Abstract

High optical performance coatings prepared by a liquid deposition process have been studied with focus on the parameters playing a role on the layer stacking ability. During the development of multilayer optical coatings, defects such as cracks, scattering and a refractive index gradient could appear. In order to understand the origins of these limitations, the investigation was performed on colloidal stacks of single and multi-materials. This study has rendered it possible to define the main process parameters as well as the physical and chemical parameters of the suspensions influencing the stacking capacity. This work is a first step to obtaining evidence of a relationship between the thin film microstructure induced by deposition conditions and the ability to achieve sol-gel thick films with good optical (homogeneous) and mechanical (crack-free) properties.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Sanchez, P. Belleville, M. Popall, and L. Nicole, “Applications of advanced hybrid organic-inorganic nanomaterials: from laboratory to market,” Chem. Soc. Rev. 40(2), 696–753 (2011).
    [CrossRef] [PubMed]
  2. P. Belleville, P. Prené, C. Bonnin, and M. Montouillout, “Use of sol-gel hybrids for laser optical thin films,” MRS Proceedings 726, 365–380 (2002).
  3. C. J. Brinker and G. W. Scherer, Sol-gel science (Academic Press, San Diego, CA 1990).
  4. W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
    [CrossRef]
  5. S. Somaya, “Hydrothermal processing of ultrafine single-crystal zirconia and hafnia powders with homogeneous dopants,” in Advances in Ceramics G.L. Messing and a. others, eds. (Wersterville, Ohio, 1987).
  6. A. E. Ennos, “Stresses developed in optical film coatings,” Appl. Opt. 5(1), 51–61 (1966).
    [CrossRef] [PubMed]
  7. H. Kozuka, S. Takenaka, H. Tokita, T. Hirano, Y. Higashi, and T. Hamatani, “Stress and Cracks in Gel-Derived Ceramic Coatings and Thick Film Formation,” J. Sol-Gel Sci. Technol. 26(1/3), 681–686 (2003).
    [CrossRef]
  8. H. Kozuka, M. Kajimura, T. Hirano, and K. Katayama, “Crack-Free, Thick Ceramic Coating Films via Non-Repetitive Dip-Coating Using Polyvinylpyrrolidone as Stress-Relaxing Agent,” J. Sol-Gel Sci. Technol. 19(1/3), 205–209 (2000).
    [CrossRef]
  9. R. Brenier, C. Urlacher, J. Mugnier, and M. Brunel, “Stress development in amorphous zirconium oxide films prepared by sol-gel processing,” Thin Solid Films 338(1-2), 136–141 (1999).
    [CrossRef]
  10. S. Palmier, J. Neauport, N. Baclet, E. Lavastre, and G. Dupuy, “High reflection mirrors for pulse compression gratings,” Opt. Express 17(22), 20430–20439 (2009).
    [CrossRef] [PubMed]
  11. A. Mehner, W. Datchary, N. Bleil, H. W. Zoch, M. Klopfstein, and D. Lucca, “The Influence of Processing on Crack Formation, Microstructure, Density and Hardness of Sol-Gel Derived Zirconia Films,” J. Sol-Gel Sci. Technol. 36(1), 25–32 (2005).
    [CrossRef]
  12. M. A. Villegas, M. Aparicio, and A. Durán, “Thick sol-gel coatings based on the B2O3-SiO2 system,” J. Non-Cryst. Solids 218, 146–150 (1997).
    [CrossRef]
  13. H. A. Mc Leod, Thin film optical filters, third edition ed. (Institute of physics publishing, 2001).
  14. J. L. Rood, “Some Properties of Thin Evaporated Films on Glass,” J. Opt. Soc. Am. 39(10), 854–859 (1949).
    [CrossRef]
  15. D. Meyerhofer, “Characteristics of resist films produced by spinning,” J. Appl. Phys. 49(7), 3993–3997 (1978).
    [CrossRef]
  16. L. D. Landau and V. G. Levich, “Dragging of a liquid film by a moving plate,” Acta Physicochim. URSS 17, 41 (1942).
  17. P. M. Pegon, C. V. Germain, Y. R. Rorato, P. F. Belleville, and E. Lavastre, “Large-area sol-gel optical coatings for the Megajoule Laser prototype,” SPIE 5250, 2004, 170–181.
  18. C. M. Flannery, C. Murray, I. Streiter, and S. E. Schulz, “Characterization of thin-film aerogel porosity and stiffness with laser-generated surface acoustic waves,” Thin Solid Films 388(1-2), 1–4 (2001).
    [CrossRef]

2011 (1)

C. Sanchez, P. Belleville, M. Popall, and L. Nicole, “Applications of advanced hybrid organic-inorganic nanomaterials: from laboratory to market,” Chem. Soc. Rev. 40(2), 696–753 (2011).
[CrossRef] [PubMed]

2009 (1)

2005 (1)

A. Mehner, W. Datchary, N. Bleil, H. W. Zoch, M. Klopfstein, and D. Lucca, “The Influence of Processing on Crack Formation, Microstructure, Density and Hardness of Sol-Gel Derived Zirconia Films,” J. Sol-Gel Sci. Technol. 36(1), 25–32 (2005).
[CrossRef]

2004 (1)

P. M. Pegon, C. V. Germain, Y. R. Rorato, P. F. Belleville, and E. Lavastre, “Large-area sol-gel optical coatings for the Megajoule Laser prototype,” SPIE 5250, 2004, 170–181.

2003 (1)

H. Kozuka, S. Takenaka, H. Tokita, T. Hirano, Y. Higashi, and T. Hamatani, “Stress and Cracks in Gel-Derived Ceramic Coatings and Thick Film Formation,” J. Sol-Gel Sci. Technol. 26(1/3), 681–686 (2003).
[CrossRef]

2002 (1)

P. Belleville, P. Prené, C. Bonnin, and M. Montouillout, “Use of sol-gel hybrids for laser optical thin films,” MRS Proceedings 726, 365–380 (2002).

2001 (1)

C. M. Flannery, C. Murray, I. Streiter, and S. E. Schulz, “Characterization of thin-film aerogel porosity and stiffness with laser-generated surface acoustic waves,” Thin Solid Films 388(1-2), 1–4 (2001).
[CrossRef]

2000 (1)

H. Kozuka, M. Kajimura, T. Hirano, and K. Katayama, “Crack-Free, Thick Ceramic Coating Films via Non-Repetitive Dip-Coating Using Polyvinylpyrrolidone as Stress-Relaxing Agent,” J. Sol-Gel Sci. Technol. 19(1/3), 205–209 (2000).
[CrossRef]

1999 (1)

R. Brenier, C. Urlacher, J. Mugnier, and M. Brunel, “Stress development in amorphous zirconium oxide films prepared by sol-gel processing,” Thin Solid Films 338(1-2), 136–141 (1999).
[CrossRef]

1997 (1)

M. A. Villegas, M. Aparicio, and A. Durán, “Thick sol-gel coatings based on the B2O3-SiO2 system,” J. Non-Cryst. Solids 218, 146–150 (1997).
[CrossRef]

1978 (1)

D. Meyerhofer, “Characteristics of resist films produced by spinning,” J. Appl. Phys. 49(7), 3993–3997 (1978).
[CrossRef]

1968 (1)

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[CrossRef]

1966 (1)

1949 (1)

1942 (1)

L. D. Landau and V. G. Levich, “Dragging of a liquid film by a moving plate,” Acta Physicochim. URSS 17, 41 (1942).

Aparicio, M.

M. A. Villegas, M. Aparicio, and A. Durán, “Thick sol-gel coatings based on the B2O3-SiO2 system,” J. Non-Cryst. Solids 218, 146–150 (1997).
[CrossRef]

Baclet, N.

Belleville, P.

C. Sanchez, P. Belleville, M. Popall, and L. Nicole, “Applications of advanced hybrid organic-inorganic nanomaterials: from laboratory to market,” Chem. Soc. Rev. 40(2), 696–753 (2011).
[CrossRef] [PubMed]

P. Belleville, P. Prené, C. Bonnin, and M. Montouillout, “Use of sol-gel hybrids for laser optical thin films,” MRS Proceedings 726, 365–380 (2002).

Belleville, P. F.

P. M. Pegon, C. V. Germain, Y. R. Rorato, P. F. Belleville, and E. Lavastre, “Large-area sol-gel optical coatings for the Megajoule Laser prototype,” SPIE 5250, 2004, 170–181.

Bleil, N.

A. Mehner, W. Datchary, N. Bleil, H. W. Zoch, M. Klopfstein, and D. Lucca, “The Influence of Processing on Crack Formation, Microstructure, Density and Hardness of Sol-Gel Derived Zirconia Films,” J. Sol-Gel Sci. Technol. 36(1), 25–32 (2005).
[CrossRef]

Bohn, E.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[CrossRef]

Bonnin, C.

P. Belleville, P. Prené, C. Bonnin, and M. Montouillout, “Use of sol-gel hybrids for laser optical thin films,” MRS Proceedings 726, 365–380 (2002).

Brenier, R.

R. Brenier, C. Urlacher, J. Mugnier, and M. Brunel, “Stress development in amorphous zirconium oxide films prepared by sol-gel processing,” Thin Solid Films 338(1-2), 136–141 (1999).
[CrossRef]

Brunel, M.

R. Brenier, C. Urlacher, J. Mugnier, and M. Brunel, “Stress development in amorphous zirconium oxide films prepared by sol-gel processing,” Thin Solid Films 338(1-2), 136–141 (1999).
[CrossRef]

Datchary, W.

A. Mehner, W. Datchary, N. Bleil, H. W. Zoch, M. Klopfstein, and D. Lucca, “The Influence of Processing on Crack Formation, Microstructure, Density and Hardness of Sol-Gel Derived Zirconia Films,” J. Sol-Gel Sci. Technol. 36(1), 25–32 (2005).
[CrossRef]

Dupuy, G.

Durán, A.

M. A. Villegas, M. Aparicio, and A. Durán, “Thick sol-gel coatings based on the B2O3-SiO2 system,” J. Non-Cryst. Solids 218, 146–150 (1997).
[CrossRef]

Ennos, A. E.

Fink, A.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[CrossRef]

Flannery, C. M.

C. M. Flannery, C. Murray, I. Streiter, and S. E. Schulz, “Characterization of thin-film aerogel porosity and stiffness with laser-generated surface acoustic waves,” Thin Solid Films 388(1-2), 1–4 (2001).
[CrossRef]

Germain, C. V.

P. M. Pegon, C. V. Germain, Y. R. Rorato, P. F. Belleville, and E. Lavastre, “Large-area sol-gel optical coatings for the Megajoule Laser prototype,” SPIE 5250, 2004, 170–181.

Hamatani, T.

H. Kozuka, S. Takenaka, H. Tokita, T. Hirano, Y. Higashi, and T. Hamatani, “Stress and Cracks in Gel-Derived Ceramic Coatings and Thick Film Formation,” J. Sol-Gel Sci. Technol. 26(1/3), 681–686 (2003).
[CrossRef]

Higashi, Y.

H. Kozuka, S. Takenaka, H. Tokita, T. Hirano, Y. Higashi, and T. Hamatani, “Stress and Cracks in Gel-Derived Ceramic Coatings and Thick Film Formation,” J. Sol-Gel Sci. Technol. 26(1/3), 681–686 (2003).
[CrossRef]

Hirano, T.

H. Kozuka, S. Takenaka, H. Tokita, T. Hirano, Y. Higashi, and T. Hamatani, “Stress and Cracks in Gel-Derived Ceramic Coatings and Thick Film Formation,” J. Sol-Gel Sci. Technol. 26(1/3), 681–686 (2003).
[CrossRef]

H. Kozuka, M. Kajimura, T. Hirano, and K. Katayama, “Crack-Free, Thick Ceramic Coating Films via Non-Repetitive Dip-Coating Using Polyvinylpyrrolidone as Stress-Relaxing Agent,” J. Sol-Gel Sci. Technol. 19(1/3), 205–209 (2000).
[CrossRef]

Kajimura, M.

H. Kozuka, M. Kajimura, T. Hirano, and K. Katayama, “Crack-Free, Thick Ceramic Coating Films via Non-Repetitive Dip-Coating Using Polyvinylpyrrolidone as Stress-Relaxing Agent,” J. Sol-Gel Sci. Technol. 19(1/3), 205–209 (2000).
[CrossRef]

Katayama, K.

H. Kozuka, M. Kajimura, T. Hirano, and K. Katayama, “Crack-Free, Thick Ceramic Coating Films via Non-Repetitive Dip-Coating Using Polyvinylpyrrolidone as Stress-Relaxing Agent,” J. Sol-Gel Sci. Technol. 19(1/3), 205–209 (2000).
[CrossRef]

Klopfstein, M.

A. Mehner, W. Datchary, N. Bleil, H. W. Zoch, M. Klopfstein, and D. Lucca, “The Influence of Processing on Crack Formation, Microstructure, Density and Hardness of Sol-Gel Derived Zirconia Films,” J. Sol-Gel Sci. Technol. 36(1), 25–32 (2005).
[CrossRef]

Kozuka, H.

H. Kozuka, S. Takenaka, H. Tokita, T. Hirano, Y. Higashi, and T. Hamatani, “Stress and Cracks in Gel-Derived Ceramic Coatings and Thick Film Formation,” J. Sol-Gel Sci. Technol. 26(1/3), 681–686 (2003).
[CrossRef]

H. Kozuka, M. Kajimura, T. Hirano, and K. Katayama, “Crack-Free, Thick Ceramic Coating Films via Non-Repetitive Dip-Coating Using Polyvinylpyrrolidone as Stress-Relaxing Agent,” J. Sol-Gel Sci. Technol. 19(1/3), 205–209 (2000).
[CrossRef]

Landau, L. D.

L. D. Landau and V. G. Levich, “Dragging of a liquid film by a moving plate,” Acta Physicochim. URSS 17, 41 (1942).

Lavastre, E.

S. Palmier, J. Neauport, N. Baclet, E. Lavastre, and G. Dupuy, “High reflection mirrors for pulse compression gratings,” Opt. Express 17(22), 20430–20439 (2009).
[CrossRef] [PubMed]

P. M. Pegon, C. V. Germain, Y. R. Rorato, P. F. Belleville, and E. Lavastre, “Large-area sol-gel optical coatings for the Megajoule Laser prototype,” SPIE 5250, 2004, 170–181.

Levich, V. G.

L. D. Landau and V. G. Levich, “Dragging of a liquid film by a moving plate,” Acta Physicochim. URSS 17, 41 (1942).

Lucca, D.

A. Mehner, W. Datchary, N. Bleil, H. W. Zoch, M. Klopfstein, and D. Lucca, “The Influence of Processing on Crack Formation, Microstructure, Density and Hardness of Sol-Gel Derived Zirconia Films,” J. Sol-Gel Sci. Technol. 36(1), 25–32 (2005).
[CrossRef]

Mehner, A.

A. Mehner, W. Datchary, N. Bleil, H. W. Zoch, M. Klopfstein, and D. Lucca, “The Influence of Processing on Crack Formation, Microstructure, Density and Hardness of Sol-Gel Derived Zirconia Films,” J. Sol-Gel Sci. Technol. 36(1), 25–32 (2005).
[CrossRef]

Meyerhofer, D.

D. Meyerhofer, “Characteristics of resist films produced by spinning,” J. Appl. Phys. 49(7), 3993–3997 (1978).
[CrossRef]

Montouillout, M.

P. Belleville, P. Prené, C. Bonnin, and M. Montouillout, “Use of sol-gel hybrids for laser optical thin films,” MRS Proceedings 726, 365–380 (2002).

Mugnier, J.

R. Brenier, C. Urlacher, J. Mugnier, and M. Brunel, “Stress development in amorphous zirconium oxide films prepared by sol-gel processing,” Thin Solid Films 338(1-2), 136–141 (1999).
[CrossRef]

Murray, C.

C. M. Flannery, C. Murray, I. Streiter, and S. E. Schulz, “Characterization of thin-film aerogel porosity and stiffness with laser-generated surface acoustic waves,” Thin Solid Films 388(1-2), 1–4 (2001).
[CrossRef]

Neauport, J.

Nicole, L.

C. Sanchez, P. Belleville, M. Popall, and L. Nicole, “Applications of advanced hybrid organic-inorganic nanomaterials: from laboratory to market,” Chem. Soc. Rev. 40(2), 696–753 (2011).
[CrossRef] [PubMed]

Palmier, S.

Pegon, P. M.

P. M. Pegon, C. V. Germain, Y. R. Rorato, P. F. Belleville, and E. Lavastre, “Large-area sol-gel optical coatings for the Megajoule Laser prototype,” SPIE 5250, 2004, 170–181.

Popall, M.

C. Sanchez, P. Belleville, M. Popall, and L. Nicole, “Applications of advanced hybrid organic-inorganic nanomaterials: from laboratory to market,” Chem. Soc. Rev. 40(2), 696–753 (2011).
[CrossRef] [PubMed]

Prené, P.

P. Belleville, P. Prené, C. Bonnin, and M. Montouillout, “Use of sol-gel hybrids for laser optical thin films,” MRS Proceedings 726, 365–380 (2002).

Rood, J. L.

Rorato, Y. R.

P. M. Pegon, C. V. Germain, Y. R. Rorato, P. F. Belleville, and E. Lavastre, “Large-area sol-gel optical coatings for the Megajoule Laser prototype,” SPIE 5250, 2004, 170–181.

Sanchez, C.

C. Sanchez, P. Belleville, M. Popall, and L. Nicole, “Applications of advanced hybrid organic-inorganic nanomaterials: from laboratory to market,” Chem. Soc. Rev. 40(2), 696–753 (2011).
[CrossRef] [PubMed]

Schulz, S. E.

C. M. Flannery, C. Murray, I. Streiter, and S. E. Schulz, “Characterization of thin-film aerogel porosity and stiffness with laser-generated surface acoustic waves,” Thin Solid Films 388(1-2), 1–4 (2001).
[CrossRef]

Stöber, W.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[CrossRef]

Streiter, I.

C. M. Flannery, C. Murray, I. Streiter, and S. E. Schulz, “Characterization of thin-film aerogel porosity and stiffness with laser-generated surface acoustic waves,” Thin Solid Films 388(1-2), 1–4 (2001).
[CrossRef]

Takenaka, S.

H. Kozuka, S. Takenaka, H. Tokita, T. Hirano, Y. Higashi, and T. Hamatani, “Stress and Cracks in Gel-Derived Ceramic Coatings and Thick Film Formation,” J. Sol-Gel Sci. Technol. 26(1/3), 681–686 (2003).
[CrossRef]

Tokita, H.

H. Kozuka, S. Takenaka, H. Tokita, T. Hirano, Y. Higashi, and T. Hamatani, “Stress and Cracks in Gel-Derived Ceramic Coatings and Thick Film Formation,” J. Sol-Gel Sci. Technol. 26(1/3), 681–686 (2003).
[CrossRef]

Urlacher, C.

R. Brenier, C. Urlacher, J. Mugnier, and M. Brunel, “Stress development in amorphous zirconium oxide films prepared by sol-gel processing,” Thin Solid Films 338(1-2), 136–141 (1999).
[CrossRef]

Villegas, M. A.

M. A. Villegas, M. Aparicio, and A. Durán, “Thick sol-gel coatings based on the B2O3-SiO2 system,” J. Non-Cryst. Solids 218, 146–150 (1997).
[CrossRef]

Zoch, H. W.

A. Mehner, W. Datchary, N. Bleil, H. W. Zoch, M. Klopfstein, and D. Lucca, “The Influence of Processing on Crack Formation, Microstructure, Density and Hardness of Sol-Gel Derived Zirconia Films,” J. Sol-Gel Sci. Technol. 36(1), 25–32 (2005).
[CrossRef]

Acta Physicochim. URSS (1)

L. D. Landau and V. G. Levich, “Dragging of a liquid film by a moving plate,” Acta Physicochim. URSS 17, 41 (1942).

Appl. Opt. (1)

Chem. Soc. Rev. (1)

C. Sanchez, P. Belleville, M. Popall, and L. Nicole, “Applications of advanced hybrid organic-inorganic nanomaterials: from laboratory to market,” Chem. Soc. Rev. 40(2), 696–753 (2011).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

D. Meyerhofer, “Characteristics of resist films produced by spinning,” J. Appl. Phys. 49(7), 3993–3997 (1978).
[CrossRef]

J. Colloid Interface Sci. (1)

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[CrossRef]

J. Non-Cryst. Solids (1)

M. A. Villegas, M. Aparicio, and A. Durán, “Thick sol-gel coatings based on the B2O3-SiO2 system,” J. Non-Cryst. Solids 218, 146–150 (1997).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Sol-Gel Sci. Technol. (3)

A. Mehner, W. Datchary, N. Bleil, H. W. Zoch, M. Klopfstein, and D. Lucca, “The Influence of Processing on Crack Formation, Microstructure, Density and Hardness of Sol-Gel Derived Zirconia Films,” J. Sol-Gel Sci. Technol. 36(1), 25–32 (2005).
[CrossRef]

H. Kozuka, S. Takenaka, H. Tokita, T. Hirano, Y. Higashi, and T. Hamatani, “Stress and Cracks in Gel-Derived Ceramic Coatings and Thick Film Formation,” J. Sol-Gel Sci. Technol. 26(1/3), 681–686 (2003).
[CrossRef]

H. Kozuka, M. Kajimura, T. Hirano, and K. Katayama, “Crack-Free, Thick Ceramic Coating Films via Non-Repetitive Dip-Coating Using Polyvinylpyrrolidone as Stress-Relaxing Agent,” J. Sol-Gel Sci. Technol. 19(1/3), 205–209 (2000).
[CrossRef]

MRS Proceedings (1)

P. Belleville, P. Prené, C. Bonnin, and M. Montouillout, “Use of sol-gel hybrids for laser optical thin films,” MRS Proceedings 726, 365–380 (2002).

Opt. Express (1)

SPIE (1)

P. M. Pegon, C. V. Germain, Y. R. Rorato, P. F. Belleville, and E. Lavastre, “Large-area sol-gel optical coatings for the Megajoule Laser prototype,” SPIE 5250, 2004, 170–181.

Thin Solid Films (2)

C. M. Flannery, C. Murray, I. Streiter, and S. E. Schulz, “Characterization of thin-film aerogel porosity and stiffness with laser-generated surface acoustic waves,” Thin Solid Films 388(1-2), 1–4 (2001).
[CrossRef]

R. Brenier, C. Urlacher, J. Mugnier, and M. Brunel, “Stress development in amorphous zirconium oxide films prepared by sol-gel processing,” Thin Solid Films 338(1-2), 136–141 (1999).
[CrossRef]

Other (3)

H. A. Mc Leod, Thin film optical filters, third edition ed. (Institute of physics publishing, 2001).

C. J. Brinker and G. W. Scherer, Sol-gel science (Academic Press, San Diego, CA 1990).

S. Somaya, “Hydrothermal processing of ultrafine single-crystal zirconia and hafnia powders with homogeneous dopants,” in Advances in Ceramics G.L. Messing and a. others, eds. (Wersterville, Ohio, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Example of crack occurrence as verified by optical microscopy for spin-coated silica multilayer stacks. (a) Before crack occurrence and (b) after cracks occurrence.

Fig. 2
Fig. 2

The effect of the viscosity and the critical thickness as a function of the silica solid content.

Fig. 3
Fig. 3

Variation of the critical thickness with the deposited thickness. The blue curve represents the variation of thickness of the deposited layer (concentration) at a constant velocity rotation. The purple and brown curves represent the variation of the thickness of the deposited layer (velocity rotation) at a concentration of respectively 2% and 5%.

Fig. 4
Fig. 4

Comparison of the critical thicknesses for the two different coating processes on silica single material stacks (spin-coating refers to solid line and dip-coating refers to dotted line).

Fig. 5
Fig. 5

Evolution of the optical function transmission with the number of layers of (SiO2/ZrO2) stacks (from 2 to 20 layers). The silica was made in one pass and zirconia was made with the solvent 2% in water of zirconia suspensions.

Fig. 6
Fig. 6

Transmission measurements of single material stacks prepared with different silica sol concentrations (deposited layer thickness t), with a constant stack thickness (1.1 µm).

Fig. 7
Fig. 7

AFM measurement (10 µm x 10 µm) of the silica single layers at a concentration of (a) 0.6% and (b) 5%.

Tables (3)

Tables Icon

Table 1 Critical thickness versus the water content in an alcoholic solvent for colloidal zirconia suspensions.

Tables Icon

Table 2 Critical thickness of different (SiO2/ZrO2) multimaterial stacks.

Tables Icon

Table 3 Roughness Measurements of Silica Single Layers with Different Silica Sol Concentrations.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

n s ( λ ) = 1 + R s ( λ ) 1 R s ( λ )
R s ( λ ) = 1 T s ( λ ) 1 + T s ( λ ) 1 T s ( λ ) 2
n c 2 ( λ ) = n s 1 + R ( λ ) 1 R ( λ )
n c 2 ( λ ) = n s 1 R ( λ ) 1 + R ( λ )
R ( λ ) = 1 T ( λ ) 1 + T ( λ ) 1 T ( λ ) 2
R ( λ ) = 1 R s ( λ ) T ( λ ) 1 R s ( λ ) T s ( λ ) R s ( λ ) 1 R s ( λ ) T ( λ )
e = ( 2 k + 1 ) λ 4 n c
e d e p o s i t e d = ( 1 m 0 m ) ( 3 η r 2 m 0 ω 2 ) 1 / 3

Metrics