Abstract

The high sensitivity of photodetector in the UV range based on the composite consisting of a single SnO2 nanowire and NiO nanoparticles has been demonstrated. The underlying mechanism is attributed to the formation of p-NiO and n-SnO2 heterojunction on the nanowire surface. The enhanced space charge region owing to the existence of p-n heterojunction increases the surface electric field, which will improve the separation of photogenerated electrons and holes, and the photoresponse gain will be greatly enhanced. This work shows a new approach that by decorating suitable p-type nanoparticles on n-type nanowires, the photoresponse gain can be enhanced drastically. Our result should be useful for creating novel high efficiency photodetectors.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Liu, D. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, B. Lei, and C. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. (Deerfield Beach Fla.) 15(20), 1754–1757 (2003).
    [CrossRef]
  2. X. H. Kong and Y. D. Li, “High sensitivity of CuO modified SnO2 nanoribbons to H2S at room temperature,” Sens. Actuators B Chem. 105(2), 449–453 (2005).
    [CrossRef]
  3. A. Kolmakov, Y. X. Zhang, G. S. Cheng, and M. Moskovits, “Detection of CO and O2 using tin oxide nanowire sensors,” Adv. Mater. (Deerfield Beach Fla.) 15(12), 997–1000 (2003).
    [CrossRef]
  4. Y. J. Choi, I. S. Hwang, J. G. Park, K. J. Choi, J. H. Park, and J. H. Lee, “Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity,” Nanotechnology 19(9), 095508 (2008).
    [CrossRef] [PubMed]
  5. S. H. Lee, G. Jo, W. Park, S. Lee, Y.-S. Kim, B. K. Cho, T. Lee, and W. B. Kim, “Diameter-engineered SnO2 nanowires over contact-printed gold nanodots using size-controlled carbon nanopost array stamps,” ACS Nano 4(4), 1829–1836 (2010).
    [CrossRef] [PubMed]
  6. C. H. Lin, R. S. Chen, T. T. Chen, H. Y. Chen, Y. F. Chen, K. H. Chen, and L. C. Chen, “High photocurrent gain in SnO2 nanowires,” Appl. Phys. Lett. 93(11), 112115 (2008).
    [CrossRef]
  7. H. J. Snaith and C. Ducati, “SnO2-based dye-sensitized hybrid solar cells exhibiting near unity absorbed photon-to-electron conversion efficiency,” Nano Lett. 10(4), 1259–1265 (2010).
    [CrossRef] [PubMed]
  8. F. Binet, J. Y. Duboz, E. Rosencher, F. Scholz, and V. Härle, “Mechanisms of recombination in GaN photodetectors,” Appl. Phys. Lett. 69(9), 1202 (1996).
    [CrossRef]
  9. E. Muñoz, E. Monroy, J. A. Garrido, I. Izpura, F. J. Sánchez, M. A. Sánchez-García, E. Calleja, B. Beaumont, and P. Gibart, “Photoconductor gain mechanisms in GaN ultraviolet detectors,” Appl. Phys. Lett. 71(7), 870 (1997).
    [CrossRef]
  10. A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, “Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles,” Nano Lett. 5(4), 667–673 (2005).
    [CrossRef] [PubMed]
  11. X. H. Chen and M. Moskovits, “Observing catalysis through the agency of the participating electrons: surface-chemistry-induced current changes in a tin oxide nanowire decorated with silver,” Nano Lett. 7(3), 807–812 (2007).
    [CrossRef] [PubMed]
  12. C. H. Lin, T. T. Chen, and Y. F. Chen, “Photocurrent enhancement of SnO2 nanowires through Au-nanoparticles decoration,” Opt. Express 16(21), 16916–16922 (2008).
    [CrossRef] [PubMed]
  13. N. Mironova-Ulmane, A. Kuzmin, I. Steins, J. Grabis, I. Sildos, and M. Pärs, “Raman scattering in nanosized nickel oxide NiO,” J. Phys.: Conf. Ser. 93, 012039 (2007).
    [CrossRef]
  14. R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen, and Y. J. Yang, “Ultrahigh photocurrent gain in m-axial GaN nanowires,” Appl. Phys. Lett. 91(22), 223106 (2007).
    [CrossRef]
  15. X. T. Zhou, F. Heigl, M. W. Murphy, T. K. Sham, T. Regier, I. Coulthard, and R. I. R. Blyth, “Time-resolved x-ray excited optical luminescence from SnO2 nanoribbons: direct evidence for the origin of the blue luminescence and the role of surface states,” Appl. Phys. Lett. 89(21), 213109 (2006).
    [CrossRef]
  16. J. A. Garrido, E. Monroy, I. Izpura, and E. Muñoz, “Photoconductive gain modelling of GaN photodetectors,” Semicond. Sci. Technol. 13(6), 563–568 (1998).
    [CrossRef]

2010 (2)

S. H. Lee, G. Jo, W. Park, S. Lee, Y.-S. Kim, B. K. Cho, T. Lee, and W. B. Kim, “Diameter-engineered SnO2 nanowires over contact-printed gold nanodots using size-controlled carbon nanopost array stamps,” ACS Nano 4(4), 1829–1836 (2010).
[CrossRef] [PubMed]

H. J. Snaith and C. Ducati, “SnO2-based dye-sensitized hybrid solar cells exhibiting near unity absorbed photon-to-electron conversion efficiency,” Nano Lett. 10(4), 1259–1265 (2010).
[CrossRef] [PubMed]

2008 (3)

C. H. Lin, R. S. Chen, T. T. Chen, H. Y. Chen, Y. F. Chen, K. H. Chen, and L. C. Chen, “High photocurrent gain in SnO2 nanowires,” Appl. Phys. Lett. 93(11), 112115 (2008).
[CrossRef]

Y. J. Choi, I. S. Hwang, J. G. Park, K. J. Choi, J. H. Park, and J. H. Lee, “Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity,” Nanotechnology 19(9), 095508 (2008).
[CrossRef] [PubMed]

C. H. Lin, T. T. Chen, and Y. F. Chen, “Photocurrent enhancement of SnO2 nanowires through Au-nanoparticles decoration,” Opt. Express 16(21), 16916–16922 (2008).
[CrossRef] [PubMed]

2007 (3)

N. Mironova-Ulmane, A. Kuzmin, I. Steins, J. Grabis, I. Sildos, and M. Pärs, “Raman scattering in nanosized nickel oxide NiO,” J. Phys.: Conf. Ser. 93, 012039 (2007).
[CrossRef]

R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen, and Y. J. Yang, “Ultrahigh photocurrent gain in m-axial GaN nanowires,” Appl. Phys. Lett. 91(22), 223106 (2007).
[CrossRef]

X. H. Chen and M. Moskovits, “Observing catalysis through the agency of the participating electrons: surface-chemistry-induced current changes in a tin oxide nanowire decorated with silver,” Nano Lett. 7(3), 807–812 (2007).
[CrossRef] [PubMed]

2006 (1)

X. T. Zhou, F. Heigl, M. W. Murphy, T. K. Sham, T. Regier, I. Coulthard, and R. I. R. Blyth, “Time-resolved x-ray excited optical luminescence from SnO2 nanoribbons: direct evidence for the origin of the blue luminescence and the role of surface states,” Appl. Phys. Lett. 89(21), 213109 (2006).
[CrossRef]

2005 (2)

A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, “Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles,” Nano Lett. 5(4), 667–673 (2005).
[CrossRef] [PubMed]

X. H. Kong and Y. D. Li, “High sensitivity of CuO modified SnO2 nanoribbons to H2S at room temperature,” Sens. Actuators B Chem. 105(2), 449–453 (2005).
[CrossRef]

2003 (2)

A. Kolmakov, Y. X. Zhang, G. S. Cheng, and M. Moskovits, “Detection of CO and O2 using tin oxide nanowire sensors,” Adv. Mater. (Deerfield Beach Fla.) 15(12), 997–1000 (2003).
[CrossRef]

Z. Liu, D. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, B. Lei, and C. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. (Deerfield Beach Fla.) 15(20), 1754–1757 (2003).
[CrossRef]

1998 (1)

J. A. Garrido, E. Monroy, I. Izpura, and E. Muñoz, “Photoconductive gain modelling of GaN photodetectors,” Semicond. Sci. Technol. 13(6), 563–568 (1998).
[CrossRef]

1997 (1)

E. Muñoz, E. Monroy, J. A. Garrido, I. Izpura, F. J. Sánchez, M. A. Sánchez-García, E. Calleja, B. Beaumont, and P. Gibart, “Photoconductor gain mechanisms in GaN ultraviolet detectors,” Appl. Phys. Lett. 71(7), 870 (1997).
[CrossRef]

1996 (1)

F. Binet, J. Y. Duboz, E. Rosencher, F. Scholz, and V. Härle, “Mechanisms of recombination in GaN photodetectors,” Appl. Phys. Lett. 69(9), 1202 (1996).
[CrossRef]

Beaumont, B.

E. Muñoz, E. Monroy, J. A. Garrido, I. Izpura, F. J. Sánchez, M. A. Sánchez-García, E. Calleja, B. Beaumont, and P. Gibart, “Photoconductor gain mechanisms in GaN ultraviolet detectors,” Appl. Phys. Lett. 71(7), 870 (1997).
[CrossRef]

Binet, F.

F. Binet, J. Y. Duboz, E. Rosencher, F. Scholz, and V. Härle, “Mechanisms of recombination in GaN photodetectors,” Appl. Phys. Lett. 69(9), 1202 (1996).
[CrossRef]

Blyth, R. I. R.

X. T. Zhou, F. Heigl, M. W. Murphy, T. K. Sham, T. Regier, I. Coulthard, and R. I. R. Blyth, “Time-resolved x-ray excited optical luminescence from SnO2 nanoribbons: direct evidence for the origin of the blue luminescence and the role of surface states,” Appl. Phys. Lett. 89(21), 213109 (2006).
[CrossRef]

Calleja, E.

E. Muñoz, E. Monroy, J. A. Garrido, I. Izpura, F. J. Sánchez, M. A. Sánchez-García, E. Calleja, B. Beaumont, and P. Gibart, “Photoconductor gain mechanisms in GaN ultraviolet detectors,” Appl. Phys. Lett. 71(7), 870 (1997).
[CrossRef]

Chen, C. P.

R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen, and Y. J. Yang, “Ultrahigh photocurrent gain in m-axial GaN nanowires,” Appl. Phys. Lett. 91(22), 223106 (2007).
[CrossRef]

Chen, H. Y.

C. H. Lin, R. S. Chen, T. T. Chen, H. Y. Chen, Y. F. Chen, K. H. Chen, and L. C. Chen, “High photocurrent gain in SnO2 nanowires,” Appl. Phys. Lett. 93(11), 112115 (2008).
[CrossRef]

R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen, and Y. J. Yang, “Ultrahigh photocurrent gain in m-axial GaN nanowires,” Appl. Phys. Lett. 91(22), 223106 (2007).
[CrossRef]

Chen, K. H.

C. H. Lin, R. S. Chen, T. T. Chen, H. Y. Chen, Y. F. Chen, K. H. Chen, and L. C. Chen, “High photocurrent gain in SnO2 nanowires,” Appl. Phys. Lett. 93(11), 112115 (2008).
[CrossRef]

R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen, and Y. J. Yang, “Ultrahigh photocurrent gain in m-axial GaN nanowires,” Appl. Phys. Lett. 91(22), 223106 (2007).
[CrossRef]

Chen, L. C.

C. H. Lin, R. S. Chen, T. T. Chen, H. Y. Chen, Y. F. Chen, K. H. Chen, and L. C. Chen, “High photocurrent gain in SnO2 nanowires,” Appl. Phys. Lett. 93(11), 112115 (2008).
[CrossRef]

R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen, and Y. J. Yang, “Ultrahigh photocurrent gain in m-axial GaN nanowires,” Appl. Phys. Lett. 91(22), 223106 (2007).
[CrossRef]

Chen, R. S.

C. H. Lin, R. S. Chen, T. T. Chen, H. Y. Chen, Y. F. Chen, K. H. Chen, and L. C. Chen, “High photocurrent gain in SnO2 nanowires,” Appl. Phys. Lett. 93(11), 112115 (2008).
[CrossRef]

R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen, and Y. J. Yang, “Ultrahigh photocurrent gain in m-axial GaN nanowires,” Appl. Phys. Lett. 91(22), 223106 (2007).
[CrossRef]

Chen, T. T.

C. H. Lin, R. S. Chen, T. T. Chen, H. Y. Chen, Y. F. Chen, K. H. Chen, and L. C. Chen, “High photocurrent gain in SnO2 nanowires,” Appl. Phys. Lett. 93(11), 112115 (2008).
[CrossRef]

C. H. Lin, T. T. Chen, and Y. F. Chen, “Photocurrent enhancement of SnO2 nanowires through Au-nanoparticles decoration,” Opt. Express 16(21), 16916–16922 (2008).
[CrossRef] [PubMed]

Chen, X. H.

X. H. Chen and M. Moskovits, “Observing catalysis through the agency of the participating electrons: surface-chemistry-induced current changes in a tin oxide nanowire decorated with silver,” Nano Lett. 7(3), 807–812 (2007).
[CrossRef] [PubMed]

Chen, Y. F.

C. H. Lin, T. T. Chen, and Y. F. Chen, “Photocurrent enhancement of SnO2 nanowires through Au-nanoparticles decoration,” Opt. Express 16(21), 16916–16922 (2008).
[CrossRef] [PubMed]

C. H. Lin, R. S. Chen, T. T. Chen, H. Y. Chen, Y. F. Chen, K. H. Chen, and L. C. Chen, “High photocurrent gain in SnO2 nanowires,” Appl. Phys. Lett. 93(11), 112115 (2008).
[CrossRef]

Cheng, G. S.

A. Kolmakov, Y. X. Zhang, G. S. Cheng, and M. Moskovits, “Detection of CO and O2 using tin oxide nanowire sensors,” Adv. Mater. (Deerfield Beach Fla.) 15(12), 997–1000 (2003).
[CrossRef]

Cho, B. K.

S. H. Lee, G. Jo, W. Park, S. Lee, Y.-S. Kim, B. K. Cho, T. Lee, and W. B. Kim, “Diameter-engineered SnO2 nanowires over contact-printed gold nanodots using size-controlled carbon nanopost array stamps,” ACS Nano 4(4), 1829–1836 (2010).
[CrossRef] [PubMed]

Choi, K. J.

Y. J. Choi, I. S. Hwang, J. G. Park, K. J. Choi, J. H. Park, and J. H. Lee, “Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity,” Nanotechnology 19(9), 095508 (2008).
[CrossRef] [PubMed]

Choi, Y. J.

Y. J. Choi, I. S. Hwang, J. G. Park, K. J. Choi, J. H. Park, and J. H. Lee, “Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity,” Nanotechnology 19(9), 095508 (2008).
[CrossRef] [PubMed]

Coulthard, I.

X. T. Zhou, F. Heigl, M. W. Murphy, T. K. Sham, T. Regier, I. Coulthard, and R. I. R. Blyth, “Time-resolved x-ray excited optical luminescence from SnO2 nanoribbons: direct evidence for the origin of the blue luminescence and the role of surface states,” Appl. Phys. Lett. 89(21), 213109 (2006).
[CrossRef]

Duboz, J. Y.

F. Binet, J. Y. Duboz, E. Rosencher, F. Scholz, and V. Härle, “Mechanisms of recombination in GaN photodetectors,” Appl. Phys. Lett. 69(9), 1202 (1996).
[CrossRef]

Ducati, C.

H. J. Snaith and C. Ducati, “SnO2-based dye-sensitized hybrid solar cells exhibiting near unity absorbed photon-to-electron conversion efficiency,” Nano Lett. 10(4), 1259–1265 (2010).
[CrossRef] [PubMed]

Garrido, J. A.

J. A. Garrido, E. Monroy, I. Izpura, and E. Muñoz, “Photoconductive gain modelling of GaN photodetectors,” Semicond. Sci. Technol. 13(6), 563–568 (1998).
[CrossRef]

E. Muñoz, E. Monroy, J. A. Garrido, I. Izpura, F. J. Sánchez, M. A. Sánchez-García, E. Calleja, B. Beaumont, and P. Gibart, “Photoconductor gain mechanisms in GaN ultraviolet detectors,” Appl. Phys. Lett. 71(7), 870 (1997).
[CrossRef]

Gibart, P.

E. Muñoz, E. Monroy, J. A. Garrido, I. Izpura, F. J. Sánchez, M. A. Sánchez-García, E. Calleja, B. Beaumont, and P. Gibart, “Photoconductor gain mechanisms in GaN ultraviolet detectors,” Appl. Phys. Lett. 71(7), 870 (1997).
[CrossRef]

Grabis, J.

N. Mironova-Ulmane, A. Kuzmin, I. Steins, J. Grabis, I. Sildos, and M. Pärs, “Raman scattering in nanosized nickel oxide NiO,” J. Phys.: Conf. Ser. 93, 012039 (2007).
[CrossRef]

Han, S.

Z. Liu, D. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, B. Lei, and C. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. (Deerfield Beach Fla.) 15(20), 1754–1757 (2003).
[CrossRef]

Härle, V.

F. Binet, J. Y. Duboz, E. Rosencher, F. Scholz, and V. Härle, “Mechanisms of recombination in GaN photodetectors,” Appl. Phys. Lett. 69(9), 1202 (1996).
[CrossRef]

Heigl, F.

X. T. Zhou, F. Heigl, M. W. Murphy, T. K. Sham, T. Regier, I. Coulthard, and R. I. R. Blyth, “Time-resolved x-ray excited optical luminescence from SnO2 nanoribbons: direct evidence for the origin of the blue luminescence and the role of surface states,” Appl. Phys. Lett. 89(21), 213109 (2006).
[CrossRef]

Hwang, I. S.

Y. J. Choi, I. S. Hwang, J. G. Park, K. J. Choi, J. H. Park, and J. H. Lee, “Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity,” Nanotechnology 19(9), 095508 (2008).
[CrossRef] [PubMed]

Izpura, I.

J. A. Garrido, E. Monroy, I. Izpura, and E. Muñoz, “Photoconductive gain modelling of GaN photodetectors,” Semicond. Sci. Technol. 13(6), 563–568 (1998).
[CrossRef]

E. Muñoz, E. Monroy, J. A. Garrido, I. Izpura, F. J. Sánchez, M. A. Sánchez-García, E. Calleja, B. Beaumont, and P. Gibart, “Photoconductor gain mechanisms in GaN ultraviolet detectors,” Appl. Phys. Lett. 71(7), 870 (1997).
[CrossRef]

Jin, W.

Z. Liu, D. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, B. Lei, and C. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. (Deerfield Beach Fla.) 15(20), 1754–1757 (2003).
[CrossRef]

Jo, G.

S. H. Lee, G. Jo, W. Park, S. Lee, Y.-S. Kim, B. K. Cho, T. Lee, and W. B. Kim, “Diameter-engineered SnO2 nanowires over contact-printed gold nanodots using size-controlled carbon nanopost array stamps,” ACS Nano 4(4), 1829–1836 (2010).
[CrossRef] [PubMed]

Kim, W. B.

S. H. Lee, G. Jo, W. Park, S. Lee, Y.-S. Kim, B. K. Cho, T. Lee, and W. B. Kim, “Diameter-engineered SnO2 nanowires over contact-printed gold nanodots using size-controlled carbon nanopost array stamps,” ACS Nano 4(4), 1829–1836 (2010).
[CrossRef] [PubMed]

Kim, Y.-S.

S. H. Lee, G. Jo, W. Park, S. Lee, Y.-S. Kim, B. K. Cho, T. Lee, and W. B. Kim, “Diameter-engineered SnO2 nanowires over contact-printed gold nanodots using size-controlled carbon nanopost array stamps,” ACS Nano 4(4), 1829–1836 (2010).
[CrossRef] [PubMed]

Klenov, D. O.

A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, “Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles,” Nano Lett. 5(4), 667–673 (2005).
[CrossRef] [PubMed]

Kolmakov, A.

A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, “Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles,” Nano Lett. 5(4), 667–673 (2005).
[CrossRef] [PubMed]

A. Kolmakov, Y. X. Zhang, G. S. Cheng, and M. Moskovits, “Detection of CO and O2 using tin oxide nanowire sensors,” Adv. Mater. (Deerfield Beach Fla.) 15(12), 997–1000 (2003).
[CrossRef]

Kong, X. H.

X. H. Kong and Y. D. Li, “High sensitivity of CuO modified SnO2 nanoribbons to H2S at room temperature,” Sens. Actuators B Chem. 105(2), 449–453 (2005).
[CrossRef]

Kuzmin, A.

N. Mironova-Ulmane, A. Kuzmin, I. Steins, J. Grabis, I. Sildos, and M. Pärs, “Raman scattering in nanosized nickel oxide NiO,” J. Phys.: Conf. Ser. 93, 012039 (2007).
[CrossRef]

Lee, J. H.

Y. J. Choi, I. S. Hwang, J. G. Park, K. J. Choi, J. H. Park, and J. H. Lee, “Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity,” Nanotechnology 19(9), 095508 (2008).
[CrossRef] [PubMed]

Lee, S.

S. H. Lee, G. Jo, W. Park, S. Lee, Y.-S. Kim, B. K. Cho, T. Lee, and W. B. Kim, “Diameter-engineered SnO2 nanowires over contact-printed gold nanodots using size-controlled carbon nanopost array stamps,” ACS Nano 4(4), 1829–1836 (2010).
[CrossRef] [PubMed]

Lee, S. H.

S. H. Lee, G. Jo, W. Park, S. Lee, Y.-S. Kim, B. K. Cho, T. Lee, and W. B. Kim, “Diameter-engineered SnO2 nanowires over contact-printed gold nanodots using size-controlled carbon nanopost array stamps,” ACS Nano 4(4), 1829–1836 (2010).
[CrossRef] [PubMed]

Lee, T.

S. H. Lee, G. Jo, W. Park, S. Lee, Y.-S. Kim, B. K. Cho, T. Lee, and W. B. Kim, “Diameter-engineered SnO2 nanowires over contact-printed gold nanodots using size-controlled carbon nanopost array stamps,” ACS Nano 4(4), 1829–1836 (2010).
[CrossRef] [PubMed]

Lei, B.

Z. Liu, D. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, B. Lei, and C. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. (Deerfield Beach Fla.) 15(20), 1754–1757 (2003).
[CrossRef]

Li, C.

Z. Liu, D. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, B. Lei, and C. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. (Deerfield Beach Fla.) 15(20), 1754–1757 (2003).
[CrossRef]

Li, Y. D.

X. H. Kong and Y. D. Li, “High sensitivity of CuO modified SnO2 nanoribbons to H2S at room temperature,” Sens. Actuators B Chem. 105(2), 449–453 (2005).
[CrossRef]

Lilach, Y.

A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, “Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles,” Nano Lett. 5(4), 667–673 (2005).
[CrossRef] [PubMed]

Lin, C. H.

C. H. Lin, T. T. Chen, and Y. F. Chen, “Photocurrent enhancement of SnO2 nanowires through Au-nanoparticles decoration,” Opt. Express 16(21), 16916–16922 (2008).
[CrossRef] [PubMed]

C. H. Lin, R. S. Chen, T. T. Chen, H. Y. Chen, Y. F. Chen, K. H. Chen, and L. C. Chen, “High photocurrent gain in SnO2 nanowires,” Appl. Phys. Lett. 93(11), 112115 (2008).
[CrossRef]

Liu, X.

Z. Liu, D. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, B. Lei, and C. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. (Deerfield Beach Fla.) 15(20), 1754–1757 (2003).
[CrossRef]

Liu, Z.

Z. Liu, D. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, B. Lei, and C. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. (Deerfield Beach Fla.) 15(20), 1754–1757 (2003).
[CrossRef]

Lu, C. Y.

R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen, and Y. J. Yang, “Ultrahigh photocurrent gain in m-axial GaN nanowires,” Appl. Phys. Lett. 91(22), 223106 (2007).
[CrossRef]

Mironova-Ulmane, N.

N. Mironova-Ulmane, A. Kuzmin, I. Steins, J. Grabis, I. Sildos, and M. Pärs, “Raman scattering in nanosized nickel oxide NiO,” J. Phys.: Conf. Ser. 93, 012039 (2007).
[CrossRef]

Monroy, E.

J. A. Garrido, E. Monroy, I. Izpura, and E. Muñoz, “Photoconductive gain modelling of GaN photodetectors,” Semicond. Sci. Technol. 13(6), 563–568 (1998).
[CrossRef]

E. Muñoz, E. Monroy, J. A. Garrido, I. Izpura, F. J. Sánchez, M. A. Sánchez-García, E. Calleja, B. Beaumont, and P. Gibart, “Photoconductor gain mechanisms in GaN ultraviolet detectors,” Appl. Phys. Lett. 71(7), 870 (1997).
[CrossRef]

Moskovits, M.

X. H. Chen and M. Moskovits, “Observing catalysis through the agency of the participating electrons: surface-chemistry-induced current changes in a tin oxide nanowire decorated with silver,” Nano Lett. 7(3), 807–812 (2007).
[CrossRef] [PubMed]

A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, “Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles,” Nano Lett. 5(4), 667–673 (2005).
[CrossRef] [PubMed]

A. Kolmakov, Y. X. Zhang, G. S. Cheng, and M. Moskovits, “Detection of CO and O2 using tin oxide nanowire sensors,” Adv. Mater. (Deerfield Beach Fla.) 15(12), 997–1000 (2003).
[CrossRef]

Muñoz, E.

J. A. Garrido, E. Monroy, I. Izpura, and E. Muñoz, “Photoconductive gain modelling of GaN photodetectors,” Semicond. Sci. Technol. 13(6), 563–568 (1998).
[CrossRef]

E. Muñoz, E. Monroy, J. A. Garrido, I. Izpura, F. J. Sánchez, M. A. Sánchez-García, E. Calleja, B. Beaumont, and P. Gibart, “Photoconductor gain mechanisms in GaN ultraviolet detectors,” Appl. Phys. Lett. 71(7), 870 (1997).
[CrossRef]

Murphy, M. W.

X. T. Zhou, F. Heigl, M. W. Murphy, T. K. Sham, T. Regier, I. Coulthard, and R. I. R. Blyth, “Time-resolved x-ray excited optical luminescence from SnO2 nanoribbons: direct evidence for the origin of the blue luminescence and the role of surface states,” Appl. Phys. Lett. 89(21), 213109 (2006).
[CrossRef]

Park, J. G.

Y. J. Choi, I. S. Hwang, J. G. Park, K. J. Choi, J. H. Park, and J. H. Lee, “Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity,” Nanotechnology 19(9), 095508 (2008).
[CrossRef] [PubMed]

Park, J. H.

Y. J. Choi, I. S. Hwang, J. G. Park, K. J. Choi, J. H. Park, and J. H. Lee, “Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity,” Nanotechnology 19(9), 095508 (2008).
[CrossRef] [PubMed]

Park, W.

S. H. Lee, G. Jo, W. Park, S. Lee, Y.-S. Kim, B. K. Cho, T. Lee, and W. B. Kim, “Diameter-engineered SnO2 nanowires over contact-printed gold nanodots using size-controlled carbon nanopost array stamps,” ACS Nano 4(4), 1829–1836 (2010).
[CrossRef] [PubMed]

Pärs, M.

N. Mironova-Ulmane, A. Kuzmin, I. Steins, J. Grabis, I. Sildos, and M. Pärs, “Raman scattering in nanosized nickel oxide NiO,” J. Phys.: Conf. Ser. 93, 012039 (2007).
[CrossRef]

Regier, T.

X. T. Zhou, F. Heigl, M. W. Murphy, T. K. Sham, T. Regier, I. Coulthard, and R. I. R. Blyth, “Time-resolved x-ray excited optical luminescence from SnO2 nanoribbons: direct evidence for the origin of the blue luminescence and the role of surface states,” Appl. Phys. Lett. 89(21), 213109 (2006).
[CrossRef]

Rosencher, E.

F. Binet, J. Y. Duboz, E. Rosencher, F. Scholz, and V. Härle, “Mechanisms of recombination in GaN photodetectors,” Appl. Phys. Lett. 69(9), 1202 (1996).
[CrossRef]

Sánchez, F. J.

E. Muñoz, E. Monroy, J. A. Garrido, I. Izpura, F. J. Sánchez, M. A. Sánchez-García, E. Calleja, B. Beaumont, and P. Gibart, “Photoconductor gain mechanisms in GaN ultraviolet detectors,” Appl. Phys. Lett. 71(7), 870 (1997).
[CrossRef]

Sánchez-García, M. A.

E. Muñoz, E. Monroy, J. A. Garrido, I. Izpura, F. J. Sánchez, M. A. Sánchez-García, E. Calleja, B. Beaumont, and P. Gibart, “Photoconductor gain mechanisms in GaN ultraviolet detectors,” Appl. Phys. Lett. 71(7), 870 (1997).
[CrossRef]

Scholz, F.

F. Binet, J. Y. Duboz, E. Rosencher, F. Scholz, and V. Härle, “Mechanisms of recombination in GaN photodetectors,” Appl. Phys. Lett. 69(9), 1202 (1996).
[CrossRef]

Sham, T. K.

X. T. Zhou, F. Heigl, M. W. Murphy, T. K. Sham, T. Regier, I. Coulthard, and R. I. R. Blyth, “Time-resolved x-ray excited optical luminescence from SnO2 nanoribbons: direct evidence for the origin of the blue luminescence and the role of surface states,” Appl. Phys. Lett. 89(21), 213109 (2006).
[CrossRef]

Sildos, I.

N. Mironova-Ulmane, A. Kuzmin, I. Steins, J. Grabis, I. Sildos, and M. Pärs, “Raman scattering in nanosized nickel oxide NiO,” J. Phys.: Conf. Ser. 93, 012039 (2007).
[CrossRef]

Snaith, H. J.

H. J. Snaith and C. Ducati, “SnO2-based dye-sensitized hybrid solar cells exhibiting near unity absorbed photon-to-electron conversion efficiency,” Nano Lett. 10(4), 1259–1265 (2010).
[CrossRef] [PubMed]

Steins, I.

N. Mironova-Ulmane, A. Kuzmin, I. Steins, J. Grabis, I. Sildos, and M. Pärs, “Raman scattering in nanosized nickel oxide NiO,” J. Phys.: Conf. Ser. 93, 012039 (2007).
[CrossRef]

Stemmer, S.

A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, “Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles,” Nano Lett. 5(4), 667–673 (2005).
[CrossRef] [PubMed]

Tang, T.

Z. Liu, D. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, B. Lei, and C. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. (Deerfield Beach Fla.) 15(20), 1754–1757 (2003).
[CrossRef]

Yang, Y. J.

R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen, and Y. J. Yang, “Ultrahigh photocurrent gain in m-axial GaN nanowires,” Appl. Phys. Lett. 91(22), 223106 (2007).
[CrossRef]

Zhang, D.

Z. Liu, D. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, B. Lei, and C. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. (Deerfield Beach Fla.) 15(20), 1754–1757 (2003).
[CrossRef]

Zhang, Y. X.

A. Kolmakov, Y. X. Zhang, G. S. Cheng, and M. Moskovits, “Detection of CO and O2 using tin oxide nanowire sensors,” Adv. Mater. (Deerfield Beach Fla.) 15(12), 997–1000 (2003).
[CrossRef]

Zhou, C.

Z. Liu, D. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, B. Lei, and C. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. (Deerfield Beach Fla.) 15(20), 1754–1757 (2003).
[CrossRef]

Zhou, X. T.

X. T. Zhou, F. Heigl, M. W. Murphy, T. K. Sham, T. Regier, I. Coulthard, and R. I. R. Blyth, “Time-resolved x-ray excited optical luminescence from SnO2 nanoribbons: direct evidence for the origin of the blue luminescence and the role of surface states,” Appl. Phys. Lett. 89(21), 213109 (2006).
[CrossRef]

ACS Nano (1)

S. H. Lee, G. Jo, W. Park, S. Lee, Y.-S. Kim, B. K. Cho, T. Lee, and W. B. Kim, “Diameter-engineered SnO2 nanowires over contact-printed gold nanodots using size-controlled carbon nanopost array stamps,” ACS Nano 4(4), 1829–1836 (2010).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (2)

Z. Liu, D. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, B. Lei, and C. Zhou, “Laser ablation synthesis and electron transport studies of tin oxide nanowires,” Adv. Mater. (Deerfield Beach Fla.) 15(20), 1754–1757 (2003).
[CrossRef]

A. Kolmakov, Y. X. Zhang, G. S. Cheng, and M. Moskovits, “Detection of CO and O2 using tin oxide nanowire sensors,” Adv. Mater. (Deerfield Beach Fla.) 15(12), 997–1000 (2003).
[CrossRef]

Appl. Phys. Lett. (5)

F. Binet, J. Y. Duboz, E. Rosencher, F. Scholz, and V. Härle, “Mechanisms of recombination in GaN photodetectors,” Appl. Phys. Lett. 69(9), 1202 (1996).
[CrossRef]

E. Muñoz, E. Monroy, J. A. Garrido, I. Izpura, F. J. Sánchez, M. A. Sánchez-García, E. Calleja, B. Beaumont, and P. Gibart, “Photoconductor gain mechanisms in GaN ultraviolet detectors,” Appl. Phys. Lett. 71(7), 870 (1997).
[CrossRef]

C. H. Lin, R. S. Chen, T. T. Chen, H. Y. Chen, Y. F. Chen, K. H. Chen, and L. C. Chen, “High photocurrent gain in SnO2 nanowires,” Appl. Phys. Lett. 93(11), 112115 (2008).
[CrossRef]

R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen, and Y. J. Yang, “Ultrahigh photocurrent gain in m-axial GaN nanowires,” Appl. Phys. Lett. 91(22), 223106 (2007).
[CrossRef]

X. T. Zhou, F. Heigl, M. W. Murphy, T. K. Sham, T. Regier, I. Coulthard, and R. I. R. Blyth, “Time-resolved x-ray excited optical luminescence from SnO2 nanoribbons: direct evidence for the origin of the blue luminescence and the role of surface states,” Appl. Phys. Lett. 89(21), 213109 (2006).
[CrossRef]

J. Phys.: Conf. Ser. (1)

N. Mironova-Ulmane, A. Kuzmin, I. Steins, J. Grabis, I. Sildos, and M. Pärs, “Raman scattering in nanosized nickel oxide NiO,” J. Phys.: Conf. Ser. 93, 012039 (2007).
[CrossRef]

Nano Lett. (3)

H. J. Snaith and C. Ducati, “SnO2-based dye-sensitized hybrid solar cells exhibiting near unity absorbed photon-to-electron conversion efficiency,” Nano Lett. 10(4), 1259–1265 (2010).
[CrossRef] [PubMed]

A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, “Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles,” Nano Lett. 5(4), 667–673 (2005).
[CrossRef] [PubMed]

X. H. Chen and M. Moskovits, “Observing catalysis through the agency of the participating electrons: surface-chemistry-induced current changes in a tin oxide nanowire decorated with silver,” Nano Lett. 7(3), 807–812 (2007).
[CrossRef] [PubMed]

Nanotechnology (1)

Y. J. Choi, I. S. Hwang, J. G. Park, K. J. Choi, J. H. Park, and J. H. Lee, “Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity,” Nanotechnology 19(9), 095508 (2008).
[CrossRef] [PubMed]

Opt. Express (1)

Semicond. Sci. Technol. (1)

J. A. Garrido, E. Monroy, I. Izpura, and E. Muñoz, “Photoconductive gain modelling of GaN photodetectors,” Semicond. Sci. Technol. 13(6), 563–568 (1998).
[CrossRef]

Sens. Actuators B Chem. (1)

X. H. Kong and Y. D. Li, “High sensitivity of CuO modified SnO2 nanoribbons to H2S at room temperature,” Sens. Actuators B Chem. 105(2), 449–453 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Scanning electron microscope (SEM) image of as-grown SnO2 nanowires. (b) XRD pattern of as-grown SnO2 nanowires. (c) SEM image of a single SnO2 nanowire device. (d) I-V characteristics of the pristine SnO2 nanowire and the NiO nanoparticles decorated nanowire.

Fig. 2
Fig. 2

Raman spectrum of NiO nanoparticles.

Fig. 3
Fig. 3

(a) SEM image of NiO nanoparticles decorated SnO2 nanowire. (b) Photoresponse of the single SnO2 NW with and without NiO nanoparticles decoration under a bias of 0.1 V and under the illumination of a He-Cd laser (325nm) with different excitation intensity of 8.9, 21, 83, 270 W/m2. (c) The optical switch effect of NiO nanoparticles decorated SnO2 nanowire under the illumination of He-Cd laser (325 nm) with excitation intensity of 83 W/m2

Fig. 4
Fig. 4

The gain logarithmic plot versus intensity of the pristine SnO2 NW and NiO nanoparticles decorated NW under the illumination of He-Cd laser (325 nm).

Fig. 5
Fig. 5

(a) Schematic diagram of the band alignment of NiO and SnO2. (b) The enhanced space charge region results from NiO naoparticles decoration.

Fig. 6
Fig. 6

Computer simulation of gain versus intensity and barrier heights were obtained by Eq. (2).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Γ = Δ i q P h ν × 1 η ,
i d a r k d w d a r k × { [ 2 ε Δ Ψ 0 q N d ] 1 / 2 [ 2 ε ( Δ Ψ 0 V p h ) q N d ] 1 / 2 } ,
V p h = V T ln [ 1 + e Δ Ψ 0 / V T ( q η P h ν A T 2 ) ] , w d a r k ( 2 ε Δ Ψ 0 q N d ) 1 / 2 ,

Metrics