Abstract

Taming decoherence is essential in realizing quantum computation and quantum communication. Here we experimentally demonstrate that decoherence due to amplitude damping can be suppressed by exploiting quantum measurement reversal in which a weak measurement and the reversing measurement are introduced before and after the decoherence channel, respectively. We have also investigated the trade-off relation between the degree of decoherence suppression and the channel transmittance.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Nielsen and I. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).
  2. L. Aolita, R. Chaves, D. Cavalcanti, A. Acín, and L. Davidovich, “Scaling laws for the decay of multiqubit entanglement,” Phys. Rev. Lett. 100, 080501 (2008).
    [CrossRef] [PubMed]
  3. M. P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S. P. Walborn, P. H. S. Ribeiro, and L. Davidovich, “Environment-induced sudden death of entanglement,” Science 316, 579–582 (2007).
    [CrossRef] [PubMed]
  4. P. W. Shor, “Scheme for reducing decoherence in quantum computer memory,” Phys. Rev. A 52, R2493–R2496 (1995).
    [CrossRef] [PubMed]
  5. A. M. Steane, “Error correcting codes in quantum theory,” Phys. Rev. Lett. 77, 793–797 (1996).
    [CrossRef] [PubMed]
  6. D. A. Lidar, I. L. Chuang, and K. B. Whaley, “Decoherence-free subspaces for quantum computation,” Phys. Rev. Lett. 81, 2594–2597 (1998).
    [CrossRef]
  7. P. G. Kwiat, A. J. Berglund, J. B. Altepeter, and A. G. White, “Experimental verification of decoherence-free subspaces,” Science 290, 498–501 (2000).
    [CrossRef] [PubMed]
  8. L. Viola, E. Knill, and S. Lloyd, “Dynamical decoupling of open quantum systems,” Phys. Rev. Lett. 82, 2417–2421 (1999).
    [CrossRef]
  9. J. R. West, D. A. Lidar, B. H. Fong, and M. F. Gyure, “High-fidelity quantum gates via dynamical decoupling,” Phys. Rev. Lett. 105, 230503 (2010).
    [CrossRef]
  10. A.N. Korotkov and K. Keane, “Decoherence suppression by quantum measurement reversal,” Phys. Rev. A 81, 040103(R) (2010).
    [CrossRef]
  11. M. Koashi and M. Ueda, “Reversing measurement and probabilistic quantum error correction,” Phys. Rev. Lett. 82, 2598–2601 (1999).
    [CrossRef]
  12. Y.-S. Kim, Y.-W. Cho, Y.-S. Ra, and Y.-H. Kim, “Reversing the weak quantum measurement for a photonic qubit,” Opt. Express 17, 11978–11985 (2009).
    [CrossRef] [PubMed]
  13. A. N. Korotkov and A. N. Jordan, “Undoing a weak quantum measurement of a solid-state qubit,” Phys. Rev. Lett. 97, 166805 (2006).
    [CrossRef] [PubMed]
  14. N. Katz, M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, E. Lucero, A. O’Connell, H. Wang, A. N. Cleland, J. M. Martinis, and A. N. Korotkov, “Reversal of the weak measurement of a quantum state in a superconducting phase qubit,” Phys. Rev. Lett. 101, 200401 (2008).
    [CrossRef] [PubMed]
  15. C. K. Hong and L. Mandel, “Experimental realization of a localized one-photon state,” Phys. Rev. Lett. 56, 58–60 (1986).
    [CrossRef] [PubMed]
  16. Y.-S. Kim, H.-T. Lim, Y.-S. Ra, and Y.-H. Kim, “Experimental verification of the commutation relation for Pauli spin operators using single-photon quantum interference,” Phys. Lett. A 374, 4393–4396 (2010).
    [CrossRef]

2010 (3)

J. R. West, D. A. Lidar, B. H. Fong, and M. F. Gyure, “High-fidelity quantum gates via dynamical decoupling,” Phys. Rev. Lett. 105, 230503 (2010).
[CrossRef]

A.N. Korotkov and K. Keane, “Decoherence suppression by quantum measurement reversal,” Phys. Rev. A 81, 040103(R) (2010).
[CrossRef]

Y.-S. Kim, H.-T. Lim, Y.-S. Ra, and Y.-H. Kim, “Experimental verification of the commutation relation for Pauli spin operators using single-photon quantum interference,” Phys. Lett. A 374, 4393–4396 (2010).
[CrossRef]

2009 (1)

2008 (2)

N. Katz, M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, E. Lucero, A. O’Connell, H. Wang, A. N. Cleland, J. M. Martinis, and A. N. Korotkov, “Reversal of the weak measurement of a quantum state in a superconducting phase qubit,” Phys. Rev. Lett. 101, 200401 (2008).
[CrossRef] [PubMed]

L. Aolita, R. Chaves, D. Cavalcanti, A. Acín, and L. Davidovich, “Scaling laws for the decay of multiqubit entanglement,” Phys. Rev. Lett. 100, 080501 (2008).
[CrossRef] [PubMed]

2007 (1)

M. P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S. P. Walborn, P. H. S. Ribeiro, and L. Davidovich, “Environment-induced sudden death of entanglement,” Science 316, 579–582 (2007).
[CrossRef] [PubMed]

2006 (1)

A. N. Korotkov and A. N. Jordan, “Undoing a weak quantum measurement of a solid-state qubit,” Phys. Rev. Lett. 97, 166805 (2006).
[CrossRef] [PubMed]

2000 (2)

M. Nielsen and I. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

P. G. Kwiat, A. J. Berglund, J. B. Altepeter, and A. G. White, “Experimental verification of decoherence-free subspaces,” Science 290, 498–501 (2000).
[CrossRef] [PubMed]

1999 (2)

L. Viola, E. Knill, and S. Lloyd, “Dynamical decoupling of open quantum systems,” Phys. Rev. Lett. 82, 2417–2421 (1999).
[CrossRef]

M. Koashi and M. Ueda, “Reversing measurement and probabilistic quantum error correction,” Phys. Rev. Lett. 82, 2598–2601 (1999).
[CrossRef]

1998 (1)

D. A. Lidar, I. L. Chuang, and K. B. Whaley, “Decoherence-free subspaces for quantum computation,” Phys. Rev. Lett. 81, 2594–2597 (1998).
[CrossRef]

1996 (1)

A. M. Steane, “Error correcting codes in quantum theory,” Phys. Rev. Lett. 77, 793–797 (1996).
[CrossRef] [PubMed]

1995 (1)

P. W. Shor, “Scheme for reducing decoherence in quantum computer memory,” Phys. Rev. A 52, R2493–R2496 (1995).
[CrossRef] [PubMed]

1986 (1)

C. K. Hong and L. Mandel, “Experimental realization of a localized one-photon state,” Phys. Rev. Lett. 56, 58–60 (1986).
[CrossRef] [PubMed]

Acín, A.

L. Aolita, R. Chaves, D. Cavalcanti, A. Acín, and L. Davidovich, “Scaling laws for the decay of multiqubit entanglement,” Phys. Rev. Lett. 100, 080501 (2008).
[CrossRef] [PubMed]

Almeida, M. P.

M. P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S. P. Walborn, P. H. S. Ribeiro, and L. Davidovich, “Environment-induced sudden death of entanglement,” Science 316, 579–582 (2007).
[CrossRef] [PubMed]

Altepeter, J. B.

P. G. Kwiat, A. J. Berglund, J. B. Altepeter, and A. G. White, “Experimental verification of decoherence-free subspaces,” Science 290, 498–501 (2000).
[CrossRef] [PubMed]

Ansmann, M.

N. Katz, M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, E. Lucero, A. O’Connell, H. Wang, A. N. Cleland, J. M. Martinis, and A. N. Korotkov, “Reversal of the weak measurement of a quantum state in a superconducting phase qubit,” Phys. Rev. Lett. 101, 200401 (2008).
[CrossRef] [PubMed]

Aolita, L.

L. Aolita, R. Chaves, D. Cavalcanti, A. Acín, and L. Davidovich, “Scaling laws for the decay of multiqubit entanglement,” Phys. Rev. Lett. 100, 080501 (2008).
[CrossRef] [PubMed]

Berglund, A. J.

P. G. Kwiat, A. J. Berglund, J. B. Altepeter, and A. G. White, “Experimental verification of decoherence-free subspaces,” Science 290, 498–501 (2000).
[CrossRef] [PubMed]

Bialczak, R. C.

N. Katz, M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, E. Lucero, A. O’Connell, H. Wang, A. N. Cleland, J. M. Martinis, and A. N. Korotkov, “Reversal of the weak measurement of a quantum state in a superconducting phase qubit,” Phys. Rev. Lett. 101, 200401 (2008).
[CrossRef] [PubMed]

Cavalcanti, D.

L. Aolita, R. Chaves, D. Cavalcanti, A. Acín, and L. Davidovich, “Scaling laws for the decay of multiqubit entanglement,” Phys. Rev. Lett. 100, 080501 (2008).
[CrossRef] [PubMed]

Chaves, R.

L. Aolita, R. Chaves, D. Cavalcanti, A. Acín, and L. Davidovich, “Scaling laws for the decay of multiqubit entanglement,” Phys. Rev. Lett. 100, 080501 (2008).
[CrossRef] [PubMed]

Cho, Y.-W.

Chuang, I.

M. Nielsen and I. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

Chuang, I. L.

D. A. Lidar, I. L. Chuang, and K. B. Whaley, “Decoherence-free subspaces for quantum computation,” Phys. Rev. Lett. 81, 2594–2597 (1998).
[CrossRef]

Cleland, A. N.

N. Katz, M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, E. Lucero, A. O’Connell, H. Wang, A. N. Cleland, J. M. Martinis, and A. N. Korotkov, “Reversal of the weak measurement of a quantum state in a superconducting phase qubit,” Phys. Rev. Lett. 101, 200401 (2008).
[CrossRef] [PubMed]

Davidovich, L.

L. Aolita, R. Chaves, D. Cavalcanti, A. Acín, and L. Davidovich, “Scaling laws for the decay of multiqubit entanglement,” Phys. Rev. Lett. 100, 080501 (2008).
[CrossRef] [PubMed]

M. P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S. P. Walborn, P. H. S. Ribeiro, and L. Davidovich, “Environment-induced sudden death of entanglement,” Science 316, 579–582 (2007).
[CrossRef] [PubMed]

de Melo, F.

M. P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S. P. Walborn, P. H. S. Ribeiro, and L. Davidovich, “Environment-induced sudden death of entanglement,” Science 316, 579–582 (2007).
[CrossRef] [PubMed]

Fong, B. H.

J. R. West, D. A. Lidar, B. H. Fong, and M. F. Gyure, “High-fidelity quantum gates via dynamical decoupling,” Phys. Rev. Lett. 105, 230503 (2010).
[CrossRef]

Gyure, M. F.

J. R. West, D. A. Lidar, B. H. Fong, and M. F. Gyure, “High-fidelity quantum gates via dynamical decoupling,” Phys. Rev. Lett. 105, 230503 (2010).
[CrossRef]

Hofheinz, M.

N. Katz, M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, E. Lucero, A. O’Connell, H. Wang, A. N. Cleland, J. M. Martinis, and A. N. Korotkov, “Reversal of the weak measurement of a quantum state in a superconducting phase qubit,” Phys. Rev. Lett. 101, 200401 (2008).
[CrossRef] [PubMed]

Hong, C. K.

C. K. Hong and L. Mandel, “Experimental realization of a localized one-photon state,” Phys. Rev. Lett. 56, 58–60 (1986).
[CrossRef] [PubMed]

Hor-Meyll, M.

M. P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S. P. Walborn, P. H. S. Ribeiro, and L. Davidovich, “Environment-induced sudden death of entanglement,” Science 316, 579–582 (2007).
[CrossRef] [PubMed]

Jordan, A. N.

A. N. Korotkov and A. N. Jordan, “Undoing a weak quantum measurement of a solid-state qubit,” Phys. Rev. Lett. 97, 166805 (2006).
[CrossRef] [PubMed]

Katz, N.

N. Katz, M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, E. Lucero, A. O’Connell, H. Wang, A. N. Cleland, J. M. Martinis, and A. N. Korotkov, “Reversal of the weak measurement of a quantum state in a superconducting phase qubit,” Phys. Rev. Lett. 101, 200401 (2008).
[CrossRef] [PubMed]

Keane, K.

A.N. Korotkov and K. Keane, “Decoherence suppression by quantum measurement reversal,” Phys. Rev. A 81, 040103(R) (2010).
[CrossRef]

Kim, Y.-H.

Y.-S. Kim, H.-T. Lim, Y.-S. Ra, and Y.-H. Kim, “Experimental verification of the commutation relation for Pauli spin operators using single-photon quantum interference,” Phys. Lett. A 374, 4393–4396 (2010).
[CrossRef]

Y.-S. Kim, Y.-W. Cho, Y.-S. Ra, and Y.-H. Kim, “Reversing the weak quantum measurement for a photonic qubit,” Opt. Express 17, 11978–11985 (2009).
[CrossRef] [PubMed]

Kim, Y.-S.

Y.-S. Kim, H.-T. Lim, Y.-S. Ra, and Y.-H. Kim, “Experimental verification of the commutation relation for Pauli spin operators using single-photon quantum interference,” Phys. Lett. A 374, 4393–4396 (2010).
[CrossRef]

Y.-S. Kim, Y.-W. Cho, Y.-S. Ra, and Y.-H. Kim, “Reversing the weak quantum measurement for a photonic qubit,” Opt. Express 17, 11978–11985 (2009).
[CrossRef] [PubMed]

Knill, E.

L. Viola, E. Knill, and S. Lloyd, “Dynamical decoupling of open quantum systems,” Phys. Rev. Lett. 82, 2417–2421 (1999).
[CrossRef]

Koashi, M.

M. Koashi and M. Ueda, “Reversing measurement and probabilistic quantum error correction,” Phys. Rev. Lett. 82, 2598–2601 (1999).
[CrossRef]

Korotkov, A. N.

N. Katz, M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, E. Lucero, A. O’Connell, H. Wang, A. N. Cleland, J. M. Martinis, and A. N. Korotkov, “Reversal of the weak measurement of a quantum state in a superconducting phase qubit,” Phys. Rev. Lett. 101, 200401 (2008).
[CrossRef] [PubMed]

A. N. Korotkov and A. N. Jordan, “Undoing a weak quantum measurement of a solid-state qubit,” Phys. Rev. Lett. 97, 166805 (2006).
[CrossRef] [PubMed]

Korotkov, A.N.

A.N. Korotkov and K. Keane, “Decoherence suppression by quantum measurement reversal,” Phys. Rev. A 81, 040103(R) (2010).
[CrossRef]

Kwiat, P. G.

P. G. Kwiat, A. J. Berglund, J. B. Altepeter, and A. G. White, “Experimental verification of decoherence-free subspaces,” Science 290, 498–501 (2000).
[CrossRef] [PubMed]

Lidar, D. A.

J. R. West, D. A. Lidar, B. H. Fong, and M. F. Gyure, “High-fidelity quantum gates via dynamical decoupling,” Phys. Rev. Lett. 105, 230503 (2010).
[CrossRef]

D. A. Lidar, I. L. Chuang, and K. B. Whaley, “Decoherence-free subspaces for quantum computation,” Phys. Rev. Lett. 81, 2594–2597 (1998).
[CrossRef]

Lim, H.-T.

Y.-S. Kim, H.-T. Lim, Y.-S. Ra, and Y.-H. Kim, “Experimental verification of the commutation relation for Pauli spin operators using single-photon quantum interference,” Phys. Lett. A 374, 4393–4396 (2010).
[CrossRef]

Lloyd, S.

L. Viola, E. Knill, and S. Lloyd, “Dynamical decoupling of open quantum systems,” Phys. Rev. Lett. 82, 2417–2421 (1999).
[CrossRef]

Lucero, E.

N. Katz, M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, E. Lucero, A. O’Connell, H. Wang, A. N. Cleland, J. M. Martinis, and A. N. Korotkov, “Reversal of the weak measurement of a quantum state in a superconducting phase qubit,” Phys. Rev. Lett. 101, 200401 (2008).
[CrossRef] [PubMed]

Mandel, L.

C. K. Hong and L. Mandel, “Experimental realization of a localized one-photon state,” Phys. Rev. Lett. 56, 58–60 (1986).
[CrossRef] [PubMed]

Martinis, J. M.

N. Katz, M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, E. Lucero, A. O’Connell, H. Wang, A. N. Cleland, J. M. Martinis, and A. N. Korotkov, “Reversal of the weak measurement of a quantum state in a superconducting phase qubit,” Phys. Rev. Lett. 101, 200401 (2008).
[CrossRef] [PubMed]

Neeley, M.

N. Katz, M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, E. Lucero, A. O’Connell, H. Wang, A. N. Cleland, J. M. Martinis, and A. N. Korotkov, “Reversal of the weak measurement of a quantum state in a superconducting phase qubit,” Phys. Rev. Lett. 101, 200401 (2008).
[CrossRef] [PubMed]

Nielsen, M.

M. Nielsen and I. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

O’Connell, A.

N. Katz, M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, E. Lucero, A. O’Connell, H. Wang, A. N. Cleland, J. M. Martinis, and A. N. Korotkov, “Reversal of the weak measurement of a quantum state in a superconducting phase qubit,” Phys. Rev. Lett. 101, 200401 (2008).
[CrossRef] [PubMed]

Ra, Y.-S.

Y.-S. Kim, H.-T. Lim, Y.-S. Ra, and Y.-H. Kim, “Experimental verification of the commutation relation for Pauli spin operators using single-photon quantum interference,” Phys. Lett. A 374, 4393–4396 (2010).
[CrossRef]

Y.-S. Kim, Y.-W. Cho, Y.-S. Ra, and Y.-H. Kim, “Reversing the weak quantum measurement for a photonic qubit,” Opt. Express 17, 11978–11985 (2009).
[CrossRef] [PubMed]

Ribeiro, P. H. S.

M. P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S. P. Walborn, P. H. S. Ribeiro, and L. Davidovich, “Environment-induced sudden death of entanglement,” Science 316, 579–582 (2007).
[CrossRef] [PubMed]

Salles, A.

M. P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S. P. Walborn, P. H. S. Ribeiro, and L. Davidovich, “Environment-induced sudden death of entanglement,” Science 316, 579–582 (2007).
[CrossRef] [PubMed]

Shor, P. W.

P. W. Shor, “Scheme for reducing decoherence in quantum computer memory,” Phys. Rev. A 52, R2493–R2496 (1995).
[CrossRef] [PubMed]

Steane, A. M.

A. M. Steane, “Error correcting codes in quantum theory,” Phys. Rev. Lett. 77, 793–797 (1996).
[CrossRef] [PubMed]

Ueda, M.

M. Koashi and M. Ueda, “Reversing measurement and probabilistic quantum error correction,” Phys. Rev. Lett. 82, 2598–2601 (1999).
[CrossRef]

Viola, L.

L. Viola, E. Knill, and S. Lloyd, “Dynamical decoupling of open quantum systems,” Phys. Rev. Lett. 82, 2417–2421 (1999).
[CrossRef]

Walborn, S. P.

M. P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S. P. Walborn, P. H. S. Ribeiro, and L. Davidovich, “Environment-induced sudden death of entanglement,” Science 316, 579–582 (2007).
[CrossRef] [PubMed]

Wang, H.

N. Katz, M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, E. Lucero, A. O’Connell, H. Wang, A. N. Cleland, J. M. Martinis, and A. N. Korotkov, “Reversal of the weak measurement of a quantum state in a superconducting phase qubit,” Phys. Rev. Lett. 101, 200401 (2008).
[CrossRef] [PubMed]

West, J. R.

J. R. West, D. A. Lidar, B. H. Fong, and M. F. Gyure, “High-fidelity quantum gates via dynamical decoupling,” Phys. Rev. Lett. 105, 230503 (2010).
[CrossRef]

Whaley, K. B.

D. A. Lidar, I. L. Chuang, and K. B. Whaley, “Decoherence-free subspaces for quantum computation,” Phys. Rev. Lett. 81, 2594–2597 (1998).
[CrossRef]

White, A. G.

P. G. Kwiat, A. J. Berglund, J. B. Altepeter, and A. G. White, “Experimental verification of decoherence-free subspaces,” Science 290, 498–501 (2000).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Lett. A (1)

Y.-S. Kim, H.-T. Lim, Y.-S. Ra, and Y.-H. Kim, “Experimental verification of the commutation relation for Pauli spin operators using single-photon quantum interference,” Phys. Lett. A 374, 4393–4396 (2010).
[CrossRef]

Phys. Rev. A (2)

A.N. Korotkov and K. Keane, “Decoherence suppression by quantum measurement reversal,” Phys. Rev. A 81, 040103(R) (2010).
[CrossRef]

P. W. Shor, “Scheme for reducing decoherence in quantum computer memory,” Phys. Rev. A 52, R2493–R2496 (1995).
[CrossRef] [PubMed]

Phys. Rev. Lett. (9)

A. M. Steane, “Error correcting codes in quantum theory,” Phys. Rev. Lett. 77, 793–797 (1996).
[CrossRef] [PubMed]

D. A. Lidar, I. L. Chuang, and K. B. Whaley, “Decoherence-free subspaces for quantum computation,” Phys. Rev. Lett. 81, 2594–2597 (1998).
[CrossRef]

L. Aolita, R. Chaves, D. Cavalcanti, A. Acín, and L. Davidovich, “Scaling laws for the decay of multiqubit entanglement,” Phys. Rev. Lett. 100, 080501 (2008).
[CrossRef] [PubMed]

L. Viola, E. Knill, and S. Lloyd, “Dynamical decoupling of open quantum systems,” Phys. Rev. Lett. 82, 2417–2421 (1999).
[CrossRef]

J. R. West, D. A. Lidar, B. H. Fong, and M. F. Gyure, “High-fidelity quantum gates via dynamical decoupling,” Phys. Rev. Lett. 105, 230503 (2010).
[CrossRef]

M. Koashi and M. Ueda, “Reversing measurement and probabilistic quantum error correction,” Phys. Rev. Lett. 82, 2598–2601 (1999).
[CrossRef]

A. N. Korotkov and A. N. Jordan, “Undoing a weak quantum measurement of a solid-state qubit,” Phys. Rev. Lett. 97, 166805 (2006).
[CrossRef] [PubMed]

N. Katz, M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, E. Lucero, A. O’Connell, H. Wang, A. N. Cleland, J. M. Martinis, and A. N. Korotkov, “Reversal of the weak measurement of a quantum state in a superconducting phase qubit,” Phys. Rev. Lett. 101, 200401 (2008).
[CrossRef] [PubMed]

C. K. Hong and L. Mandel, “Experimental realization of a localized one-photon state,” Phys. Rev. Lett. 56, 58–60 (1986).
[CrossRef] [PubMed]

Science (2)

M. P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S. P. Walborn, P. H. S. Ribeiro, and L. Davidovich, “Environment-induced sudden death of entanglement,” Science 316, 579–582 (2007).
[CrossRef] [PubMed]

P. G. Kwiat, A. J. Berglund, J. B. Altepeter, and A. G. White, “Experimental verification of decoherence-free subspaces,” Science 290, 498–501 (2000).
[CrossRef] [PubMed]

Other (1)

M. Nielsen and I. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The system qubit is the single-photon polarization qubit, prepared using a half-wave plate (HWP) and a quarter-wave plate (QWP), and the environment qubit is the path qubit with the basis states |a〉 and |b〉. The Sagnac-type interferometers (SI) implement the weak measurement and the reversing measurement. The amplitude damping decoherence shown in Eq. (1) is realized using a SI with an additional beam splitter (BS) which implements tracing out of the environment qubit. Quantum state tomography is performed on the output polarization qubit.

Fig. 2
Fig. 2

Experimental results obtained with QST. The initial qubit states, the states after decoherence D, and the states after applying the decoherence suppression scheme are shown. For the decoherence suppression scheme, the weak measurement strength is p = 0.9 and the reversing measurement strength is optimal pr = p + D(1 – p). In all cases, the fidelity between the input and the recovered states is better than 0.96. The purity of the state is γ = T r [ ( ρ S f ) 2 ] . Note that the initial points do not lie exactly on the poles of the Bloch sphere as they represent experimentally prepared quantum states.

Fig. 3
Fig. 3

The χ-matrices obtained with QPT for (a) the decoherence channel with D = 0.8 and (b) the decoherence suppressed channel via quantum measurement reversal. For (b), the weak measurement strength is p = 0.9 and the reversing measurement strength pr is the optimal value.

Fig. 4
Fig. 4

(a) The process fidelity of the decoherence suppression scheme. The optimal reversing measurement strength is pr = p + D(1 – p). (b) The corresponding channel transmittance Tch . The solid and dotted lines are theoretical curves.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

| 1 S | 0 E 1 D | 1 S | 0 E + D | 0 S | 1 E ,
| ψ 1 = ( α | 0 + β 1 p | 1 | α | 2 + | β | 2 ( 1 p ) ) S | 0 E .
| ψ 2 = 1 P 1 [ ( α | 0 + β 1 p 1 D | 1 ) S | 0 E + β D | 0 S | 1 E ] ,
| ψ 3 = 1 T [ ( α 1 p r | 0 + β 1 p 1 D | 1 ) S | 0 E + β D 1 p r | 0 S | 1 E ] .
ρ S f = P R | ψ S ψ | + P D | 0 S 0 | P R + P D ,
| V | a cos 2 θ 2 | V | a + sin 2 θ 2 | H | b ,

Metrics