEMS 8(2), 023005 (2009).
[CrossRef]

Byers, J.

S. Lee, J. Byers, K. Jen, P. Zimmerman, B. Rice, N. J. Turro, and C. G. Willson, “An analysis of double exposure lithography options,” Proc. SPIE 6924, 69242A (2008).
[CrossRef]

Chandhok, M.

E. S. Putna, T. R. Younkin, M. Chandhok, and K. Frasure, “EUV lithography for 30nm half pitch and beyond: exploring resolution, sensitivity, and LWR tradeoffs,” Proc. SPIE 7273, 72731L (2009).
[CrossRef]

Chen, Y.

C. Bencher, Y. Chen, H. Dai, W. Montgomery, and L. Huli, “22 nm half-pitch patterning by CVD spacer self alignment double patterning (SADP),” Proc. SPIE 6924, 69244E (2008).
[CrossRef]

Cheng, S.

J. Finders, M. Dusa, B. Vleeming, H. Megens, B. Hepp, M. Maenhoudt, S. Cheng, and T. Vandeweyer, “Double patterning for 32nm and below: an update,” Proc. SPIE 6924, 692408 (2008).
[CrossRef]

Cho, Y.

X. Gu, A. J. Berro, Y. Cho, K. Jen, S. Lee, T. Ngai, T. Ogata, W. J. Durand, A. Sundaresan, J. R. Lancaster, S. Jockusch, P. Zimmerman, N. J. Turro, and C. G. Willson, “Fundamental study of optical threshold layer approach towards double exposure lithography,” Proc. SPIE 7273, 72731C (2009).
[CrossRef]

Costner, E. A.

K. Matsumoto, E. A. Costner, I. Nishimura, M. Ueda, and C. G. Willson, “High index resist for 193 nm immersion lithography,” Macromolecules 41(15), 5674–5680 (2008).
[CrossRef]

Dai, H.

C. Bencher, Y. Chen, H. Dai, W. Montgomery, and L. Huli, “22 nm half-pitch patterning by CVD spacer self alignment double patterning (SADP),” Proc. SPIE 6924, 69244E (2008).
[CrossRef]

Durand, W. J.

X. Gu, A. J. Berro, Y. Cho, K. Jen, S. Lee, T. Ngai, T. Ogata, W. J. Durand, A. Sundaresan, J. R. Lancaster, S. Jockusch, P. Zimmerman, N. J. Turro, and C. G. Willson, “Fundamental study of optical threshold layer approach towards double exposure lithography,” Proc. SPIE 7273, 72731C (2009).
[CrossRef]

Durant, S.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005).
[CrossRef]

Dusa, M.

J. Finders, M. Dusa, B. Vleeming, H. Megens, B. Hepp, M. Maenhoudt, S. Cheng, and T. Vandeweyer, “Double patterning for 32nm and below: an update,” Proc. SPIE 6924, 692408 (2008).
[CrossRef]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005).
[CrossRef]

Finders, J.

J. Finders, M. Dusa, B. Vleeming, H. Megens, B. Hepp, M. Maenhoudt, S. Cheng, and T. Vandeweyer, “Double patterning for 32nm and below: an update,” Proc. SPIE 6924, 692408 (2008).
[CrossRef]

Fonseca, C.

C. Fonseca, M. Somervell, S. Scheer, W. Printz, K. Nafus, S. Hatakeyama, Y. Kuwahara, T. Niwa, S. Bernard, and R. Gronheid, “Advances and challenges in dual-tone development process optimization,” Proc. SPIE 7274, 72740I (2009).
[CrossRef]

Frasure, K.

E. S. Putna, T. R. Younkin, M. Chandhok, and K. Frasure, “EUV lithography for 30nm half pitch and beyond: exploring resolution, sensitivity, and LWR tradeoffs,” Proc. SPIE 7273, 72731L (2009).
[CrossRef]

Frauenglass, A.

A. K. Raub, D. Li, A. Frauenglass, and S. R. J. Brueck, “Fabrication of 22 nm half-pitch silicon lines by single-exposure self-aligned spatial-frequency doubling,” J. Vac. Sci. Technol. B 25(6), 2224–2227 (2007).
[CrossRef]

French, R. H.

M. K. Yang, S. G. Kaplan, R. H. French, and J. H. Burnett, “Index of refraction of high-index lithographic immersion fluids and its variability,” J. Micro/Nanolithogr. MEMS MOEMS 8(2), 023005 (2009).
[CrossRef]

Gronheid, R.

C. Fonseca, M. Somervell, S. Scheer, W. Printz, K. Nafus, S. Hatakeyama, Y. Kuwahara, T. Niwa, S. Bernard, and R. Gronheid, “Advances and challenges in dual-tone development process optimization,” Proc. SPIE 7274, 72740I (2009).
[CrossRef]

Gu, X.

X. Gu, A. J. Berro, Y. Cho, K. Jen, S. Lee, T. Ngai, T. Ogata, W. J. Durand, A. Sundaresan, J. R. Lancaster, S. Jockusch, P. Zimmerman, N. J. Turro, and C. G. Willson, “Fundamental study of optical threshold layer approach towards double exposure lithography,” Proc. SPIE 7273, 72731C (2009).
[CrossRef]

Hatakeyama, S.

C. Fonseca, M. Somervell, S. Scheer, W. Printz, K. Nafus, S. Hatakeyama, Y. Kuwahara, T. Niwa, S. Bernard, and R. Gronheid, “Advances and challenges in dual-tone development process optimization,” Proc. SPIE 7274, 72740I (2009).
[CrossRef]

Hepp, B.

J. Finders, M. Dusa, B. Vleeming, H. Megens, B. Hepp, M. Maenhoudt, S. Cheng, and T. Vandeweyer, “Double patterning for 32nm and below: an update,” Proc. SPIE 6924, 692408 (2008).
[CrossRef]

Hori, M.

M. Hori, T. Nagai, A. Nakamura, T. Abe, G. Wakamatsu, T. Kakizawa, Y. Anno, M. Sugiura, S. Kusumoto, Y. Yamaguchi, and T. Shimokawa, “Sub-40-nm half-pitch double patterning with resist freezing process,” Proc. SPIE 6923, 69230H (2008).
[CrossRef]

Huli, L.

C. Bencher, Y. Chen, H. Dai, W. Montgomery, and L. Huli, “22 nm half-pitch patterning by CVD spacer self alignment double patterning (SADP),” Proc. SPIE 6924, 69244E (2008).
[CrossRef]

Jen, K.

X. Gu, A. J. Berro, Y. Cho, K. Jen, S. Lee, T. Ngai, T. Ogata, W. J. Durand, A. Sundaresan, J. R. Lancaster, S. Jockusch, P. Zimmerman, N. J. Turro, and C. G. Willson, “Fundamental study of optical threshold layer approach towards double exposure lithography,” Proc. SPIE 7273, 72731C (2009).
[CrossRef]

S. Lee, J. Byers, K. Jen, P. Zimmerman, B. Rice, N. J. Turro, and C. G. Willson, “An analysis of double exposure lithography options,” Proc. SPIE 6924, 69242A (2008).
[CrossRef]

Jewell, T. E.

T. E. Jewell and D. L. White, “Spatial frequency doubling lithography (SFDL) of periodic structures for integrated optical circuit technology,” J. Lightwave Technol. 7(9), 1386–1393 (1989).
[CrossRef]

Jockusch, S.

X. Gu, A. J. Berro, Y. Cho, K. Jen, S. Lee, T. Ngai, T. Ogata, W. J. Durand, A. Sundaresan, J. R. Lancaster, S. Jockusch, P. Zimmerman, N. J. Turro, and C. G. Willson, “Fundamental study of optical threshold layer approach towards double exposure lithography,” Proc. SPIE 7273, 72731C (2009).
[CrossRef]

Kakizawa, T.

M. Hori, T. Nagai, A. Nakamura, T. Abe, G. Wakamatsu, T. Kakizawa, Y. Anno, M. Sugiura, S. Kusumoto, Y. Yamaguchi, and T. Shimokawa, “Sub-40-nm half-pitch double patterning with resist freezing process,” Proc. SPIE 6923, 69230H (2008).
[CrossRef]

Kaplan, S. G.

M. K. Yang, S. G. Kaplan, R. H. French, and J. H. Burnett, “Index of refraction of high-index lithographic immersion fluids and its variability,” J. Micro/Nanolithogr. MEMS MOEMS 8(2), 023005 (2009).
[CrossRef]

Kochergin, V.

Kusumoto, S.

M. Hori, T. Nagai, A. Nakamura, T. Abe, G. Wakamatsu, T. Kakizawa, Y. Anno, M. Sugiura, S. Kusumoto, Y. Yamaguchi, and T. Shimokawa, “Sub-40-nm half-pitch double patterning with resist freezing process,” Proc. SPIE 6923, 69230H (2008).
[CrossRef]

Kuwahara, Y.

C. Fonseca, M. Somervell, S. Scheer, W. Printz, K. Nafus, S. Hatakeyama, Y. Kuwahara, T. Niwa, S. Bernard, and R. Gronheid, “Advances and challenges in dual-tone development process optimization,” Proc. SPIE 7274, 72740I (2009).
[CrossRef]

Lancaster, J. R.

X. Gu, A. J. Berro, Y. Cho, K. Jen, S. Lee, T. Ngai, T. Ogata, W. J. Durand, A. Sundaresan, J. R. Lancaster, S. Jockusch, P. Zimmerman, N. J. Turro, and C. G. Willson, “Fundamental study of optical threshold layer approach towards double exposure lithography,” Proc. SPIE 7273, 72731C (2009).
[CrossRef]

Lee, H.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Lee, S.

X. Gu, A. J. Berro, Y. Cho, K. Jen, S. Lee, T. Ngai, T. Ogata, W. J. Durand, A. Sundaresan, J. R. Lancaster, S. Jockusch, P. Zimmerman, N. J. Turro, and C. G. Willson, “Fundamental study of optical threshold layer approach towards double exposure lithography,” Proc. SPIE 7273, 72731C (2009).
[CrossRef]

S. Lee, J. Byers, K. Jen, P. Zimmerman, B. Rice, N. J. Turro, and C. G. Willson, “An analysis of double exposure lithography options,” Proc. SPIE 6924, 69242A (2008).
[CrossRef]

Li, D.

A. K. Raub, D. Li, A. Frauenglass, and S. R. J. Brueck, “Fabrication of 22 nm half-pitch silicon lines by single-exposure self-aligned spatial-frequency doubling,” J. Vac. Sci. Technol. B 25(6), 2224–2227 (2007).
[CrossRef]

Lim, C.-M.

C.-M. Lim, “Positive and negative tone double patterning lithography for 50nm flash memory,” Proc. SPIE 6154, 615410 (2006).
[CrossRef]

Maenhoudt, M.

J. Finders, M. Dusa, B. Vleeming, H. Megens, B. Hepp, M. Maenhoudt, S. Cheng, and T. Vandeweyer, “Double patterning for 32nm and below: an update,” Proc. SPIE 6924, 692408 (2008).
[CrossRef]

Matsumoto, K.

K. Matsumoto, E. A. Costner, I. Nishimura, M. Ueda, and C. G. Willson, “High index resist for 193 nm immersion lithography,” Macromolecules 41(15), 5674–5680 (2008).
[CrossRef]

Megens, H.

J. Finders, M. Dusa, B. Vleeming, H. Megens, B. Hepp, M. Maenhoudt, S. Cheng, and T. Vandeweyer, “Double patterning for 32nm and below: an update,” Proc. SPIE 6924, 692408 (2008).
[CrossRef]

Melville, D.

Montgomery, W.

C. Bencher, Y. Chen, H. Dai, W. Montgomery, and L. Huli, “22 nm half-pitch patterning by CVD spacer self alignment double patterning (SADP),” Proc. SPIE 6924, 69244E (2008).
[CrossRef]

Nafus, K.

C. Fonseca, M. Somervell, S. Scheer, W. Printz, K. Nafus, S. Hatakeyama, Y. Kuwahara, T. Niwa, S. Bernard, and R. Gronheid, “Advances and challenges in dual-tone development process optimization,” Proc. SPIE 7274, 72740I (2009).
[CrossRef]

Nagai, T.

M. Hori, T. Nagai, A. Nakamura, T. Abe, G. Wakamatsu, T. Kakizawa, Y. Anno, M. Sugiura, S. Kusumoto, Y. Yamaguchi, and T. Shimokawa, “Sub-40-nm half-pitch double patterning with resist freezing process,” Proc. SPIE 6923, 69230H (2008).
[CrossRef]

Nakamura, A.

M. Hori, T. Nagai, A. Nakamura, T. Abe, G. Wakamatsu, T. Kakizawa, Y. Anno, M. Sugiura, S. Kusumoto, Y. Yamaguchi, and T. Shimokawa, “Sub-40-nm half-pitch double patterning with resist freezing process,” Proc. SPIE 6923, 69230H (2008).
[CrossRef]

Ngai, T.

X. Gu, A. J. Berro, Y. Cho, K. Jen, S. Lee, T. Ngai, T. Ogata, W. J. Durand, A. Sundaresan, J. R. Lancaster, S. Jockusch, P. Zimmerman, N. J. Turro, and C. G. Willson, “Fundamental study of optical threshold layer approach towards double exposure lithography,” Proc. SPIE 7273, 72731C (2009).
[CrossRef]

Nishimura, I.

K. Matsumoto, E. A. Costner, I. Nishimura, M. Ueda, and C. G. Willson, “High index resist for 193 nm immersion lithography,” Macromolecules 41(15), 5674–5680 (2008).
[CrossRef]

Niwa, T.

C. Fonseca, M. Somervell, S. Scheer, W. Printz, K. Nafus, S. Hatakeyama, Y. Kuwahara, T. Niwa, S. Bernard, and R. Gronheid, “Advances and challenges in dual-tone development process optimization,” Proc. SPIE 7274, 72740I (2009).
[CrossRef]

Ogata, T.

X. Gu, A. J. Berro, Y. Cho, K. Jen, S. Lee, T. Ngai, T. Ogata, W. J. Durand, A. Sundaresan, J. R. Lancaster, S. Jockusch, P. Zimmerman, N. J. Turro, and C. G. Willson, “Fundamental study of optical threshold layer approach towards double exposure lithography,” Proc. SPIE 7273, 72731C (2009).
[CrossRef]

Printz, W.

C. Fonseca, M. Somervell, S. Scheer, W. Printz, K. Nafus, S. Hatakeyama, Y. Kuwahara, T. Niwa, S. Bernard, and R. Gronheid, “Advances and challenges in dual-tone development process optimization,” Proc. SPIE 7274, 72740I (2009).
[CrossRef]

Putna, E. S.

E. S. Putna, T. R. Younkin, M. Chandhok, and K. Frasure, “EUV lithography for 30nm half pitch and beyond: exploring resolution, sensitivity, and LWR tradeoffs,” Proc. SPIE 7273, 72731L (2009).
[CrossRef]

Raub, A. K.

A. K. Raub, D. Li, A. Frauenglass, and S. R. J. Brueck, “Fabrication of 22 nm half-pitch silicon lines by single-exposure self-aligned spatial-frequency doubling,” J. Vac. Sci. Technol. B 25(6), 2224–2227 (2007).
[CrossRef]

Rice, B.

S. Lee, J. Byers, K. Jen, P. Zimmerman, B. Rice, N. J. Turro, and C. G. Willson, “An analysis of double exposure lithography options,” Proc. SPIE 6924, 69242A (2008).
[CrossRef]

Scheer, S.

C. Fonseca, M. Somervell, S. Scheer, W. Printz, K. Nafus, S. Hatakeyama, Y. Kuwahara, T. Niwa, S. Bernard, and R. Gronheid, “Advances and challenges in dual-tone development process optimization,” Proc. SPIE 7274, 72740I (2009).
[CrossRef]

Shi, Z.

Shimokawa, T.

M. Hori, T. Nagai, A. Nakamura, T. Abe, G. Wakamatsu, T. Kakizawa, Y. Anno, M. Sugiura, S. Kusumoto, Y. Yamaguchi, and T. Shimokawa, “Sub-40-nm half-pitch double patterning with resist freezing process,” Proc. SPIE 6923, 69230H (2008).
[CrossRef]

Somervell, M.

C. Fonseca, M. Somervell, S. Scheer, W. Printz, K. Nafus, S. Hatakeyama, Y. Kuwahara, T. Niwa, S. Bernard, and R. Gronheid, “Advances and challenges in dual-tone development process optimization,” Proc. SPIE 7274, 72740I (2009).
[CrossRef]

Srituravanich, W.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005).
[CrossRef]

Sugiura, M.

M. Hori, T. Nagai, A. Nakamura, T. Abe, G. Wakamatsu, T. Kakizawa, Y. Anno, M. Sugiura, S. Kusumoto, Y. Yamaguchi, and T. Shimokawa, “Sub-40-nm half-pitch double patterning with resist freezing process,” Proc. SPIE 6923, 69230H (2008).
[CrossRef]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005).
[CrossRef]

Sundaresan, A.

X. Gu, A. J. Berro, Y. Cho, K. Jen, S. Lee, T. Ngai, T. Ogata, W. J. Durand, A. Sundaresan, J. R. Lancaster, S. Jockusch, P. Zimmerman, N. J. Turro, and C. G. Willson, “Fundamental study of optical threshold layer approach towards double exposure lithography,” Proc. SPIE 7273, 72731C (2009).
[CrossRef]

Turro, N. J.

X. Gu, A. J. Berro, Y. Cho, K. Jen, S. Lee, T. Ngai, T. Ogata, W. J. Durand, A. Sundaresan, J. R. Lancaster, S. Jockusch, P. Zimmerman, N. J. Turro, and C. G. Willson, “Fundamental study of optical threshold layer approach towards double exposure lithography,” Proc. SPIE 7273, 72731C (2009).
[CrossRef]

S. Lee, J. Byers, K. Jen, P. Zimmerman, B. Rice, N. J. Turro, and C. G. Willson, “An analysis of double exposure lithography options,” Proc. SPIE 6924, 69242A (2008).
[CrossRef]

Ueda, M.

K. Matsumoto, E. A. Costner, I. Nishimura, M. Ueda, and C. G. Willson, “High index resist for 193 nm immersion lithography,” Macromolecules 41(15), 5674–5680 (2008).
[CrossRef]

Vandeweyer, T.

J. Finders, M. Dusa, B. Vleeming, H. Megens, B. Hepp, M. Maenhoudt, S. Cheng, and T. Vandeweyer, “Double patterning for 32nm and below: an update,” Proc. SPIE 6924, 692408 (2008).
[CrossRef]

Vleeming, B.

J. Finders, M. Dusa, B. Vleeming, H. Megens, B. Hepp, M. Maenhoudt, S. Cheng, and T. Vandeweyer, “Double patterning for 32nm and below: an update,” Proc. SPIE 6924, 692408 (2008).
[CrossRef]

Wakamatsu, G.

M. Hori, T. Nagai, A. Nakamura, T. Abe, G. Wakamatsu, T. Kakizawa, Y. Anno, M. Sugiura, S. Kusumoto, Y. Yamaguchi, and T. Shimokawa, “Sub-40-nm half-pitch double patterning with resist freezing process,” Proc. SPIE 6923, 69230H (2008).
[CrossRef]

Wang, F.

White, D. L.

T. E. Jewell and D. L. White, “Spatial frequency doubling lithography (SFDL) of periodic structures for integrated optical circuit technology,” J. Lightwave Technol. 7(9), 1386–1393 (1989).
[CrossRef]

Willson, C. G.

X. Gu, A. J. Berro, Y. Cho, K. Jen, S. Lee, T. Ngai, T. Ogata, W. J. Durand, A. Sundaresan, J. R. Lancaster, S. Jockusch, P. Zimmerman, N. J. Turro, and C. G. Willson, “Fundamental study of optical threshold layer approach towards double exposure lithography,” Proc. SPIE 7273, 72731C (2009).
[CrossRef]

S. Lee, J. Byers, K. Jen, P. Zimmerman, B. Rice, N. J. Turro, and C. G. Willson, “An analysis of double exposure lithography options,” Proc. SPIE 6924, 69242A (2008).
[CrossRef]

K. Matsumoto, E. A. Costner, I. Nishimura, M. Ueda, and C. G. Willson, “High index resist for 193 nm immersion lithography,” Macromolecules 41(15), 5674–5680 (2008).
[CrossRef]

Xiong, Y.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005).
[CrossRef]

Yamaguchi, Y.

M. Hori, T. Nagai, A. Nakamura, T. Abe, G. Wakamatsu, T. Kakizawa, Y. Anno, M. Sugiura, S. Kusumoto, Y. Yamaguchi, and T. Shimokawa, “Sub-40-nm half-pitch double patterning with resist freezing process,” Proc. SPIE 6923, 69230H (2008).
[CrossRef]

Yang, M. K.

M. K. Yang, S. G. Kaplan, R. H. French, and J. H. Burnett, “Index of refraction of high-index lithographic immersion fluids and its variability,” J. Micro/Nanolithogr. MEMS MOEMS 8(2), 023005 (2009).
[CrossRef]

Younkin, T. R.

E. S. Putna, T. R. Younkin, M. Chandhok, and K. Frasure, “EUV lithography for 30nm half pitch and beyond: exploring resolution, sensitivity, and LWR tradeoffs,” Proc. SPIE 7273, 72731L (2009).
[CrossRef]

Zhang, X.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005).
[CrossRef]

Zimmerman, P.

X. Gu, A. J. Berro, Y. Cho, K. Jen, S. Lee, T. Ngai, T. Ogata, W. J. Durand, A. Sundaresan, J. R. Lancaster, S. Jockusch, P. Zimmerman, N. J. Turro, and C. G. Willson, “Fundamental study of optical threshold layer approach towards double exposure lithography,” Proc. SPIE 7273, 72731C (2009).
[CrossRef]

S. Lee, J. Byers, K. Jen, P. Zimmerman, B. Rice, N. J. Turro, and C. G. Willson, “An analysis of double exposure lithography options,” Proc. SPIE 6924, 69242A (2008).
[CrossRef]

J. Lightwave Technol. (1)

T. E. Jewell and D. L. White, “Spatial frequency doubling lithography (SFDL) of periodic structures for integrated optical circuit technology,” J. Lightwave Technol. 7(9), 1386–1393 (1989).
[CrossRef]

J. Micro/Nanolithogr. MEMS MOEMS (1)

M. K. Yang, S. G. Kaplan, R. H. French, and J. H. Burnett, “Index of refraction of high-index lithographic immersion fluids and its variability,” J. Micro/Nanolithogr. MEMS MOEMS 8(2), 023005 (2009).
[CrossRef]

J. Vac. Sci. Technol. B (1)

A. K. Raub, D. Li, A. Frauenglass, and S. R. J. Brueck, “Fabrication of 22 nm half-pitch silicon lines by single-exposure self-aligned spatial-frequency doubling,” J. Vac. Sci. Technol. B 25(6), 2224–2227 (2007).
[CrossRef]

Macromolecules (1)

K. Matsumoto, E. A. Costner, I. Nishimura, M. Ueda, and C. G. Willson, “High index resist for 193 nm immersion lithography,” Macromolecules 41(15), 5674–5680 (2008).
[CrossRef]

N. J. Phys. (1)

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005).
[CrossRef]

Opt. Express (2)

Proc. SPIE (9)

C. Bencher, Y. Chen, H. Dai, W. Montgomery, and L. Huli, “22 nm half-pitch patterning by CVD spacer self alignment double patterning (SADP),” Proc. SPIE 6924, 69244E (2008).
[CrossRef]

S. Lee, J. Byers, K. Jen, P. Zimmerman, B. Rice, N. J. Turro, and C. G. Willson, “An analysis of double exposure lithography options,” Proc. SPIE 6924, 69242A (2008).
[CrossRef]

X. Gu, A. J. Berro, Y. Cho, K. Jen, S. Lee, T. Ngai, T. Ogata, W. J. Durand, A. Sundaresan, J. R. Lancaster, S. Jockusch, P. Zimmerman, N. J. Turro, and C. G. Willson, “Fundamental study of optical threshold layer approach towards double exposure lithography,” Proc. SPIE 7273, 72731C (2009).
[CrossRef]

C. Fonseca, M. Somervell, S. Scheer, W. Printz, K. Nafus, S. Hatakeyama, Y. Kuwahara, T. Niwa, S. Bernard, and R. Gronheid, “Advances and challenges in dual-tone development process optimization,” Proc. SPIE 7274, 72740I (2009).
[CrossRef]

E. S. Putna, T. R. Younkin, M. Chandhok, and K. Frasure, “EUV lithography for 30nm half pitch and beyond: exploring resolution, sensitivity, and LWR tradeoffs,” Proc. SPIE 7273, 72731L (2009).
[CrossRef]

C.-M. Lim, “Positive and negative tone double patterning lithography for 50nm flash memory,” Proc. SPIE 6154, 615410 (2006).
[CrossRef]

M. Hori, T. Nagai, A. Nakamura, T. Abe, G. Wakamatsu, T. Kakizawa, Y. Anno, M. Sugiura, S. Kusumoto, Y. Yamaguchi, and T. Shimokawa, “Sub-40-nm half-pitch double patterning with resist freezing process,” Proc. SPIE 6923, 69230H (2008).
[CrossRef]

W. H. Arnold, “Toward 3nm overlay and critical dimension uniformity: an integrated error budget for double patterning lithography,” Proc. SPIE 6924, 692404 (2008).
[CrossRef]

J. Finders, M. Dusa, B. Vleeming, H. Megens, B. Hepp, M. Maenhoudt, S. Cheng, and T. Vandeweyer, “Double patterning for 32nm and below: an update,” Proc. SPIE 6924, 692408 (2008).
[CrossRef]

Science (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Other (5)

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University Press, 1999).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1997).

The refractive index of 200 nm thick PR coated on a bare Si wafer was measured at λ = 193 nm using ellipsometry; J. A. Woollam Co., Inc.

A. Yariv, Optical Electronics (Holt McDougal, 1984)

P. Zimmerman, “Double patterning lithography: double the trouble or double the fun?” SPIE Newsroom (2009), http://spie.org/documents/Newsroom/Imported/1691/1691_5999_0_2009-06-24.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Spatial frequency doubling. The mask is planarized with a dielectric spacer and a thin reflective metal layer which is in contact with the cavity. Exposure illumination generates first order diffracted waves by the periodic mask gratings. The diffracted waves traveling in opposite directions interfere with one another and generate field patterns with periods twice that of the mask gratings. (b) The cavity resonance, similar to Fabry-Perot resonance, occurs periodically in z due to constructive interference between reflected waves.

Fig. 2
Fig. 2

2D Simulation results using COMSOL Multiphysics FDFD package for the first three resonant cases of (a) d = 200 nm, (b) d = 388 nm, and (c) d = 577 nm. The mask is comprised of a quartz substrate with a patterned tungsten (W) layer with 130 nm pitch, represented by two periods with periodic boundary conditions. A thin dielectric (PMMA) separates the Al reflective layer from the W mask. The Al/PR/Air layers behave like a Fabry-Perot cavity. (d) Variation of the maximum E-field intensity vs. PR thickness, d, for the cases with (solid blue) and without (dotted blue) the Al layer, and field intensity contrasts for the cases with (solid red) and without (dotted red) the Al layer. Sharp peaks appear periodically in the maximum E-field intensity when the cavity resonance condition is satisfied, while the intensity contrast stays above 0.7 even at off-resonance conditions. Use of the Al mirror layer decreases the width of the E-field peak, consistent with the expected increase in cavity Finesse.

Fig. 3
Fig. 3

(a) Schematic overview of the proof of concept lithography experiment. A W mask with 40 nm wide openings on a 150 nm pitch was fabricated on a quartz wafer. A 20 nm thick PMMA layer was deposited and planarized. A 10 nm thick Al layer was then deposited on top as the mirror. Finally, a 100 nm thick, positive tone, 193 nm photoresist (provided by TOK Inc.) was spin-coated on the Al film. A deuterium lamp provided 193 nm exposure from the substrate side for the lithography. (b) Simulated E-field intensity plot of the structure shown in (a). Two periods were simulated with periodic boundary conditions as discussed in the text. The intensity contrast at the dotted white line is observed to be 0.93 and the color scale in the chart is 0 to 109 in arbitrary units. (c) Atomic Force Microscopy image of the developed PR showing doubled spatial frequency of 37.5 nm in half-pitch. The inset is a Scanning Electron Microscope (SEM) image of the W mask (the scale bar is 300 nm). (d) Fourier inversion of the PR pattern in (c), clearly showing the 37.5 nm half-pitch patterning.

Fig. 4
Fig. 4

(a) Schematic overview of the second lithography experiment. W mask with a grating pattern with 130 nm in pitch was fabricated on quartz wafer. Then 180 nm thick positive tone 193 nm PR (provided by TOK) was directly coated on the mask (note the lack of an Al layer between the mask and the PR). Exposure was the same as outlined in Fig. 3. (b) E-field intensity plot of the simulation study of (a). A Field pattern with half the mask pitch is clearly shown. The intensity contrast through the white dotted line is 0.97. (Color scale: 0 to 2 × 109 in A.U.) (c) Atomic Force Microscopy image of the developed PR showing doubled spatial frequency of 32.5 nm half pitch. The inset is an SEM image of the W mask (scale bar = 500 nm). (d) Fourier Transform analysis of the image clearly showing the 32.5 nm half-pitch information.

Fig. 5
Fig. 5

(a) Schematic of a potential lithography configuration utilizing CRL. PR is coated on a separate substrate in an immersion lithography setting. The mask is illuminated (blue arrows) from the mask substrate side. (b) E-field intensity from a 2-dimensional simulation of the structure within the black dotted box in (a). The PR substrate is Al, and matching PR/immersion fluid index of 1.7 was used. The mask structure contains 120 nm pitch gratings. The field pattern shows doubled spatial frequency inside the PR with 30 nm half-pitch resolution. The color bar is in arbitrary units.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ φ = ( 2 k d cos θ i + ϕ d + ϕ m ) = 2 m π
d = 2 m π ϕ d ϕ m 2 k cos θ i
tan ϕ d 2 = sin 2 θ i ( n a i r / n P R ) 2 ( n a i r / n P R ) 2 cos θ i
tan ϕ m = 2 n P R n m 2 cos θ i 2 k m u 2 ( 1 k m 2 ) v 2 n m 4 ( 1 + k m 2 ) 2 cos 2 θ i n P R 2 ( u 2 2 + v 2 2 )
2 u 2 2 = n m 2 ( 1 k m 2 ) n P R 2 sin 2 θ i + [ n m 2 ( 1 k m 2 ) n P R 2 sin 2 θ i ] 2 + 4 n m 4 k m 4
2 v 2 2 = [ n m 2 ( 1 k m 2 ) n P R 2 sin 2 θ i ] + [ n m 2 ( 1 k m 2 ) n P R 2 sin 2 θ i ] 2 + 4 n m 4 k m 4

Metrics