J. Lo, W. Lien, C. Lin, and J. He, “Er-doped ZnO nanorod arrays with enhanced 1540 nm emission by employing Ag island films and high-temperature annealing,” ACS Appl. Mater. Interfaces 3, 1009–1014 (2011).
[Crossref]
[PubMed]
S. Chatterjee, O. D. Jayakumar, A. K. Tyagi, and P. Ayyub, “Template-based fabrication of Ag–ZnO core–shell nanorod arrays,” J. Cryst. Growth 312, 2724–2728 (2010).
[Crossref]
D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]
A. Pannipitiya, I. D. Rukhlenko, M. Premaratne, H. T. Hattori, and G. P. Agrawal, “Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure,” Opt. Express 18, 6191–6204 (2010).
[Crossref]
[PubMed]
D. Chen, “Cylindrical hybrid plasmonic waveguide for subwavelength confinement of light,” Appl. Opt. 49, 6868–6871 (2010).
[Crossref]
[PubMed]
D. Handapangoda, I. D. Rukhlenko, M. Premaratne, and C. Jagadish, “Optimization of gain-assisted waveguiding in metal-dielectric nanowires,” Opt. Lett. 35, 4190–4192 (2010).
[Crossref]
[PubMed]
I. D. Rukhlenko, D. Handapangoda, M. Premaratne, A. V. Fedorov, A. V. Baranov, and C. Jagadish, “Spontaneous emission of guided polaritons by quantum dot coupled to metallic nanowire: Beyond the dipole approximation,” Opt. Express 17, 17570–17581 (2009).
[Crossref]
[PubMed]
P. Zhao, W. Su, R. Wang, X. Xu, and F. Zhang, “Properties of thin silver films with different thickness,” Physica E 41, 387–390 (2009).
[Crossref]
M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16, 1385–1392 (2008).
[Crossref]
[PubMed]
J. Chen, G. A. Smolyakov, S. R. J. Brueck, and K. J. Malloy, “Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides,” Opt. Express 16, 14902–14909 (2008).
[Crossref]
[PubMed]
R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]
R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwave-length plasmonic modes,” N. J. Phys. 10, 105018 (2008).
[Crossref]
V. Krishnamurthy and B. Klein, “Theoretical investigation of metal cladding for nanowire and cylindrical micro-post lasers,” IEEE J. Quantum Electron. 44, 67–74 (2008).
[Crossref]
J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Theoretical analysis of square surface plasmon-polariton waveguides for long-range polarization-independent waveguiding,” Phys. Rev. B 76, 035434 (2007).
[Crossref]
H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296, 56–63 (2007).
[Crossref]
[PubMed]
S. A. Maier, “Plasmonics: The promise of highly integrated optical devices,” IEEE Sel. Top. Quantum Electron. 12, 1671–1677 (2006).
[Crossref]
E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref]
[PubMed]
W. L. Barnes, “Surface plasmon–polariton length scales: A route to sub-wavelength optics,” J. Opt. A: Pure Appl. Opt. 8, S87–S93 (2006).
[Crossref]
S. A. Maier, “Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides,” Opt. Commun. 258, 295–299 (2006).
[Crossref]
J. Wang, S. K. Hark, and Q. Li, “Electronic structure and luminescence properties of Er doped ZnO nanowires,” Microsc. Microanal. 12, 748–749 (2006).
[Crossref]
Z. K. Tang, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Self-assembled ZnO nano-crystals and exciton lasing at room temperature,” J. Cryst. Growth 287, 169–179 (2006).
[Crossref]
S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[Crossref]
D. F. P. Pile, T. Ogawa, D. K. Gramontnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimetnal investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[Crossref]
S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by sub-wavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[Crossref]
[PubMed]
W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–829 (2003).
[Crossref]
[PubMed]
E. H. K. Stelzer, “Beyond the diffraction limit?,” Nature 417, 806–807 (2002).
[Crossref]
[PubMed]
K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys.: Condens. Matter 14, R597–R624 (2002).
[Crossref]
U. Schröter and A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B 64, 125420(1–10) (2001).
[Crossref]
Y. Chen, N. T. Tuan, Y. Segawa, H. Ko, S. Hong, and T. Yao, “Stimulated emission and optical gain in ZnO epilayers grown by plasma-assisted molecular-beam epitaxy with buffers,” Appl. Phys. Lett. 78, 1469–1471 (2001).
[Crossref]
J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: Review,” Sens. Actuators B 54, 3–15 (1999).
[Crossref]
J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22, 475–477 (1997).
[Crossref]
[PubMed]
J. Koglin, U. C. Fischer, and H. Fuchs, “Material contrast in scanning near-field optical microscopy at 1–10 nm resolution,” Phys. Rev. B 55, 7977–7984 (1997).
[Crossref]
C. Untiedt, G. Rubio, S. Vieira, and N. Agraït, “Fabrication and characterization of metallic nanowires,” Phys. Rev. B 56, 2154–2160 (1997).
[Crossref]
L. Novotny, D. W. Pohl, and B. Hecht, “Light confinement in scanning near-field optical microscopy,” Ultramicroscopy 61, 1–9 (1995).
[Crossref]
D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
[Crossref]
C. A. Pfeiffer and E. N. Economou, “Surface polaritons in a circularly cylindrical interface: surface plasmons,” Phys. Rev. B 10, 3038–3051 (1974).
[Crossref]
S. Adachi, Optical Constants of Crystalline and Amorphous Semiconductors - Numerical Data and Graphical Information (Springer, 1999).
[Crossref]
[PubMed]
M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16, 1385–1392 (2008).
[Crossref]
[PubMed]
C. Untiedt, G. Rubio, S. Vieira, and N. Agraït, “Fabrication and characterization of metallic nanowires,” Phys. Rev. B 56, 2154–2160 (1997).
[Crossref]
A. Pannipitiya, I. D. Rukhlenko, M. Premaratne, H. T. Hattori, and G. P. Agrawal, “Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure,” Opt. Express 18, 6191–6204 (2010).
[Crossref]
[PubMed]
M. Premaratne and G. P. Agrawal, Light Propagation in Gain Media: Optical Amplifiers (Cambridge University Press, 2011).
G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).
H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296, 56–63 (2007).
[Crossref]
[PubMed]
S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[Crossref]
S. Chatterjee, O. D. Jayakumar, A. K. Tyagi, and P. Ayyub, “Template-based fabrication of Ag–ZnO core–shell nanorod arrays,” J. Cryst. Growth 312, 2724–2728 (2010).
[Crossref]
M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16, 1385–1392 (2008).
[Crossref]
[PubMed]
W. L. Barnes, “Surface plasmon–polariton length scales: A route to sub-wavelength optics,” J. Opt. A: Pure Appl. Opt. 8, S87–S93 (2006).
[Crossref]
W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–829 (2003).
[Crossref]
[PubMed]
R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwave-length plasmonic modes,” N. J. Phys. 10, 105018 (2008).
[Crossref]
D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]
J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Theoretical analysis of square surface plasmon-polariton waveguides for long-range polarization-independent waveguiding,” Phys. Rev. B 76, 035434 (2007).
[Crossref]
S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by sub-wavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[Crossref]
[PubMed]
S. Chatterjee, O. D. Jayakumar, A. K. Tyagi, and P. Ayyub, “Template-based fabrication of Ag–ZnO core–shell nanorod arrays,” J. Cryst. Growth 312, 2724–2728 (2010).
[Crossref]
Y. Chen, N. T. Tuan, Y. Segawa, H. Ko, S. Hong, and T. Yao, “Stimulated emission and optical gain in ZnO epilayers grown by plasma-assisted molecular-beam epitaxy with buffers,” Appl. Phys. Lett. 78, 1469–1471 (2001).
[Crossref]
K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys.: Condens. Matter 14, R597–R624 (2002).
[Crossref]
W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–829 (2003).
[Crossref]
[PubMed]
U. Schröter and A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B 64, 125420(1–10) (2001).
[Crossref]
S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by sub-wavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[Crossref]
[PubMed]
S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by sub-wavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[Crossref]
[PubMed]
W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–829 (2003).
[Crossref]
[PubMed]
C. A. Pfeiffer and E. N. Economou, “Surface polaritons in a circularly cylindrical interface: surface plasmons,” Phys. Rev. B 10, 3038–3051 (1974).
[Crossref]
K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys.: Condens. Matter 14, R597–R624 (2002).
[Crossref]
J. Koglin, U. C. Fischer, and H. Fuchs, “Material contrast in scanning near-field optical microscopy at 1–10 nm resolution,” Phys. Rev. B 55, 7977–7984 (1997).
[Crossref]
J. Koglin, U. C. Fischer, and H. Fuchs, “Material contrast in scanning near-field optical microscopy at 1–10 nm resolution,” Phys. Rev. B 55, 7977–7984 (1997).
[Crossref]
D. F. P. Pile, T. Ogawa, D. K. Gramontnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimetnal investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[Crossref]
J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: Review,” Sens. Actuators B 54, 3–15 (1999).
[Crossref]
R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]
D. F. P. Pile, T. Ogawa, D. K. Gramontnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimetnal investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[Crossref]
D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]
D. Handapangoda, I. D. Rukhlenko, M. Premaratne, and C. Jagadish, “Optimization of gain-assisted waveguiding in metal-dielectric nanowires,” Opt. Lett. 35, 4190–4192 (2010).
[Crossref]
[PubMed]
I. D. Rukhlenko, D. Handapangoda, M. Premaratne, A. V. Fedorov, A. V. Baranov, and C. Jagadish, “Spontaneous emission of guided polaritons by quantum dot coupled to metallic nanowire: Beyond the dipole approximation,” Opt. Express 17, 17570–17581 (2009).
[Crossref]
[PubMed]
D. F. P. Pile, T. Ogawa, D. K. Gramontnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimetnal investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[Crossref]
J. Wang, S. K. Hark, and Q. Li, “Electronic structure and luminescence properties of Er doped ZnO nanowires,” Microsc. Microanal. 12, 748–749 (2006).
[Crossref]
J. Lo, W. Lien, C. Lin, and J. He, “Er-doped ZnO nanorod arrays with enhanced 1540 nm emission by employing Ag island films and high-temperature annealing,” ACS Appl. Mater. Interfaces 3, 1009–1014 (2011).
[Crossref]
[PubMed]
L. Novotny, D. W. Pohl, and B. Hecht, “Light confinement in scanning near-field optical microscopy,” Ultramicroscopy 61, 1–9 (1995).
[Crossref]
J. Hecht, The Laser Guidebook (McGraw-Hill, 1992).
J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: Review,” Sens. Actuators B 54, 3–15 (1999).
[Crossref]
Y. Chen, N. T. Tuan, Y. Segawa, H. Ko, S. Hong, and T. Yao, “Stimulated emission and optical gain in ZnO epilayers grown by plasma-assisted molecular-beam epitaxy with buffers,” Appl. Phys. Lett. 78, 1469–1471 (2001).
[Crossref]
K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys.: Condens. Matter 14, R597–R624 (2002).
[Crossref]
D. Handapangoda, I. D. Rukhlenko, M. Premaratne, and C. Jagadish, “Optimization of gain-assisted waveguiding in metal-dielectric nanowires,” Opt. Lett. 35, 4190–4192 (2010).
[Crossref]
[PubMed]
I. D. Rukhlenko, D. Handapangoda, M. Premaratne, A. V. Fedorov, A. V. Baranov, and C. Jagadish, “Spontaneous emission of guided polaritons by quantum dot coupled to metallic nanowire: Beyond the dipole approximation,” Opt. Express 17, 17570–17581 (2009).
[Crossref]
[PubMed]
S. Chatterjee, O. D. Jayakumar, A. K. Tyagi, and P. Ayyub, “Template-based fabrication of Ag–ZnO core–shell nanorod arrays,” J. Cryst. Growth 312, 2724–2728 (2010).
[Crossref]
J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Theoretical analysis of square surface plasmon-polariton waveguides for long-range polarization-independent waveguiding,” Phys. Rev. B 76, 035434 (2007).
[Crossref]
Z. K. Tang, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Self-assembled ZnO nano-crystals and exciton lasing at room temperature,” J. Cryst. Growth 287, 169–179 (2006).
[Crossref]
V. Krishnamurthy and B. Klein, “Theoretical investigation of metal cladding for nanowire and cylindrical micro-post lasers,” IEEE J. Quantum Electron. 44, 67–74 (2008).
[Crossref]
K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys.: Condens. Matter 14, R597–R624 (2002).
[Crossref]
K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys.: Condens. Matter 14, R597–R624 (2002).
[Crossref]
Y. Chen, N. T. Tuan, Y. Segawa, H. Ko, S. Hong, and T. Yao, “Stimulated emission and optical gain in ZnO epilayers grown by plasma-assisted molecular-beam epitaxy with buffers,” Appl. Phys. Lett. 78, 1469–1471 (2001).
[Crossref]
J. Koglin, U. C. Fischer, and H. Fuchs, “Material contrast in scanning near-field optical microscopy at 1–10 nm resolution,” Phys. Rev. B 55, 7977–7984 (1997).
[Crossref]
Z. K. Tang, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Self-assembled ZnO nano-crystals and exciton lasing at room temperature,” J. Cryst. Growth 287, 169–179 (2006).
[Crossref]
V. Krishnamurthy and B. Klein, “Theoretical investigation of metal cladding for nanowire and cylindrical micro-post lasers,” IEEE J. Quantum Electron. 44, 67–74 (2008).
[Crossref]
L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, 1984).
J. Wang, S. K. Hark, and Q. Li, “Electronic structure and luminescence properties of Er doped ZnO nanowires,” Microsc. Microanal. 12, 748–749 (2006).
[Crossref]
J. Lo, W. Lien, C. Lin, and J. He, “Er-doped ZnO nanorod arrays with enhanced 1540 nm emission by employing Ag island films and high-temperature annealing,” ACS Appl. Mater. Interfaces 3, 1009–1014 (2011).
[Crossref]
[PubMed]
L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, 1984).
J. Lo, W. Lien, C. Lin, and J. He, “Er-doped ZnO nanorod arrays with enhanced 1540 nm emission by employing Ag island films and high-temperature annealing,” ACS Appl. Mater. Interfaces 3, 1009–1014 (2011).
[Crossref]
[PubMed]
J. Lo, W. Lien, C. Lin, and J. He, “Er-doped ZnO nanorod arrays with enhanced 1540 nm emission by employing Ag island films and high-temperature annealing,” ACS Appl. Mater. Interfaces 3, 1009–1014 (2011).
[Crossref]
[PubMed]
S. A. Maier, “Plasmonics: The promise of highly integrated optical devices,” IEEE Sel. Top. Quantum Electron. 12, 1671–1677 (2006).
[Crossref]
S. A. Maier, “Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides,” Opt. Commun. 258, 295–299 (2006).
[Crossref]
S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[Crossref]
S. A. Maier, Plasmonics: Fundamentals and Applications, (Springer, 2007).
D. F. P. Pile, T. Ogawa, D. K. Gramontnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimetnal investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[Crossref]
M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16, 1385–1392 (2008).
[Crossref]
[PubMed]
H. Morkoç and Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology, (Wiley-VCH Verlag GmbH & Co. KGaA, 2009).
M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16, 1385–1392 (2008).
[Crossref]
[PubMed]
L. Novotny, D. W. Pohl, and B. Hecht, “Light confinement in scanning near-field optical microscopy,” Ultramicroscopy 61, 1–9 (1995).
[Crossref]
D. F. P. Pile, T. Ogawa, D. K. Gramontnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimetnal investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[Crossref]
Z. K. Tang, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Self-assembled ZnO nano-crystals and exciton lasing at room temperature,” J. Cryst. Growth 287, 169–179 (2006).
[Crossref]
D. F. P. Pile, T. Ogawa, D. K. Gramontnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimetnal investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[Crossref]
R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwave-length plasmonic modes,” N. J. Phys. 10, 105018 (2008).
[Crossref]
R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]
E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref]
[PubMed]
H. Morkoç and Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology, (Wiley-VCH Verlag GmbH & Co. KGaA, 2009).
C. A. Pfeiffer and E. N. Economou, “Surface polaritons in a circularly cylindrical interface: surface plasmons,” Phys. Rev. B 10, 3038–3051 (1974).
[Crossref]
R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]
R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwave-length plasmonic modes,” N. J. Phys. 10, 105018 (2008).
[Crossref]
D. F. P. Pile, T. Ogawa, D. K. Gramontnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimetnal investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[Crossref]
M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16, 1385–1392 (2008).
[Crossref]
[PubMed]
L. Novotny, D. W. Pohl, and B. Hecht, “Light confinement in scanning near-field optical microscopy,” Ultramicroscopy 61, 1–9 (1995).
[Crossref]
D. M. Pozar, Microwave Engineering, (Wiley, 1998).
A. Pannipitiya, I. D. Rukhlenko, M. Premaratne, H. T. Hattori, and G. P. Agrawal, “Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure,” Opt. Express 18, 6191–6204 (2010).
[Crossref]
[PubMed]
D. Handapangoda, I. D. Rukhlenko, M. Premaratne, and C. Jagadish, “Optimization of gain-assisted waveguiding in metal-dielectric nanowires,” Opt. Lett. 35, 4190–4192 (2010).
[Crossref]
[PubMed]
I. D. Rukhlenko, D. Handapangoda, M. Premaratne, A. V. Fedorov, A. V. Baranov, and C. Jagadish, “Spontaneous emission of guided polaritons by quantum dot coupled to metallic nanowire: Beyond the dipole approximation,” Opt. Express 17, 17570–17581 (2009).
[Crossref]
[PubMed]
M. Premaratne and G. P. Agrawal, Light Propagation in Gain Media: Optical Amplifiers (Cambridge University Press, 2011).
M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16, 1385–1392 (2008).
[Crossref]
[PubMed]
M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16, 1385–1392 (2008).
[Crossref]
[PubMed]
C. Untiedt, G. Rubio, S. Vieira, and N. Agraït, “Fabrication and characterization of metallic nanowires,” Phys. Rev. B 56, 2154–2160 (1997).
[Crossref]
A. Pannipitiya, I. D. Rukhlenko, M. Premaratne, H. T. Hattori, and G. P. Agrawal, “Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure,” Opt. Express 18, 6191–6204 (2010).
[Crossref]
[PubMed]
D. Handapangoda, I. D. Rukhlenko, M. Premaratne, and C. Jagadish, “Optimization of gain-assisted waveguiding in metal-dielectric nanowires,” Opt. Lett. 35, 4190–4192 (2010).
[Crossref]
[PubMed]
I. D. Rukhlenko, D. Handapangoda, M. Premaratne, A. V. Fedorov, A. V. Baranov, and C. Jagadish, “Spontaneous emission of guided polaritons by quantum dot coupled to metallic nanowire: Beyond the dipole approximation,” Opt. Express 17, 17570–17581 (2009).
[Crossref]
[PubMed]
B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
[Crossref]
D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
[Crossref]
U. Schröter and A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B 64, 125420(1–10) (2001).
[Crossref]
Z. K. Tang, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Self-assembled ZnO nano-crystals and exciton lasing at room temperature,” J. Cryst. Growth 287, 169–179 (2006).
[Crossref]
Y. Chen, N. T. Tuan, Y. Segawa, H. Ko, S. Hong, and T. Yao, “Stimulated emission and optical gain in ZnO epilayers grown by plasma-assisted molecular-beam epitaxy with buffers,” Appl. Phys. Lett. 78, 1469–1471 (2001).
[Crossref]
J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Theoretical analysis of square surface plasmon-polariton waveguides for long-range polarization-independent waveguiding,” Phys. Rev. B 76, 035434 (2007).
[Crossref]
R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]
E. H. K. Stelzer, “Beyond the diffraction limit?,” Nature 417, 806–807 (2002).
[Crossref]
[PubMed]
J. A. Stratton, Electromagnetic Theory, (McGraw-Hill, 1941).
P. Zhao, W. Su, R. Wang, X. Xu, and F. Zhang, “Properties of thin silver films with different thickness,” Physica E 41, 387–390 (2009).
[Crossref]
Z. K. Tang, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Self-assembled ZnO nano-crystals and exciton lasing at room temperature,” J. Cryst. Growth 287, 169–179 (2006).
[Crossref]
B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
[Crossref]
Y. Chen, N. T. Tuan, Y. Segawa, H. Ko, S. Hong, and T. Yao, “Stimulated emission and optical gain in ZnO epilayers grown by plasma-assisted molecular-beam epitaxy with buffers,” Appl. Phys. Lett. 78, 1469–1471 (2001).
[Crossref]
S. Chatterjee, O. D. Jayakumar, A. K. Tyagi, and P. Ayyub, “Template-based fabrication of Ag–ZnO core–shell nanorod arrays,” J. Cryst. Growth 312, 2724–2728 (2010).
[Crossref]
C. Untiedt, G. Rubio, S. Vieira, and N. Agraït, “Fabrication and characterization of metallic nanowires,” Phys. Rev. B 56, 2154–2160 (1997).
[Crossref]
C. Untiedt, G. Rubio, S. Vieira, and N. Agraït, “Fabrication and characterization of metallic nanowires,” Phys. Rev. B 56, 2154–2160 (1997).
[Crossref]
M. W. Vogel, “Theoretical and numerical investigation of plasmon nanofocusing in metallic tapered rods and grooves,” PhD thesis (Queensland University of Technology, Australia, 2009).
S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by sub-wavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[Crossref]
[PubMed]
J. Wang, S. K. Hark, and Q. Li, “Electronic structure and luminescence properties of Er doped ZnO nanowires,” Microsc. Microanal. 12, 748–749 (2006).
[Crossref]
P. Zhao, W. Su, R. Wang, X. Xu, and F. Zhang, “Properties of thin silver films with different thickness,” Physica E 41, 387–390 (2009).
[Crossref]
P. Zhao, W. Su, R. Wang, X. Xu, and F. Zhang, “Properties of thin silver films with different thickness,” Physica E 41, 387–390 (2009).
[Crossref]
Y. Chen, N. T. Tuan, Y. Segawa, H. Ko, S. Hong, and T. Yao, “Stimulated emission and optical gain in ZnO epilayers grown by plasma-assisted molecular-beam epitaxy with buffers,” Appl. Phys. Lett. 78, 1469–1471 (2001).
[Crossref]
J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: Review,” Sens. Actuators B 54, 3–15 (1999).
[Crossref]
P. Zhao, W. Su, R. Wang, X. Xu, and F. Zhang, “Properties of thin silver films with different thickness,” Physica E 41, 387–390 (2009).
[Crossref]
R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]
R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwave-length plasmonic modes,” N. J. Phys. 10, 105018 (2008).
[Crossref]
P. Zhao, W. Su, R. Wang, X. Xu, and F. Zhang, “Properties of thin silver films with different thickness,” Physica E 41, 387–390 (2009).
[Crossref]
M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16, 1385–1392 (2008).
[Crossref]
[PubMed]
J. Lo, W. Lien, C. Lin, and J. He, “Er-doped ZnO nanorod arrays with enhanced 1540 nm emission by employing Ag island films and high-temperature annealing,” ACS Appl. Mater. Interfaces 3, 1009–1014 (2011).
[Crossref]
[PubMed]
Y. Chen, N. T. Tuan, Y. Segawa, H. Ko, S. Hong, and T. Yao, “Stimulated emission and optical gain in ZnO epilayers grown by plasma-assisted molecular-beam epitaxy with buffers,” Appl. Phys. Lett. 78, 1469–1471 (2001).
[Crossref]
D. F. P. Pile, T. Ogawa, D. K. Gramontnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimetnal investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[Crossref]
V. Krishnamurthy and B. Klein, “Theoretical investigation of metal cladding for nanowire and cylindrical micro-post lasers,” IEEE J. Quantum Electron. 44, 67–74 (2008).
[Crossref]
S. A. Maier, “Plasmonics: The promise of highly integrated optical devices,” IEEE Sel. Top. Quantum Electron. 12, 1671–1677 (2006).
[Crossref]
S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[Crossref]
Z. K. Tang, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Self-assembled ZnO nano-crystals and exciton lasing at room temperature,” J. Cryst. Growth 287, 169–179 (2006).
[Crossref]
S. Chatterjee, O. D. Jayakumar, A. K. Tyagi, and P. Ayyub, “Template-based fabrication of Ag–ZnO core–shell nanorod arrays,” J. Cryst. Growth 312, 2724–2728 (2010).
[Crossref]
W. L. Barnes, “Surface plasmon–polariton length scales: A route to sub-wavelength optics,” J. Opt. A: Pure Appl. Opt. 8, S87–S93 (2006).
[Crossref]
K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys.: Condens. Matter 14, R597–R624 (2002).
[Crossref]
J. Wang, S. K. Hark, and Q. Li, “Electronic structure and luminescence properties of Er doped ZnO nanowires,” Microsc. Microanal. 12, 748–749 (2006).
[Crossref]
R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwave-length plasmonic modes,” N. J. Phys. 10, 105018 (2008).
[Crossref]
R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]
D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]
E. H. K. Stelzer, “Beyond the diffraction limit?,” Nature 417, 806–807 (2002).
[Crossref]
[PubMed]
W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–829 (2003).
[Crossref]
[PubMed]
S. A. Maier, “Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides,” Opt. Commun. 258, 295–299 (2006).
[Crossref]
M. P. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12, 4072–4079 (2004).
[Crossref]
[PubMed]
M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16, 1385–1392 (2008).
[Crossref]
[PubMed]
J. Chen, G. A. Smolyakov, S. R. J. Brueck, and K. J. Malloy, “Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides,” Opt. Express 16, 14902–14909 (2008).
[Crossref]
[PubMed]
I. D. Rukhlenko, D. Handapangoda, M. Premaratne, A. V. Fedorov, A. V. Baranov, and C. Jagadish, “Spontaneous emission of guided polaritons by quantum dot coupled to metallic nanowire: Beyond the dipole approximation,” Opt. Express 17, 17570–17581 (2009).
[Crossref]
[PubMed]
A. Pannipitiya, I. D. Rukhlenko, M. Premaratne, H. T. Hattori, and G. P. Agrawal, “Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure,” Opt. Express 18, 6191–6204 (2010).
[Crossref]
[PubMed]
B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29, 1992–1994 (2004).
[Crossref]
[PubMed]
D. Handapangoda, I. D. Rukhlenko, M. Premaratne, and C. Jagadish, “Optimization of gain-assisted waveguiding in metal-dielectric nanowires,” Opt. Lett. 35, 4190–4192 (2010).
[Crossref]
[PubMed]
J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22, 475–477 (1997).
[Crossref]
[PubMed]
M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998).
[Crossref]
C. A. Pfeiffer and E. N. Economou, “Surface polaritons in a circularly cylindrical interface: surface plasmons,” Phys. Rev. B 10, 3038–3051 (1974).
[Crossref]
C. Untiedt, G. Rubio, S. Vieira, and N. Agraït, “Fabrication and characterization of metallic nanowires,” Phys. Rev. B 56, 2154–2160 (1997).
[Crossref]
U. Schröter and A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B 64, 125420(1–10) (2001).
[Crossref]
J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Theoretical analysis of square surface plasmon-polariton waveguides for long-range polarization-independent waveguiding,” Phys. Rev. B 76, 035434 (2007).
[Crossref]
J. Koglin, U. C. Fischer, and H. Fuchs, “Material contrast in scanning near-field optical microscopy at 1–10 nm resolution,” Phys. Rev. B 55, 7977–7984 (1997).
[Crossref]
S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by sub-wavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[Crossref]
[PubMed]
D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
[Crossref]
P. Zhao, W. Su, R. Wang, X. Xu, and F. Zhang, “Properties of thin silver films with different thickness,” Physica E 41, 387–390 (2009).
[Crossref]
H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296, 56–63 (2007).
[Crossref]
[PubMed]
E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref]
[PubMed]
J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: Review,” Sens. Actuators B 54, 3–15 (1999).
[Crossref]
L. Novotny, D. W. Pohl, and B. Hecht, “Light confinement in scanning near-field optical microscopy,” Ultramicroscopy 61, 1–9 (1995).
[Crossref]
S. A. Maier, Plasmonics: Fundamentals and Applications, (Springer, 2007).
M. W. Vogel, “Theoretical and numerical investigation of plasmon nanofocusing in metallic tapered rods and grooves,” PhD thesis (Queensland University of Technology, Australia, 2009).
G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).
D. M. Pozar, Microwave Engineering, (Wiley, 1998).
S. Adachi, Optical Constants of Crystalline and Amorphous Semiconductors - Numerical Data and Graphical Information (Springer, 1999).
[Crossref]
[PubMed]
M. Premaratne and G. P. Agrawal, Light Propagation in Gain Media: Optical Amplifiers (Cambridge University Press, 2011).
B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
[Crossref]
J. Hecht, The Laser Guidebook (McGraw-Hill, 1992).
H. Morkoç and Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology, (Wiley-VCH Verlag GmbH & Co. KGaA, 2009).
J. A. Stratton, Electromagnetic Theory, (McGraw-Hill, 1941).
L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, 1984).