Abstract

We present an optical write / read system for high density optical data storage in 3-D. The microholographic approach relies on submicron-sized reflection gratings that encode the digital data. As in conventional optical data storage, the physical limitations are imposed by both the diffraction of light and resolution of the recording material. We demonstrate resolution-limited volume recording in photopolymer materials sensitive in the green and violet spectral range. The volume occupied by a micrograting scales down by the transition in the write / read wavelength. Readout yields a micrograting width of 306 nm at 532 nm and 197 nm at 405 nm. To our knowledge these are the smallest volume holograms ever recorded. The recordings demonstrate the potential of the technique for volumetric optical structuring, data storage and encryption.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Mansuripur, The Physical Principles of Magneto-optical Recording (Cambridge Univ. Press, 1995), Chap. 1.
  2. T. Wilson, Y. Kawata, and S. Kawata, “Readout of three-dimensional optical memories,” Opt. Lett. 21(13), 1003–1005 (1996).
    [CrossRef] [PubMed]
  3. S. Hunter, F. Kiamilev, S. C. Esener, D. A. Parthenopoulos, and P. M. Rentzepis, “Potentials of two-photon based 3-D optical memories for high performance computing,” Appl. Opt. 29(14), 2058–2066 (1990).
    [CrossRef] [PubMed]
  4. J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
    [CrossRef]
  5. M. M. Wang and S. C. Esener, “Three-dimensional optical data storage in a fluorescent dye-doped photopolymer,” Appl. Opt. 39(11), 1826–1834 (2000).
    [CrossRef] [PubMed]
  6. S. Kawata and Y. Kawata, “Three-dimensional optical data storage using photochromic materials,” Chem. Rev. 100(5), 1777–1788 (2000).
    [CrossRef] [PubMed]
  7. J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
    [CrossRef] [PubMed]
  8. S. Homan and A. E. Willner, “High-capacity optical storage using multiple wavelengths, multiple layers and volume holograms,” Electron. Lett. 31(8), 621–623 (1995).
    [CrossRef]
  9. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage (Springer-Verlag, 2000).
  10. H. J. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, “High density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron. 4(5), 840–848 (1998).
    [CrossRef]
  11. S. Orlic, S. Ulm, and H. J. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A, Pure Appl. Opt. 3(1), 72–81 (2001).
    [CrossRef]
  12. R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, and L. Hesselink, “Microholographic multilayer optical disk data storage,” Appl. Opt. 44(16), 3197–3207 (2005).
    [CrossRef] [PubMed]
  13. M. Dubois, X. Shi, C. Erben, B. Lawrence, E. Boden, and K. Longley, “Microholograms recorded in a thermoplastic medium for three-dimensional data storage,” Jpn. J. Appl. Phys. 45(2B), 1239–1245 (2006).
    [CrossRef]
  14. K. Saito and S. Kobayashi, “Analysis of micro-reflector 3D optical disc recording,” Proc. SPIE 6282, 628213 (2007).
    [CrossRef]
  15. D. Day, M. Gu, and A. Smallridge, “Rewritable 3D bit optical data storage in a PMMA-based photorefractive polymer,” Adv. Mater. (Deerfield Beach Fla.) 13(12-13), 1005–1007 (2001).
    [CrossRef]
  16. X. P. Li, J. W. M. Chon, S. H. Wu, R. A. Evans, and M. Gu, “Rewritable polarization-encoded multilayer data storage in 2,5-dimethyl-4-(p-nitrophenylazo)anisole doped polymer,” Opt. Lett. 32(3), 277–279 (2007).
    [CrossRef] [PubMed]
  17. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
    [CrossRef] [PubMed]
  18. W. S. Colburn and K. A. Haines, “Volume hologram formation in photopolymer materials,” Appl. Opt. 10(7), 1636–1641 (1971).
    [CrossRef] [PubMed]
  19. G. Odian, Principles of Polymerisation, 4th ed. (John Wiles & Sons Inc., 2004).
  20. R. T. Ingwall and D. A. Waldman, in Holographic Data Storage, H. J. Coufal, D. Psaltis, G. T. Sincerbox, eds. (Springer-Verlag, 2000), Chap. Photopolymer systems.
  21. S. Orlic, E. Dietz, T. Feid, S. Frohmann, and C. Mueller, “Optical investigation of photopolymer systems for microholographic storage,” J. Opt. A, Pure Appl. Opt. 11(2), 024014 (2009).
    [CrossRef]
  22. L. Dhar, M. G. Schnoes, H. E. Katz, A. Hale, and M. L. Schilling, in Holographic Data Storage, H. J. Coufal, D. Psaltis, G. T. Sincerbox, eds. (Springer-Verlag, 2000), Chap. Photopolymers for digital holographic storage.
  23. B. Kippelen, in Holographic Data Storage, H. J. Coufal, D. Psaltis, G. T. Sincerbox, eds. (Springer-Verlag, 2000), Chap. Overview of photorefractive polymers for holographic data storage.
  24. D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE 2689, 127–141 (1996).
    [CrossRef]
  25. D. A. Waldman, C. J. Butler, and D. H. Raguin, “CROP holographic storage media for optical data storage at greater than 100 bits/?m2,” Proc. SPIE 5216, 10–25 (2003).
    [CrossRef]
  26. D. A. Waldman, E. S. Kolb, C. Wang, “DHD™ CROP holographic storage media for advanced optical data storage,” Optical Data Storage (ODS), OSA Technical Digest Series WDPD 4–7 (2007).
  27. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

2009 (2)

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

S. Orlic, E. Dietz, T. Feid, S. Frohmann, and C. Mueller, “Optical investigation of photopolymer systems for microholographic storage,” J. Opt. A, Pure Appl. Opt. 11(2), 024014 (2009).
[CrossRef]

2007 (2)

2006 (1)

M. Dubois, X. Shi, C. Erben, B. Lawrence, E. Boden, and K. Longley, “Microholograms recorded in a thermoplastic medium for three-dimensional data storage,” Jpn. J. Appl. Phys. 45(2B), 1239–1245 (2006).
[CrossRef]

2005 (1)

2003 (1)

D. A. Waldman, C. J. Butler, and D. H. Raguin, “CROP holographic storage media for optical data storage at greater than 100 bits/?m2,” Proc. SPIE 5216, 10–25 (2003).
[CrossRef]

2001 (2)

D. Day, M. Gu, and A. Smallridge, “Rewritable 3D bit optical data storage in a PMMA-based photorefractive polymer,” Adv. Mater. (Deerfield Beach Fla.) 13(12-13), 1005–1007 (2001).
[CrossRef]

S. Orlic, S. Ulm, and H. J. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A, Pure Appl. Opt. 3(1), 72–81 (2001).
[CrossRef]

2000 (2)

M. M. Wang and S. C. Esener, “Three-dimensional optical data storage in a fluorescent dye-doped photopolymer,” Appl. Opt. 39(11), 1826–1834 (2000).
[CrossRef] [PubMed]

S. Kawata and Y. Kawata, “Three-dimensional optical data storage using photochromic materials,” Chem. Rev. 100(5), 1777–1788 (2000).
[CrossRef] [PubMed]

1999 (1)

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

1998 (1)

H. J. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, “High density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron. 4(5), 840–848 (1998).
[CrossRef]

1996 (2)

T. Wilson, Y. Kawata, and S. Kawata, “Readout of three-dimensional optical memories,” Opt. Lett. 21(13), 1003–1005 (1996).
[CrossRef] [PubMed]

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE 2689, 127–141 (1996).
[CrossRef]

1995 (1)

S. Homan and A. E. Willner, “High-capacity optical storage using multiple wavelengths, multiple layers and volume holograms,” Electron. Lett. 31(8), 621–623 (1995).
[CrossRef]

1994 (1)

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
[CrossRef] [PubMed]

1990 (1)

1971 (1)

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Ananthavel, S. P.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Barlow, S.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Bashaw, M. C.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
[CrossRef] [PubMed]

Boden, E.

M. Dubois, X. Shi, C. Erben, B. Lawrence, E. Boden, and K. Longley, “Microholograms recorded in a thermoplastic medium for three-dimensional data storage,” Jpn. J. Appl. Phys. 45(2B), 1239–1245 (2006).
[CrossRef]

Butler, C. J.

D. A. Waldman, C. J. Butler, and D. H. Raguin, “CROP holographic storage media for optical data storage at greater than 100 bits/?m2,” Proc. SPIE 5216, 10–25 (2003).
[CrossRef]

Chon, J. W. M.

Colburn, W. S.

Cumpston, B. H.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Daiber, A. J.

Day, D.

D. Day, M. Gu, and A. Smallridge, “Rewritable 3D bit optical data storage in a PMMA-based photorefractive polymer,” Adv. Mater. (Deerfield Beach Fla.) 13(12-13), 1005–1007 (2001).
[CrossRef]

Dhal, P. K.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE 2689, 127–141 (1996).
[CrossRef]

Dietz, E.

S. Orlic, E. Dietz, T. Feid, S. Frohmann, and C. Mueller, “Optical investigation of photopolymer systems for microholographic storage,” J. Opt. A, Pure Appl. Opt. 11(2), 024014 (2009).
[CrossRef]

Dubois, M.

M. Dubois, X. Shi, C. Erben, B. Lawrence, E. Boden, and K. Longley, “Microholograms recorded in a thermoplastic medium for three-dimensional data storage,” Jpn. J. Appl. Phys. 45(2B), 1239–1245 (2006).
[CrossRef]

Dyer, D. L.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Ehrlich, J. E.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Eichler, H. J.

S. Orlic, S. Ulm, and H. J. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A, Pure Appl. Opt. 3(1), 72–81 (2001).
[CrossRef]

H. J. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, “High density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron. 4(5), 840–848 (1998).
[CrossRef]

Erben, C.

M. Dubois, X. Shi, C. Erben, B. Lawrence, E. Boden, and K. Longley, “Microholograms recorded in a thermoplastic medium for three-dimensional data storage,” Jpn. J. Appl. Phys. 45(2B), 1239–1245 (2006).
[CrossRef]

Erskine, L. L.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Esener, S. C.

Evans, R. A.

Feid, T.

S. Orlic, E. Dietz, T. Feid, S. Frohmann, and C. Mueller, “Optical investigation of photopolymer systems for microholographic storage,” J. Opt. A, Pure Appl. Opt. 11(2), 024014 (2009).
[CrossRef]

Frohmann, S.

S. Orlic, E. Dietz, T. Feid, S. Frohmann, and C. Mueller, “Optical investigation of photopolymer systems for microholographic storage,” J. Opt. A, Pure Appl. Opt. 11(2), 024014 (2009).
[CrossRef]

Gu, M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

X. P. Li, J. W. M. Chon, S. H. Wu, R. A. Evans, and M. Gu, “Rewritable polarization-encoded multilayer data storage in 2,5-dimethyl-4-(p-nitrophenylazo)anisole doped polymer,” Opt. Lett. 32(3), 277–279 (2007).
[CrossRef] [PubMed]

D. Day, M. Gu, and A. Smallridge, “Rewritable 3D bit optical data storage in a PMMA-based photorefractive polymer,” Adv. Mater. (Deerfield Beach Fla.) 13(12-13), 1005–1007 (2001).
[CrossRef]

Haines, K. A.

Heanue, J. F.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
[CrossRef] [PubMed]

Heikal, A. A.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Hesselink, L.

Homan, S.

S. Homan and A. E. Willner, “High-capacity optical storage using multiple wavelengths, multiple layers and volume holograms,” Electron. Lett. 31(8), 621–623 (1995).
[CrossRef]

Horner, M. G.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE 2689, 127–141 (1996).
[CrossRef]

Hunter, S.

Ingwall, R. T.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE 2689, 127–141 (1996).
[CrossRef]

Kawata, S.

S. Kawata and Y. Kawata, “Three-dimensional optical data storage using photochromic materials,” Chem. Rev. 100(5), 1777–1788 (2000).
[CrossRef] [PubMed]

T. Wilson, Y. Kawata, and S. Kawata, “Readout of three-dimensional optical memories,” Opt. Lett. 21(13), 1003–1005 (1996).
[CrossRef] [PubMed]

Kawata, Y.

S. Kawata and Y. Kawata, “Three-dimensional optical data storage using photochromic materials,” Chem. Rev. 100(5), 1777–1788 (2000).
[CrossRef] [PubMed]

T. Wilson, Y. Kawata, and S. Kawata, “Readout of three-dimensional optical memories,” Opt. Lett. 21(13), 1003–1005 (1996).
[CrossRef] [PubMed]

Kiamilev, F.

Kobayashi, S.

K. Saito and S. Kobayashi, “Analysis of micro-reflector 3D optical disc recording,” Proc. SPIE 6282, 628213 (2007).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Kolb, E. S.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE 2689, 127–141 (1996).
[CrossRef]

Kuebler, S. M.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Kuemmel, P.

H. J. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, “High density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron. 4(5), 840–848 (1998).
[CrossRef]

Lawrence, B.

M. Dubois, X. Shi, C. Erben, B. Lawrence, E. Boden, and K. Longley, “Microholograms recorded in a thermoplastic medium for three-dimensional data storage,” Jpn. J. Appl. Phys. 45(2B), 1239–1245 (2006).
[CrossRef]

Lee, I.-Y. S.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Li, H.-Y. S.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE 2689, 127–141 (1996).
[CrossRef]

Li, X. P.

Longley, K.

M. Dubois, X. Shi, C. Erben, B. Lawrence, E. Boden, and K. Longley, “Microholograms recorded in a thermoplastic medium for three-dimensional data storage,” Jpn. J. Appl. Phys. 45(2B), 1239–1245 (2006).
[CrossRef]

Marder, S. R.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

McCord-Maughon, D.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

McDonald, M. E.

McLeod, R. R.

Minns, R. A.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE 2689, 127–141 (1996).
[CrossRef]

Mueller, C.

S. Orlic, E. Dietz, T. Feid, S. Frohmann, and C. Mueller, “Optical investigation of photopolymer systems for microholographic storage,” J. Opt. A, Pure Appl. Opt. 11(2), 024014 (2009).
[CrossRef]

Orlic, S.

S. Orlic, E. Dietz, T. Feid, S. Frohmann, and C. Mueller, “Optical investigation of photopolymer systems for microholographic storage,” J. Opt. A, Pure Appl. Opt. 11(2), 024014 (2009).
[CrossRef]

S. Orlic, S. Ulm, and H. J. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A, Pure Appl. Opt. 3(1), 72–81 (2001).
[CrossRef]

H. J. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, “High density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron. 4(5), 840–848 (1998).
[CrossRef]

Parthenopoulos, D. A.

Perry, J. W.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Qin, J.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Raguin, D. H.

D. A. Waldman, C. J. Butler, and D. H. Raguin, “CROP holographic storage media for optical data storage at greater than 100 bits/?m2,” Proc. SPIE 5216, 10–25 (2003).
[CrossRef]

Rentzepis, P. M.

Robertson, T. L.

Röckel, H.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Rumi, M.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Saito, K.

K. Saito and S. Kobayashi, “Analysis of micro-reflector 3D optical disc recording,” Proc. SPIE 6282, 628213 (2007).
[CrossRef]

Schild, H. G.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE 2689, 127–141 (1996).
[CrossRef]

Shi, X.

M. Dubois, X. Shi, C. Erben, B. Lawrence, E. Boden, and K. Longley, “Microholograms recorded in a thermoplastic medium for three-dimensional data storage,” Jpn. J. Appl. Phys. 45(2B), 1239–1245 (2006).
[CrossRef]

Slagle, T.

Smallridge, A.

D. Day, M. Gu, and A. Smallridge, “Rewritable 3D bit optical data storage in a PMMA-based photorefractive polymer,” Adv. Mater. (Deerfield Beach Fla.) 13(12-13), 1005–1007 (2001).
[CrossRef]

Sochava, S. L.

Ulm, S.

S. Orlic, S. Ulm, and H. J. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A, Pure Appl. Opt. 3(1), 72–81 (2001).
[CrossRef]

Waldman, D. A.

D. A. Waldman, C. J. Butler, and D. H. Raguin, “CROP holographic storage media for optical data storage at greater than 100 bits/?m2,” Proc. SPIE 5216, 10–25 (2003).
[CrossRef]

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE 2689, 127–141 (1996).
[CrossRef]

Wang, M. M.

Wappelt, A.

H. J. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, “High density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron. 4(5), 840–848 (1998).
[CrossRef]

Willner, A. E.

S. Homan and A. E. Willner, “High-capacity optical storage using multiple wavelengths, multiple layers and volume holograms,” Electron. Lett. 31(8), 621–623 (1995).
[CrossRef]

Wilson, T.

Wu, S. H.

Wu, X.-L.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Zijlstra, P.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (1)

D. Day, M. Gu, and A. Smallridge, “Rewritable 3D bit optical data storage in a PMMA-based photorefractive polymer,” Adv. Mater. (Deerfield Beach Fla.) 13(12-13), 1005–1007 (2001).
[CrossRef]

Appl. Opt. (4)

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Chem. Rev. (1)

S. Kawata and Y. Kawata, “Three-dimensional optical data storage using photochromic materials,” Chem. Rev. 100(5), 1777–1788 (2000).
[CrossRef] [PubMed]

Electron. Lett. (1)

S. Homan and A. E. Willner, “High-capacity optical storage using multiple wavelengths, multiple layers and volume holograms,” Electron. Lett. 31(8), 621–623 (1995).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. J. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, “High density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron. 4(5), 840–848 (1998).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (2)

S. Orlic, S. Ulm, and H. J. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A, Pure Appl. Opt. 3(1), 72–81 (2001).
[CrossRef]

S. Orlic, E. Dietz, T. Feid, S. Frohmann, and C. Mueller, “Optical investigation of photopolymer systems for microholographic storage,” J. Opt. A, Pure Appl. Opt. 11(2), 024014 (2009).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. Dubois, X. Shi, C. Erben, B. Lawrence, E. Boden, and K. Longley, “Microholograms recorded in a thermoplastic medium for three-dimensional data storage,” Jpn. J. Appl. Phys. 45(2B), 1239–1245 (2006).
[CrossRef]

Nature (2)

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Opt. Lett. (2)

Proc. SPIE (3)

K. Saito and S. Kobayashi, “Analysis of micro-reflector 3D optical disc recording,” Proc. SPIE 6282, 628213 (2007).
[CrossRef]

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE 2689, 127–141 (1996).
[CrossRef]

D. A. Waldman, C. J. Butler, and D. H. Raguin, “CROP holographic storage media for optical data storage at greater than 100 bits/?m2,” Proc. SPIE 5216, 10–25 (2003).
[CrossRef]

Science (1)

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
[CrossRef] [PubMed]

Other (7)

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage (Springer-Verlag, 2000).

M. Mansuripur, The Physical Principles of Magneto-optical Recording (Cambridge Univ. Press, 1995), Chap. 1.

G. Odian, Principles of Polymerisation, 4th ed. (John Wiles & Sons Inc., 2004).

R. T. Ingwall and D. A. Waldman, in Holographic Data Storage, H. J. Coufal, D. Psaltis, G. T. Sincerbox, eds. (Springer-Verlag, 2000), Chap. Photopolymer systems.

D. A. Waldman, E. S. Kolb, C. Wang, “DHD™ CROP holographic storage media for advanced optical data storage,” Optical Data Storage (ODS), OSA Technical Digest Series WDPD 4–7 (2007).

L. Dhar, M. G. Schnoes, H. E. Katz, A. Hale, and M. L. Schilling, in Holographic Data Storage, H. J. Coufal, D. Psaltis, G. T. Sincerbox, eds. (Springer-Verlag, 2000), Chap. Photopolymers for digital holographic storage.

B. Kippelen, in Holographic Data Storage, H. J. Coufal, D. Psaltis, G. T. Sincerbox, eds. (Springer-Verlag, 2000), Chap. Overview of photorefractive polymers for holographic data storage.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Microholographic recording in retroreflector configuration. (top) The optical recording configuration is based on a single beam path: The ‘second’ write beam is created by retro-reflection to fully overlap with the incident write beam. Two identical objectives with high numerical aperture are adjusted to image the focal points of the incident and reflected beam at the same storage location. The grating formation takes place in the joint focal region of the two beams when a photosensitive polymer is exposed to their interference. (middle) The interference pattern is plotted in the logarithmic scale to display the wavefronts. (bottom) Driven by the linearity of the photoresponse the index modulation mirrors the intensity distribution. With the given optical specification for high-density recording in the violet spectral range (λ = 405 nm, NA = 0.75), microgratings effectively consist of less than ten grating fringes.

Fig. 2
Fig. 2

Optical write / read system for high-density microholographic storage. A Nd:YAG laser at 532 nm used for green-sensitive photopolymers is replaced by an external-cavity diode laser at 405 nm for violet-sensitive materials. Key features of the optical configuration are diffraction-limited focusing, retroreflection and confocal filtering.

Fig. 3
Fig. 3

Resolution-limited microholographic recording in x-y plane. (a) Transversal scan of a micrograting recorded at 532 nm. Recording parameters are: write energy 1 nJ, exposure time 100 µs, read power 1 µW, NA is 0.6. (b) Transversal scan of a micrograting recorded at 405 nm. Recording parameters are: write energy 25 nJ, exposure time 1 ms, read power 50 nW, NA is 0.75. (c) Transversal downscaling by reducing the write / read wavelength. Micrograting width (FWHM) is 306 nm at write / read wavelength of 532 nm, and 197 nm at write / read wavelength of 405 nm.

Fig. 4
Fig. 4

Exposure optimization for resolution-limited recording. Exposure series recorded in a green-sensitive Aprilis CROP sample of 200 µm thickness. Laser power used for recording is constant at 800 nW, the total exposure fluence is varied by the exposure time. Submicron-sized gratings with diffraction efficiency of 10−3 are written at 532 nm and NA 0.6 with a total exposure fluence of about 1 J/cm2. The micrograting is confined to 500 nm in its lateral direction and 5 µm in its depth.

Fig. 5
Fig. 5

In-track spacing between microgratings written in tracks. Single tracks of microgratings recorded at write / read wavelength of 405 nm at different spacing between adjacent spot locations: Center-to-center spacing is 500 nm (left) and 350 nm (right). Recording parameters: write energy 25 nJ, exposure time 1 ms, read power 107 nW, NA is 0.75.

Metrics