Abstract

Li-Yb co-doped nano-crystalline ZnO has been synthesized by a method of thermal growth from the salt mixtures. X-ray diffraction, transmission electron microscopy, atomic absorption spectroscopy and optical spectroscopy confirm the doping and indicate that the dopants may form Li-Li and Yb3+-Li based nanoclusters. When pumped into the conduction and exciton absorption bands of ZnO between 250 to 425 nm, broad emission bands of about 100 nm half-height-width are excited around 770 and 1000 nm, due to Li and Yb dopants, respectively. These emission bands are activated by energy transfer from the ZnO host mostly by quantum cutting processes, which generate pairs of quanta in Li (770 nm) and Yb (1000 nm) emission bands, respectively, out of one quantum absorbed by the ZnO host. These quantum cutting phenomena have great potential for application in the down-conversion layers coupled to the Si solar cells.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–518 (1961).
    [CrossRef]
  2. B. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells 90(15), 2329–2337 (2006).
    [CrossRef]
  3. T. Trupke, A. Shalav, B. S. Richards, P. W. Würfel, and M. A. Green, “Efficiency enhancement of solar cells by luminescent up-conversion of sun light,” Sol. Energy Mater. Sol. Cells 90(18-19), 3327–3338 (2006).
    [CrossRef]
  4. J. de Wild, J. K. Rath, A. Meijerink, W. Van Sark, and R. E. I. Schropp, “Enhanced near-infrared response of a-Si:H solar cells with β-NaYF4:Yb3+ (18%), Er3+ (2%) up-conversion phosphors,” Sol. Energy Mater. Sol. Cells 94(12), 2395–2398 (2010).
    [CrossRef]
  5. V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, J. del-Castillo, and C. Görller-Walrand, “Measurement of quantum yield of up-conversion Luminescence in Er(3+)-doped nano-glass-ceramics,” J. Nanosci. Nanotechnol. 9(3), 2072–2075 (2009).
    [CrossRef] [PubMed]
  6. J. Méndez-Ramos, V. K. Tikhomirov, V. D. Rodríguez, and D. Furniss, “Infrared tunable up-conversion phosphor based on Er3+ doped nano-glass-ceramics,” J. Alloy. Comp. 440(1-2), 328–332 (2007).
    [CrossRef]
  7. T. Fukuda, S. Kato, E. Kin, K. Okaniwa, H. Morikawa, Z. Honda, and N. Kamata, “Wavelength conversion film with glass coated Eu chelate for enhanced silicon-photovoltaic cell performance,” Opt. Mater. 32(1), 22–25 (2009).
    [CrossRef]
  8. B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. (Deerfield Beach Fla.) 21(30), 3073 (2009).
    [CrossRef]
  9. V. D. Rodríquez, V. K. Tikhomirov, J. Méndez-Ramos, A. C. Yanes, and V. V. Moshchalkov, “Towards broad range and highly efficient down-conversion of solar spectrum by Er3+-Yb3+ co-doped nano-structured glass-ceramics,” Sol. Energy Mater. Sol. Cells 94(10), 1612–1617 (2010).
    [CrossRef]
  10. V. K. Tikhomirov, V. D. Rodríguez, A. Kuznetsov, D. Kirilenko, G. Van Tendeloo, and V. V. Moshchalkov, “Preparation and luminescence of bulk oxyfluoride glasses doped with Ag nanoclusters,” Opt. Express 18(21), 22032–22040 (2010).
    [CrossRef] [PubMed]
  11. S. Ye, N. Jiang, F. He, X. Liu, B. Zhu, Y. Teng, and J. R. Qiu, “Intense near-infrared emission from ZnO-LiYbO(2) hybrid phosphors through efficient energy transfer from ZnO to Yb(3+).,” Opt. Express 18(2), 639–644 (2010).
    [CrossRef] [PubMed]
  12. Y. Teng, J. Zhou, X. Liu, S. Ye, and J. Qiu, “Efficient broadband near-infrared quantum cutting for solar cells,” Opt. Express 18(9), 9671–9676 (2010).
    [CrossRef] [PubMed]
  13. A. Klein, B. Rech, and K. Ellme, Transparent Conductive Zinc Oxide, eds. (Springer, Berlin, 2008).
  14. C. Klingshirn, “ZnO: From basics towards applications,” Phys. Status Solidi, B Basic Res. 244(9), 3027–3073 (2007).
    [CrossRef]
  15. Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
    [CrossRef]
  16. A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, “The luminescence of nanocrystalline ZnO particles: the mechanism of the ultraviolet and visible emission,” J. Lumin. 87–89, 454–456 (2000).
    [CrossRef]
  17. Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54 μm photoemission,” Appl. Phys. Lett. 87(9), 091109 (2005).
    [CrossRef]
  18. T. Fan, Q. Zhang, and Z. Jiang, “Enhanced near-infrared luminescence in Y2O3:Yb3+ nanocrystals by codoping with Li+ ions,” Opt. Commun. 284(1), 249–251 (2011).
    [CrossRef]
  19. A. N. Baranov, G. N. Panin, T. W. Kang, and Y.-J. Oh, “Growth of ZnO nanorods from a salt mixture,” Nanotechnology 16(9), 1918–1923 (2005).
    [CrossRef]
  20. A. N. Baranov, C. H. Chang, O. A. Shlyakhtin, G. N. Panin, T. W. Kang, and Y.-J. Oh, “In situ study of the ZnO–NaCl system during the growth of ZnO nanorods,” Nanotechnology 15(11), 1613–1619 (2004).
    [CrossRef]
  21. I. Sakaguchi, Y. Adachi, T. Ogaki, K. Matsumoto, S. Hishita, H. Haneda, and N. Ohashi, “Impurity contamination and diffusion during annealing in implanted ZnO,” Key Eng. Mater. 388, 23–26 (2009).
    [CrossRef]
  22. Y. Hashimoto, M. Wakeshima, K. Matsuhira, Y. Hinatsu, and Y. Ishii, “Structures and magnetic properties of ternary lithium oxides LiRO2 (R=Rare Earths),” Chem. Mater. 14(8), 3245–3251 (2002).
    [CrossRef]
  23. R. E. LaVilla, “M4,5 emission spectra from Gd2O3 and Yb2O3,” Phys. Rev. A 9(5), 1801–1805 (1974).
    [CrossRef]
  24. C. Dallera, E. Annese, J.-P. Rueff, A. Palenzona, G. Vanko, L. Braicovich, A. Shukla, and M. Grioni, “Determination of pressure-induced valence changes in YbAl2 by resonant inelastic X-ray emission,” Phys. Rev. B 68(24), 245114 (2003).
    [CrossRef]
  25. Y. Ding and Z. L. Wang, “Electron energy-loss spectroscopy study of ZnO nanobelts,” J. Electron Microsc. (Tokyo) 54(3), 287–291 (2005).
    [CrossRef] [PubMed]
  26. N. R. Yogomalar and A. C. Bose, “Burnstein-Moss shift and room temperature near-band-edge luminescence in lithium doped zinc oxide,” Appl. Phys., A Mater. Sci. Process. 103(1), 33–42 (2011).
    [CrossRef]
  27. V. K. Tikhomirov, K. Driesen, C. Görller-Walrand, and M. Mortier, “Broadband telecommunication wavelength emission in Yb3+-Er3+-Tm3+ co-doped nano-glassceramics,” Opt. Express 15(15), 9535–9540 (2007).
    [CrossRef] [PubMed]
  28. E. L. Nicholas and H. L. Howes, “The photolumenscence of flames,” Phys. Rev. 22(5), 425–431 (1923).
    [CrossRef]
  29. L. J. Radziemski, R. Engleman, and J. W. Brault, “Fourier-transform-spectroscopy measurements in the spectra of neutral lithium, 6Li,” Phys. Rev. A 52(6), 4462–4470 (1995).
    [CrossRef] [PubMed]
  30. A. Carvahlo, A. Alakauskas, A. Pasquarello, A. K. Tagantsev, and N. Setter, “Li-related defects in ZnO: Hybrid functional calculations,” Physica B 404(23-24), 4797–4799 (2009).
    [CrossRef]
  31. A. N. Alexandrova, A. I. Boldyrev, X. Li, H. W. Sarkas, J. H. Hendricks, S. T. Arnold, and K. H. Bowen, “Lithium cluster anions: photoelectron spectroscopy and ab initio calculations,” J. Chem. Phys. 134(4), 044322 (2011).
    [CrossRef] [PubMed]
  32. T. Hirai, Y. Harada, S. Hashimoto, T. Itoh, and N. Ohno, “Luminescence of excitons in mesoscopic ZnO particles,” J. Lumin. 112(1-4), 196–199 (2005).
    [CrossRef]
  33. G. Alombert-Godet, C. Armellini, S. Berneschi, A. Chiappini, A. Chiasera, M. Ferrari, S. Guddala, E. Moser, S. Pelli, D. N. Rao, and G. C. Righini, “Tb3+/Yb3+ co-activated silica-hafnia glass ceramic waveguides,” Opt. Mater. 33(2), 227–230 (2010).
    [CrossRef]

2011

T. Fan, Q. Zhang, and Z. Jiang, “Enhanced near-infrared luminescence in Y2O3:Yb3+ nanocrystals by codoping with Li+ ions,” Opt. Commun. 284(1), 249–251 (2011).
[CrossRef]

N. R. Yogomalar and A. C. Bose, “Burnstein-Moss shift and room temperature near-band-edge luminescence in lithium doped zinc oxide,” Appl. Phys., A Mater. Sci. Process. 103(1), 33–42 (2011).
[CrossRef]

A. N. Alexandrova, A. I. Boldyrev, X. Li, H. W. Sarkas, J. H. Hendricks, S. T. Arnold, and K. H. Bowen, “Lithium cluster anions: photoelectron spectroscopy and ab initio calculations,” J. Chem. Phys. 134(4), 044322 (2011).
[CrossRef] [PubMed]

2010

G. Alombert-Godet, C. Armellini, S. Berneschi, A. Chiappini, A. Chiasera, M. Ferrari, S. Guddala, E. Moser, S. Pelli, D. N. Rao, and G. C. Righini, “Tb3+/Yb3+ co-activated silica-hafnia glass ceramic waveguides,” Opt. Mater. 33(2), 227–230 (2010).
[CrossRef]

S. Ye, N. Jiang, F. He, X. Liu, B. Zhu, Y. Teng, and J. R. Qiu, “Intense near-infrared emission from ZnO-LiYbO(2) hybrid phosphors through efficient energy transfer from ZnO to Yb(3+).,” Opt. Express 18(2), 639–644 (2010).
[CrossRef] [PubMed]

Y. Teng, J. Zhou, X. Liu, S. Ye, and J. Qiu, “Efficient broadband near-infrared quantum cutting for solar cells,” Opt. Express 18(9), 9671–9676 (2010).
[CrossRef] [PubMed]

V. K. Tikhomirov, V. D. Rodríguez, A. Kuznetsov, D. Kirilenko, G. Van Tendeloo, and V. V. Moshchalkov, “Preparation and luminescence of bulk oxyfluoride glasses doped with Ag nanoclusters,” Opt. Express 18(21), 22032–22040 (2010).
[CrossRef] [PubMed]

J. de Wild, J. K. Rath, A. Meijerink, W. Van Sark, and R. E. I. Schropp, “Enhanced near-infrared response of a-Si:H solar cells with β-NaYF4:Yb3+ (18%), Er3+ (2%) up-conversion phosphors,” Sol. Energy Mater. Sol. Cells 94(12), 2395–2398 (2010).
[CrossRef]

V. D. Rodríquez, V. K. Tikhomirov, J. Méndez-Ramos, A. C. Yanes, and V. V. Moshchalkov, “Towards broad range and highly efficient down-conversion of solar spectrum by Er3+-Yb3+ co-doped nano-structured glass-ceramics,” Sol. Energy Mater. Sol. Cells 94(10), 1612–1617 (2010).
[CrossRef]

2009

V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, J. del-Castillo, and C. Görller-Walrand, “Measurement of quantum yield of up-conversion Luminescence in Er(3+)-doped nano-glass-ceramics,” J. Nanosci. Nanotechnol. 9(3), 2072–2075 (2009).
[CrossRef] [PubMed]

I. Sakaguchi, Y. Adachi, T. Ogaki, K. Matsumoto, S. Hishita, H. Haneda, and N. Ohashi, “Impurity contamination and diffusion during annealing in implanted ZnO,” Key Eng. Mater. 388, 23–26 (2009).
[CrossRef]

T. Fukuda, S. Kato, E. Kin, K. Okaniwa, H. Morikawa, Z. Honda, and N. Kamata, “Wavelength conversion film with glass coated Eu chelate for enhanced silicon-photovoltaic cell performance,” Opt. Mater. 32(1), 22–25 (2009).
[CrossRef]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. (Deerfield Beach Fla.) 21(30), 3073 (2009).
[CrossRef]

A. Carvahlo, A. Alakauskas, A. Pasquarello, A. K. Tagantsev, and N. Setter, “Li-related defects in ZnO: Hybrid functional calculations,” Physica B 404(23-24), 4797–4799 (2009).
[CrossRef]

2007

V. K. Tikhomirov, K. Driesen, C. Görller-Walrand, and M. Mortier, “Broadband telecommunication wavelength emission in Yb3+-Er3+-Tm3+ co-doped nano-glassceramics,” Opt. Express 15(15), 9535–9540 (2007).
[CrossRef] [PubMed]

J. Méndez-Ramos, V. K. Tikhomirov, V. D. Rodríguez, and D. Furniss, “Infrared tunable up-conversion phosphor based on Er3+ doped nano-glass-ceramics,” J. Alloy. Comp. 440(1-2), 328–332 (2007).
[CrossRef]

C. Klingshirn, “ZnO: From basics towards applications,” Phys. Status Solidi, B Basic Res. 244(9), 3027–3073 (2007).
[CrossRef]

2006

B. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells 90(15), 2329–2337 (2006).
[CrossRef]

T. Trupke, A. Shalav, B. S. Richards, P. W. Würfel, and M. A. Green, “Efficiency enhancement of solar cells by luminescent up-conversion of sun light,” Sol. Energy Mater. Sol. Cells 90(18-19), 3327–3338 (2006).
[CrossRef]

2005

Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[CrossRef]

Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54 μm photoemission,” Appl. Phys. Lett. 87(9), 091109 (2005).
[CrossRef]

A. N. Baranov, G. N. Panin, T. W. Kang, and Y.-J. Oh, “Growth of ZnO nanorods from a salt mixture,” Nanotechnology 16(9), 1918–1923 (2005).
[CrossRef]

T. Hirai, Y. Harada, S. Hashimoto, T. Itoh, and N. Ohno, “Luminescence of excitons in mesoscopic ZnO particles,” J. Lumin. 112(1-4), 196–199 (2005).
[CrossRef]

Y. Ding and Z. L. Wang, “Electron energy-loss spectroscopy study of ZnO nanobelts,” J. Electron Microsc. (Tokyo) 54(3), 287–291 (2005).
[CrossRef] [PubMed]

2004

A. N. Baranov, C. H. Chang, O. A. Shlyakhtin, G. N. Panin, T. W. Kang, and Y.-J. Oh, “In situ study of the ZnO–NaCl system during the growth of ZnO nanorods,” Nanotechnology 15(11), 1613–1619 (2004).
[CrossRef]

2003

C. Dallera, E. Annese, J.-P. Rueff, A. Palenzona, G. Vanko, L. Braicovich, A. Shukla, and M. Grioni, “Determination of pressure-induced valence changes in YbAl2 by resonant inelastic X-ray emission,” Phys. Rev. B 68(24), 245114 (2003).
[CrossRef]

2002

Y. Hashimoto, M. Wakeshima, K. Matsuhira, Y. Hinatsu, and Y. Ishii, “Structures and magnetic properties of ternary lithium oxides LiRO2 (R=Rare Earths),” Chem. Mater. 14(8), 3245–3251 (2002).
[CrossRef]

2000

A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, “The luminescence of nanocrystalline ZnO particles: the mechanism of the ultraviolet and visible emission,” J. Lumin. 87–89, 454–456 (2000).
[CrossRef]

1995

L. J. Radziemski, R. Engleman, and J. W. Brault, “Fourier-transform-spectroscopy measurements in the spectra of neutral lithium, 6Li,” Phys. Rev. A 52(6), 4462–4470 (1995).
[CrossRef] [PubMed]

1974

R. E. LaVilla, “M4,5 emission spectra from Gd2O3 and Yb2O3,” Phys. Rev. A 9(5), 1801–1805 (1974).
[CrossRef]

1961

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–518 (1961).
[CrossRef]

1923

E. L. Nicholas and H. L. Howes, “The photolumenscence of flames,” Phys. Rev. 22(5), 425–431 (1923).
[CrossRef]

Aarts, L.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. (Deerfield Beach Fla.) 21(30), 3073 (2009).
[CrossRef]

Adachi, Y.

I. Sakaguchi, Y. Adachi, T. Ogaki, K. Matsumoto, S. Hishita, H. Haneda, and N. Ohashi, “Impurity contamination and diffusion during annealing in implanted ZnO,” Key Eng. Mater. 388, 23–26 (2009).
[CrossRef]

Alakauskas, A.

A. Carvahlo, A. Alakauskas, A. Pasquarello, A. K. Tagantsev, and N. Setter, “Li-related defects in ZnO: Hybrid functional calculations,” Physica B 404(23-24), 4797–4799 (2009).
[CrossRef]

Alexandrova, A. N.

A. N. Alexandrova, A. I. Boldyrev, X. Li, H. W. Sarkas, J. H. Hendricks, S. T. Arnold, and K. H. Bowen, “Lithium cluster anions: photoelectron spectroscopy and ab initio calculations,” J. Chem. Phys. 134(4), 044322 (2011).
[CrossRef] [PubMed]

Alivov, Y. I.

Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[CrossRef]

Alombert-Godet, G.

G. Alombert-Godet, C. Armellini, S. Berneschi, A. Chiappini, A. Chiasera, M. Ferrari, S. Guddala, E. Moser, S. Pelli, D. N. Rao, and G. C. Righini, “Tb3+/Yb3+ co-activated silica-hafnia glass ceramic waveguides,” Opt. Mater. 33(2), 227–230 (2010).
[CrossRef]

Annese, E.

C. Dallera, E. Annese, J.-P. Rueff, A. Palenzona, G. Vanko, L. Braicovich, A. Shukla, and M. Grioni, “Determination of pressure-induced valence changes in YbAl2 by resonant inelastic X-ray emission,” Phys. Rev. B 68(24), 245114 (2003).
[CrossRef]

Armellini, C.

G. Alombert-Godet, C. Armellini, S. Berneschi, A. Chiappini, A. Chiasera, M. Ferrari, S. Guddala, E. Moser, S. Pelli, D. N. Rao, and G. C. Righini, “Tb3+/Yb3+ co-activated silica-hafnia glass ceramic waveguides,” Opt. Mater. 33(2), 227–230 (2010).
[CrossRef]

Arnold, S. T.

A. N. Alexandrova, A. I. Boldyrev, X. Li, H. W. Sarkas, J. H. Hendricks, S. T. Arnold, and K. H. Bowen, “Lithium cluster anions: photoelectron spectroscopy and ab initio calculations,” J. Chem. Phys. 134(4), 044322 (2011).
[CrossRef] [PubMed]

Avrutin, V.

Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[CrossRef]

Ayukawa, T.

Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54 μm photoemission,” Appl. Phys. Lett. 87(9), 091109 (2005).
[CrossRef]

Baranov, A. N.

A. N. Baranov, G. N. Panin, T. W. Kang, and Y.-J. Oh, “Growth of ZnO nanorods from a salt mixture,” Nanotechnology 16(9), 1918–1923 (2005).
[CrossRef]

A. N. Baranov, C. H. Chang, O. A. Shlyakhtin, G. N. Panin, T. W. Kang, and Y.-J. Oh, “In situ study of the ZnO–NaCl system during the growth of ZnO nanorods,” Nanotechnology 15(11), 1613–1619 (2004).
[CrossRef]

Berneschi, S.

G. Alombert-Godet, C. Armellini, S. Berneschi, A. Chiappini, A. Chiasera, M. Ferrari, S. Guddala, E. Moser, S. Pelli, D. N. Rao, and G. C. Righini, “Tb3+/Yb3+ co-activated silica-hafnia glass ceramic waveguides,” Opt. Mater. 33(2), 227–230 (2010).
[CrossRef]

Boldyrev, A. I.

A. N. Alexandrova, A. I. Boldyrev, X. Li, H. W. Sarkas, J. H. Hendricks, S. T. Arnold, and K. H. Bowen, “Lithium cluster anions: photoelectron spectroscopy and ab initio calculations,” J. Chem. Phys. 134(4), 044322 (2011).
[CrossRef] [PubMed]

Bose, A. C.

N. R. Yogomalar and A. C. Bose, “Burnstein-Moss shift and room temperature near-band-edge luminescence in lithium doped zinc oxide,” Appl. Phys., A Mater. Sci. Process. 103(1), 33–42 (2011).
[CrossRef]

Bowen, K. H.

A. N. Alexandrova, A. I. Boldyrev, X. Li, H. W. Sarkas, J. H. Hendricks, S. T. Arnold, and K. H. Bowen, “Lithium cluster anions: photoelectron spectroscopy and ab initio calculations,” J. Chem. Phys. 134(4), 044322 (2011).
[CrossRef] [PubMed]

Braicovich, L.

C. Dallera, E. Annese, J.-P. Rueff, A. Palenzona, G. Vanko, L. Braicovich, A. Shukla, and M. Grioni, “Determination of pressure-induced valence changes in YbAl2 by resonant inelastic X-ray emission,” Phys. Rev. B 68(24), 245114 (2003).
[CrossRef]

Brault, J. W.

L. J. Radziemski, R. Engleman, and J. W. Brault, “Fourier-transform-spectroscopy measurements in the spectra of neutral lithium, 6Li,” Phys. Rev. A 52(6), 4462–4470 (1995).
[CrossRef] [PubMed]

Carvahlo, A.

A. Carvahlo, A. Alakauskas, A. Pasquarello, A. K. Tagantsev, and N. Setter, “Li-related defects in ZnO: Hybrid functional calculations,” Physica B 404(23-24), 4797–4799 (2009).
[CrossRef]

Chang, C. H.

A. N. Baranov, C. H. Chang, O. A. Shlyakhtin, G. N. Panin, T. W. Kang, and Y.-J. Oh, “In situ study of the ZnO–NaCl system during the growth of ZnO nanorods,” Nanotechnology 15(11), 1613–1619 (2004).
[CrossRef]

Chiappini, A.

G. Alombert-Godet, C. Armellini, S. Berneschi, A. Chiappini, A. Chiasera, M. Ferrari, S. Guddala, E. Moser, S. Pelli, D. N. Rao, and G. C. Righini, “Tb3+/Yb3+ co-activated silica-hafnia glass ceramic waveguides,” Opt. Mater. 33(2), 227–230 (2010).
[CrossRef]

Chiasera, A.

G. Alombert-Godet, C. Armellini, S. Berneschi, A. Chiappini, A. Chiasera, M. Ferrari, S. Guddala, E. Moser, S. Pelli, D. N. Rao, and G. C. Righini, “Tb3+/Yb3+ co-activated silica-hafnia glass ceramic waveguides,” Opt. Mater. 33(2), 227–230 (2010).
[CrossRef]

Cho, S.-J.

Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[CrossRef]

Dallera, C.

C. Dallera, E. Annese, J.-P. Rueff, A. Palenzona, G. Vanko, L. Braicovich, A. Shukla, and M. Grioni, “Determination of pressure-induced valence changes in YbAl2 by resonant inelastic X-ray emission,” Phys. Rev. B 68(24), 245114 (2003).
[CrossRef]

de Wild, J.

J. de Wild, J. K. Rath, A. Meijerink, W. Van Sark, and R. E. I. Schropp, “Enhanced near-infrared response of a-Si:H solar cells with β-NaYF4:Yb3+ (18%), Er3+ (2%) up-conversion phosphors,” Sol. Energy Mater. Sol. Cells 94(12), 2395–2398 (2010).
[CrossRef]

del-Castillo, J.

V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, J. del-Castillo, and C. Görller-Walrand, “Measurement of quantum yield of up-conversion Luminescence in Er(3+)-doped nano-glass-ceramics,” J. Nanosci. Nanotechnol. 9(3), 2072–2075 (2009).
[CrossRef] [PubMed]

Ding, Y.

Y. Ding and Z. L. Wang, “Electron energy-loss spectroscopy study of ZnO nanobelts,” J. Electron Microsc. (Tokyo) 54(3), 287–291 (2005).
[CrossRef] [PubMed]

Dogan, S.

Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[CrossRef]

Driesen, K.

Engleman, R.

L. J. Radziemski, R. Engleman, and J. W. Brault, “Fourier-transform-spectroscopy measurements in the spectra of neutral lithium, 6Li,” Phys. Rev. A 52(6), 4462–4470 (1995).
[CrossRef] [PubMed]

Fan, T.

T. Fan, Q. Zhang, and Z. Jiang, “Enhanced near-infrared luminescence in Y2O3:Yb3+ nanocrystals by codoping with Li+ ions,” Opt. Commun. 284(1), 249–251 (2011).
[CrossRef]

Ferrari, M.

G. Alombert-Godet, C. Armellini, S. Berneschi, A. Chiappini, A. Chiasera, M. Ferrari, S. Guddala, E. Moser, S. Pelli, D. N. Rao, and G. C. Righini, “Tb3+/Yb3+ co-activated silica-hafnia glass ceramic waveguides,” Opt. Mater. 33(2), 227–230 (2010).
[CrossRef]

Fukuda, T.

T. Fukuda, S. Kato, E. Kin, K. Okaniwa, H. Morikawa, Z. Honda, and N. Kamata, “Wavelength conversion film with glass coated Eu chelate for enhanced silicon-photovoltaic cell performance,” Opt. Mater. 32(1), 22–25 (2009).
[CrossRef]

Furniss, D.

J. Méndez-Ramos, V. K. Tikhomirov, V. D. Rodríguez, and D. Furniss, “Infrared tunable up-conversion phosphor based on Er3+ doped nano-glass-ceramics,” J. Alloy. Comp. 440(1-2), 328–332 (2007).
[CrossRef]

Görller-Walrand, C.

V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, J. del-Castillo, and C. Görller-Walrand, “Measurement of quantum yield of up-conversion Luminescence in Er(3+)-doped nano-glass-ceramics,” J. Nanosci. Nanotechnol. 9(3), 2072–2075 (2009).
[CrossRef] [PubMed]

V. K. Tikhomirov, K. Driesen, C. Görller-Walrand, and M. Mortier, “Broadband telecommunication wavelength emission in Yb3+-Er3+-Tm3+ co-doped nano-glassceramics,” Opt. Express 15(15), 9535–9540 (2007).
[CrossRef] [PubMed]

Green, M. A.

T. Trupke, A. Shalav, B. S. Richards, P. W. Würfel, and M. A. Green, “Efficiency enhancement of solar cells by luminescent up-conversion of sun light,” Sol. Energy Mater. Sol. Cells 90(18-19), 3327–3338 (2006).
[CrossRef]

Grioni, M.

C. Dallera, E. Annese, J.-P. Rueff, A. Palenzona, G. Vanko, L. Braicovich, A. Shukla, and M. Grioni, “Determination of pressure-induced valence changes in YbAl2 by resonant inelastic X-ray emission,” Phys. Rev. B 68(24), 245114 (2003).
[CrossRef]

Guddala, S.

G. Alombert-Godet, C. Armellini, S. Berneschi, A. Chiappini, A. Chiasera, M. Ferrari, S. Guddala, E. Moser, S. Pelli, D. N. Rao, and G. C. Righini, “Tb3+/Yb3+ co-activated silica-hafnia glass ceramic waveguides,” Opt. Mater. 33(2), 227–230 (2010).
[CrossRef]

Haneda, H.

I. Sakaguchi, Y. Adachi, T. Ogaki, K. Matsumoto, S. Hishita, H. Haneda, and N. Ohashi, “Impurity contamination and diffusion during annealing in implanted ZnO,” Key Eng. Mater. 388, 23–26 (2009).
[CrossRef]

Harada, Y.

T. Hirai, Y. Harada, S. Hashimoto, T. Itoh, and N. Ohno, “Luminescence of excitons in mesoscopic ZnO particles,” J. Lumin. 112(1-4), 196–199 (2005).
[CrossRef]

Hashimoto, S.

T. Hirai, Y. Harada, S. Hashimoto, T. Itoh, and N. Ohno, “Luminescence of excitons in mesoscopic ZnO particles,” J. Lumin. 112(1-4), 196–199 (2005).
[CrossRef]

Hashimoto, Y.

Y. Hashimoto, M. Wakeshima, K. Matsuhira, Y. Hinatsu, and Y. Ishii, “Structures and magnetic properties of ternary lithium oxides LiRO2 (R=Rare Earths),” Chem. Mater. 14(8), 3245–3251 (2002).
[CrossRef]

He, F.

Hendricks, J. H.

A. N. Alexandrova, A. I. Boldyrev, X. Li, H. W. Sarkas, J. H. Hendricks, S. T. Arnold, and K. H. Bowen, “Lithium cluster anions: photoelectron spectroscopy and ab initio calculations,” J. Chem. Phys. 134(4), 044322 (2011).
[CrossRef] [PubMed]

Hinatsu, Y.

Y. Hashimoto, M. Wakeshima, K. Matsuhira, Y. Hinatsu, and Y. Ishii, “Structures and magnetic properties of ternary lithium oxides LiRO2 (R=Rare Earths),” Chem. Mater. 14(8), 3245–3251 (2002).
[CrossRef]

Hirai, T.

T. Hirai, Y. Harada, S. Hashimoto, T. Itoh, and N. Ohno, “Luminescence of excitons in mesoscopic ZnO particles,” J. Lumin. 112(1-4), 196–199 (2005).
[CrossRef]

Hishita, S.

I. Sakaguchi, Y. Adachi, T. Ogaki, K. Matsumoto, S. Hishita, H. Haneda, and N. Ohashi, “Impurity contamination and diffusion during annealing in implanted ZnO,” Key Eng. Mater. 388, 23–26 (2009).
[CrossRef]

Honda, Z.

T. Fukuda, S. Kato, E. Kin, K. Okaniwa, H. Morikawa, Z. Honda, and N. Kamata, “Wavelength conversion film with glass coated Eu chelate for enhanced silicon-photovoltaic cell performance,” Opt. Mater. 32(1), 22–25 (2009).
[CrossRef]

Howes, H. L.

E. L. Nicholas and H. L. Howes, “The photolumenscence of flames,” Phys. Rev. 22(5), 425–431 (1923).
[CrossRef]

Ishii, Y.

Y. Hashimoto, M. Wakeshima, K. Matsuhira, Y. Hinatsu, and Y. Ishii, “Structures and magnetic properties of ternary lithium oxides LiRO2 (R=Rare Earths),” Chem. Mater. 14(8), 3245–3251 (2002).
[CrossRef]

Itoh, T.

T. Hirai, Y. Harada, S. Hashimoto, T. Itoh, and N. Ohno, “Luminescence of excitons in mesoscopic ZnO particles,” J. Lumin. 112(1-4), 196–199 (2005).
[CrossRef]

Jiang, N.

Jiang, Z.

T. Fan, Q. Zhang, and Z. Jiang, “Enhanced near-infrared luminescence in Y2O3:Yb3+ nanocrystals by codoping with Li+ ions,” Opt. Commun. 284(1), 249–251 (2011).
[CrossRef]

Kamata, N.

T. Fukuda, S. Kato, E. Kin, K. Okaniwa, H. Morikawa, Z. Honda, and N. Kamata, “Wavelength conversion film with glass coated Eu chelate for enhanced silicon-photovoltaic cell performance,” Opt. Mater. 32(1), 22–25 (2009).
[CrossRef]

Kang, T. W.

A. N. Baranov, G. N. Panin, T. W. Kang, and Y.-J. Oh, “Growth of ZnO nanorods from a salt mixture,” Nanotechnology 16(9), 1918–1923 (2005).
[CrossRef]

A. N. Baranov, C. H. Chang, O. A. Shlyakhtin, G. N. Panin, T. W. Kang, and Y.-J. Oh, “In situ study of the ZnO–NaCl system during the growth of ZnO nanorods,” Nanotechnology 15(11), 1613–1619 (2004).
[CrossRef]

Kato, S.

T. Fukuda, S. Kato, E. Kin, K. Okaniwa, H. Morikawa, Z. Honda, and N. Kamata, “Wavelength conversion film with glass coated Eu chelate for enhanced silicon-photovoltaic cell performance,” Opt. Mater. 32(1), 22–25 (2009).
[CrossRef]

Kin, E.

T. Fukuda, S. Kato, E. Kin, K. Okaniwa, H. Morikawa, Z. Honda, and N. Kamata, “Wavelength conversion film with glass coated Eu chelate for enhanced silicon-photovoltaic cell performance,” Opt. Mater. 32(1), 22–25 (2009).
[CrossRef]

Kirilenko, D.

Klingshirn, C.

C. Klingshirn, “ZnO: From basics towards applications,” Phys. Status Solidi, B Basic Res. 244(9), 3027–3073 (2007).
[CrossRef]

Koizumi, A.

Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54 μm photoemission,” Appl. Phys. Lett. 87(9), 091109 (2005).
[CrossRef]

Komori, T.

Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54 μm photoemission,” Appl. Phys. Lett. 87(9), 091109 (2005).
[CrossRef]

Kuznetsov, A.

LaVilla, R. E.

R. E. LaVilla, “M4,5 emission spectra from Gd2O3 and Yb2O3,” Phys. Rev. A 9(5), 1801–1805 (1974).
[CrossRef]

Li, X.

A. N. Alexandrova, A. I. Boldyrev, X. Li, H. W. Sarkas, J. H. Hendricks, S. T. Arnold, and K. H. Bowen, “Lithium cluster anions: photoelectron spectroscopy and ab initio calculations,” J. Chem. Phys. 134(4), 044322 (2011).
[CrossRef] [PubMed]

Liu, C.

Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[CrossRef]

Liu, X.

Matsuhira, K.

Y. Hashimoto, M. Wakeshima, K. Matsuhira, Y. Hinatsu, and Y. Ishii, “Structures and magnetic properties of ternary lithium oxides LiRO2 (R=Rare Earths),” Chem. Mater. 14(8), 3245–3251 (2002).
[CrossRef]

Matsumoto, K.

I. Sakaguchi, Y. Adachi, T. Ogaki, K. Matsumoto, S. Hishita, H. Haneda, and N. Ohashi, “Impurity contamination and diffusion during annealing in implanted ZnO,” Key Eng. Mater. 388, 23–26 (2009).
[CrossRef]

Meijerink, A.

J. de Wild, J. K. Rath, A. Meijerink, W. Van Sark, and R. E. I. Schropp, “Enhanced near-infrared response of a-Si:H solar cells with β-NaYF4:Yb3+ (18%), Er3+ (2%) up-conversion phosphors,” Sol. Energy Mater. Sol. Cells 94(12), 2395–2398 (2010).
[CrossRef]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. (Deerfield Beach Fla.) 21(30), 3073 (2009).
[CrossRef]

A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, “The luminescence of nanocrystalline ZnO particles: the mechanism of the ultraviolet and visible emission,” J. Lumin. 87–89, 454–456 (2000).
[CrossRef]

Méndez-Ramos, J.

V. D. Rodríquez, V. K. Tikhomirov, J. Méndez-Ramos, A. C. Yanes, and V. V. Moshchalkov, “Towards broad range and highly efficient down-conversion of solar spectrum by Er3+-Yb3+ co-doped nano-structured glass-ceramics,” Sol. Energy Mater. Sol. Cells 94(10), 1612–1617 (2010).
[CrossRef]

V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, J. del-Castillo, and C. Görller-Walrand, “Measurement of quantum yield of up-conversion Luminescence in Er(3+)-doped nano-glass-ceramics,” J. Nanosci. Nanotechnol. 9(3), 2072–2075 (2009).
[CrossRef] [PubMed]

J. Méndez-Ramos, V. K. Tikhomirov, V. D. Rodríguez, and D. Furniss, “Infrared tunable up-conversion phosphor based on Er3+ doped nano-glass-ceramics,” J. Alloy. Comp. 440(1-2), 328–332 (2007).
[CrossRef]

Meulenkamp, E. A.

A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, “The luminescence of nanocrystalline ZnO particles: the mechanism of the ultraviolet and visible emission,” J. Lumin. 87–89, 454–456 (2000).
[CrossRef]

Morikawa, H.

T. Fukuda, S. Kato, E. Kin, K. Okaniwa, H. Morikawa, Z. Honda, and N. Kamata, “Wavelength conversion film with glass coated Eu chelate for enhanced silicon-photovoltaic cell performance,” Opt. Mater. 32(1), 22–25 (2009).
[CrossRef]

Morinaga, M.

Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54 μm photoemission,” Appl. Phys. Lett. 87(9), 091109 (2005).
[CrossRef]

Morkoç, H.

Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[CrossRef]

Mortier, M.

Moser, E.

G. Alombert-Godet, C. Armellini, S. Berneschi, A. Chiappini, A. Chiasera, M. Ferrari, S. Guddala, E. Moser, S. Pelli, D. N. Rao, and G. C. Righini, “Tb3+/Yb3+ co-activated silica-hafnia glass ceramic waveguides,” Opt. Mater. 33(2), 227–230 (2010).
[CrossRef]

Moshchalkov, V. V.

V. K. Tikhomirov, V. D. Rodríguez, A. Kuznetsov, D. Kirilenko, G. Van Tendeloo, and V. V. Moshchalkov, “Preparation and luminescence of bulk oxyfluoride glasses doped with Ag nanoclusters,” Opt. Express 18(21), 22032–22040 (2010).
[CrossRef] [PubMed]

V. D. Rodríquez, V. K. Tikhomirov, J. Méndez-Ramos, A. C. Yanes, and V. V. Moshchalkov, “Towards broad range and highly efficient down-conversion of solar spectrum by Er3+-Yb3+ co-doped nano-structured glass-ceramics,” Sol. Energy Mater. Sol. Cells 94(10), 1612–1617 (2010).
[CrossRef]

Nicholas, E. L.

E. L. Nicholas and H. L. Howes, “The photolumenscence of flames,” Phys. Rev. 22(5), 425–431 (1923).
[CrossRef]

Ogaki, T.

I. Sakaguchi, Y. Adachi, T. Ogaki, K. Matsumoto, S. Hishita, H. Haneda, and N. Ohashi, “Impurity contamination and diffusion during annealing in implanted ZnO,” Key Eng. Mater. 388, 23–26 (2009).
[CrossRef]

Oh, Y.-J.

A. N. Baranov, G. N. Panin, T. W. Kang, and Y.-J. Oh, “Growth of ZnO nanorods from a salt mixture,” Nanotechnology 16(9), 1918–1923 (2005).
[CrossRef]

A. N. Baranov, C. H. Chang, O. A. Shlyakhtin, G. N. Panin, T. W. Kang, and Y.-J. Oh, “In situ study of the ZnO–NaCl system during the growth of ZnO nanorods,” Nanotechnology 15(11), 1613–1619 (2004).
[CrossRef]

Ohashi, N.

I. Sakaguchi, Y. Adachi, T. Ogaki, K. Matsumoto, S. Hishita, H. Haneda, and N. Ohashi, “Impurity contamination and diffusion during annealing in implanted ZnO,” Key Eng. Mater. 388, 23–26 (2009).
[CrossRef]

Ohno, N.

T. Hirai, Y. Harada, S. Hashimoto, T. Itoh, and N. Ohno, “Luminescence of excitons in mesoscopic ZnO particles,” J. Lumin. 112(1-4), 196–199 (2005).
[CrossRef]

Okaniwa, K.

T. Fukuda, S. Kato, E. Kin, K. Okaniwa, H. Morikawa, Z. Honda, and N. Kamata, “Wavelength conversion film with glass coated Eu chelate for enhanced silicon-photovoltaic cell performance,” Opt. Mater. 32(1), 22–25 (2009).
[CrossRef]

Özgür, Ü.

Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[CrossRef]

Palenzona, A.

C. Dallera, E. Annese, J.-P. Rueff, A. Palenzona, G. Vanko, L. Braicovich, A. Shukla, and M. Grioni, “Determination of pressure-induced valence changes in YbAl2 by resonant inelastic X-ray emission,” Phys. Rev. B 68(24), 245114 (2003).
[CrossRef]

Panin, G. N.

A. N. Baranov, G. N. Panin, T. W. Kang, and Y.-J. Oh, “Growth of ZnO nanorods from a salt mixture,” Nanotechnology 16(9), 1918–1923 (2005).
[CrossRef]

A. N. Baranov, C. H. Chang, O. A. Shlyakhtin, G. N. Panin, T. W. Kang, and Y.-J. Oh, “In situ study of the ZnO–NaCl system during the growth of ZnO nanorods,” Nanotechnology 15(11), 1613–1619 (2004).
[CrossRef]

Pasquarello, A.

A. Carvahlo, A. Alakauskas, A. Pasquarello, A. K. Tagantsev, and N. Setter, “Li-related defects in ZnO: Hybrid functional calculations,” Physica B 404(23-24), 4797–4799 (2009).
[CrossRef]

Pelli, S.

G. Alombert-Godet, C. Armellini, S. Berneschi, A. Chiappini, A. Chiasera, M. Ferrari, S. Guddala, E. Moser, S. Pelli, D. N. Rao, and G. C. Righini, “Tb3+/Yb3+ co-activated silica-hafnia glass ceramic waveguides,” Opt. Mater. 33(2), 227–230 (2010).
[CrossRef]

Qiu, J.

Qiu, J. R.

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–518 (1961).
[CrossRef]

Radziemski, L. J.

L. J. Radziemski, R. Engleman, and J. W. Brault, “Fourier-transform-spectroscopy measurements in the spectra of neutral lithium, 6Li,” Phys. Rev. A 52(6), 4462–4470 (1995).
[CrossRef] [PubMed]

Rao, D. N.

G. Alombert-Godet, C. Armellini, S. Berneschi, A. Chiappini, A. Chiasera, M. Ferrari, S. Guddala, E. Moser, S. Pelli, D. N. Rao, and G. C. Righini, “Tb3+/Yb3+ co-activated silica-hafnia glass ceramic waveguides,” Opt. Mater. 33(2), 227–230 (2010).
[CrossRef]

Rath, J. K.

J. de Wild, J. K. Rath, A. Meijerink, W. Van Sark, and R. E. I. Schropp, “Enhanced near-infrared response of a-Si:H solar cells with β-NaYF4:Yb3+ (18%), Er3+ (2%) up-conversion phosphors,” Sol. Energy Mater. Sol. Cells 94(12), 2395–2398 (2010).
[CrossRef]

Reshchikov, M. A.

Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[CrossRef]

Richards, B.

B. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells 90(15), 2329–2337 (2006).
[CrossRef]

Richards, B. S.

T. Trupke, A. Shalav, B. S. Richards, P. W. Würfel, and M. A. Green, “Efficiency enhancement of solar cells by luminescent up-conversion of sun light,” Sol. Energy Mater. Sol. Cells 90(18-19), 3327–3338 (2006).
[CrossRef]

Righini, G. C.

G. Alombert-Godet, C. Armellini, S. Berneschi, A. Chiappini, A. Chiasera, M. Ferrari, S. Guddala, E. Moser, S. Pelli, D. N. Rao, and G. C. Righini, “Tb3+/Yb3+ co-activated silica-hafnia glass ceramic waveguides,” Opt. Mater. 33(2), 227–230 (2010).
[CrossRef]

Rodríguez, V. D.

V. K. Tikhomirov, V. D. Rodríguez, A. Kuznetsov, D. Kirilenko, G. Van Tendeloo, and V. V. Moshchalkov, “Preparation and luminescence of bulk oxyfluoride glasses doped with Ag nanoclusters,” Opt. Express 18(21), 22032–22040 (2010).
[CrossRef] [PubMed]

V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, J. del-Castillo, and C. Görller-Walrand, “Measurement of quantum yield of up-conversion Luminescence in Er(3+)-doped nano-glass-ceramics,” J. Nanosci. Nanotechnol. 9(3), 2072–2075 (2009).
[CrossRef] [PubMed]

J. Méndez-Ramos, V. K. Tikhomirov, V. D. Rodríguez, and D. Furniss, “Infrared tunable up-conversion phosphor based on Er3+ doped nano-glass-ceramics,” J. Alloy. Comp. 440(1-2), 328–332 (2007).
[CrossRef]

Rodríquez, V. D.

V. D. Rodríquez, V. K. Tikhomirov, J. Méndez-Ramos, A. C. Yanes, and V. V. Moshchalkov, “Towards broad range and highly efficient down-conversion of solar spectrum by Er3+-Yb3+ co-doped nano-structured glass-ceramics,” Sol. Energy Mater. Sol. Cells 94(10), 1612–1617 (2010).
[CrossRef]

Rueff, J.-P.

C. Dallera, E. Annese, J.-P. Rueff, A. Palenzona, G. Vanko, L. Braicovich, A. Shukla, and M. Grioni, “Determination of pressure-induced valence changes in YbAl2 by resonant inelastic X-ray emission,” Phys. Rev. B 68(24), 245114 (2003).
[CrossRef]

Sakaguchi, I.

I. Sakaguchi, Y. Adachi, T. Ogaki, K. Matsumoto, S. Hishita, H. Haneda, and N. Ohashi, “Impurity contamination and diffusion during annealing in implanted ZnO,” Key Eng. Mater. 388, 23–26 (2009).
[CrossRef]

Sarkas, H. W.

A. N. Alexandrova, A. I. Boldyrev, X. Li, H. W. Sarkas, J. H. Hendricks, S. T. Arnold, and K. H. Bowen, “Lithium cluster anions: photoelectron spectroscopy and ab initio calculations,” J. Chem. Phys. 134(4), 044322 (2011).
[CrossRef] [PubMed]

Schropp, R. E. I.

J. de Wild, J. K. Rath, A. Meijerink, W. Van Sark, and R. E. I. Schropp, “Enhanced near-infrared response of a-Si:H solar cells with β-NaYF4:Yb3+ (18%), Er3+ (2%) up-conversion phosphors,” Sol. Energy Mater. Sol. Cells 94(12), 2395–2398 (2010).
[CrossRef]

Setter, N.

A. Carvahlo, A. Alakauskas, A. Pasquarello, A. K. Tagantsev, and N. Setter, “Li-related defects in ZnO: Hybrid functional calculations,” Physica B 404(23-24), 4797–4799 (2009).
[CrossRef]

Shalav, A.

T. Trupke, A. Shalav, B. S. Richards, P. W. Würfel, and M. A. Green, “Efficiency enhancement of solar cells by luminescent up-conversion of sun light,” Sol. Energy Mater. Sol. Cells 90(18-19), 3327–3338 (2006).
[CrossRef]

Shlyakhtin, O. A.

A. N. Baranov, C. H. Chang, O. A. Shlyakhtin, G. N. Panin, T. W. Kang, and Y.-J. Oh, “In situ study of the ZnO–NaCl system during the growth of ZnO nanorods,” Nanotechnology 15(11), 1613–1619 (2004).
[CrossRef]

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–518 (1961).
[CrossRef]

Shukla, A.

C. Dallera, E. Annese, J.-P. Rueff, A. Palenzona, G. Vanko, L. Braicovich, A. Shukla, and M. Grioni, “Determination of pressure-induced valence changes in YbAl2 by resonant inelastic X-ray emission,” Phys. Rev. B 68(24), 245114 (2003).
[CrossRef]

Tagantsev, A. K.

A. Carvahlo, A. Alakauskas, A. Pasquarello, A. K. Tagantsev, and N. Setter, “Li-related defects in ZnO: Hybrid functional calculations,” Physica B 404(23-24), 4797–4799 (2009).
[CrossRef]

Takeda, Y.

Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54 μm photoemission,” Appl. Phys. Lett. 87(9), 091109 (2005).
[CrossRef]

Teke, A.

Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[CrossRef]

Teng, Y.

Tikhomirov, V. K.

V. K. Tikhomirov, V. D. Rodríguez, A. Kuznetsov, D. Kirilenko, G. Van Tendeloo, and V. V. Moshchalkov, “Preparation and luminescence of bulk oxyfluoride glasses doped with Ag nanoclusters,” Opt. Express 18(21), 22032–22040 (2010).
[CrossRef] [PubMed]

V. D. Rodríquez, V. K. Tikhomirov, J. Méndez-Ramos, A. C. Yanes, and V. V. Moshchalkov, “Towards broad range and highly efficient down-conversion of solar spectrum by Er3+-Yb3+ co-doped nano-structured glass-ceramics,” Sol. Energy Mater. Sol. Cells 94(10), 1612–1617 (2010).
[CrossRef]

V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, J. del-Castillo, and C. Görller-Walrand, “Measurement of quantum yield of up-conversion Luminescence in Er(3+)-doped nano-glass-ceramics,” J. Nanosci. Nanotechnol. 9(3), 2072–2075 (2009).
[CrossRef] [PubMed]

J. Méndez-Ramos, V. K. Tikhomirov, V. D. Rodríguez, and D. Furniss, “Infrared tunable up-conversion phosphor based on Er3+ doped nano-glass-ceramics,” J. Alloy. Comp. 440(1-2), 328–332 (2007).
[CrossRef]

V. K. Tikhomirov, K. Driesen, C. Görller-Walrand, and M. Mortier, “Broadband telecommunication wavelength emission in Yb3+-Er3+-Tm3+ co-doped nano-glassceramics,” Opt. Express 15(15), 9535–9540 (2007).
[CrossRef] [PubMed]

Trupke, T.

T. Trupke, A. Shalav, B. S. Richards, P. W. Würfel, and M. A. Green, “Efficiency enhancement of solar cells by luminescent up-conversion of sun light,” Sol. Energy Mater. Sol. Cells 90(18-19), 3327–3338 (2006).
[CrossRef]

van der Ende, B. M.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. (Deerfield Beach Fla.) 21(30), 3073 (2009).
[CrossRef]

van Dijken, A.

A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, “The luminescence of nanocrystalline ZnO particles: the mechanism of the ultraviolet and visible emission,” J. Lumin. 87–89, 454–456 (2000).
[CrossRef]

Van Sark, W.

J. de Wild, J. K. Rath, A. Meijerink, W. Van Sark, and R. E. I. Schropp, “Enhanced near-infrared response of a-Si:H solar cells with β-NaYF4:Yb3+ (18%), Er3+ (2%) up-conversion phosphors,” Sol. Energy Mater. Sol. Cells 94(12), 2395–2398 (2010).
[CrossRef]

Van Tendeloo, G.

Vanko, G.

C. Dallera, E. Annese, J.-P. Rueff, A. Palenzona, G. Vanko, L. Braicovich, A. Shukla, and M. Grioni, “Determination of pressure-induced valence changes in YbAl2 by resonant inelastic X-ray emission,” Phys. Rev. B 68(24), 245114 (2003).
[CrossRef]

Vanmaekelbergh, D.

A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, “The luminescence of nanocrystalline ZnO particles: the mechanism of the ultraviolet and visible emission,” J. Lumin. 87–89, 454–456 (2000).
[CrossRef]

Wakeshima, M.

Y. Hashimoto, M. Wakeshima, K. Matsuhira, Y. Hinatsu, and Y. Ishii, “Structures and magnetic properties of ternary lithium oxides LiRO2 (R=Rare Earths),” Chem. Mater. 14(8), 3245–3251 (2002).
[CrossRef]

Wang, Z. L.

Y. Ding and Z. L. Wang, “Electron energy-loss spectroscopy study of ZnO nanobelts,” J. Electron Microsc. (Tokyo) 54(3), 287–291 (2005).
[CrossRef] [PubMed]

Würfel, P. W.

T. Trupke, A. Shalav, B. S. Richards, P. W. Würfel, and M. A. Green, “Efficiency enhancement of solar cells by luminescent up-conversion of sun light,” Sol. Energy Mater. Sol. Cells 90(18-19), 3327–3338 (2006).
[CrossRef]

Yanes, A. C.

V. D. Rodríquez, V. K. Tikhomirov, J. Méndez-Ramos, A. C. Yanes, and V. V. Moshchalkov, “Towards broad range and highly efficient down-conversion of solar spectrum by Er3+-Yb3+ co-doped nano-structured glass-ceramics,” Sol. Energy Mater. Sol. Cells 94(10), 1612–1617 (2010).
[CrossRef]

Ye, S.

Yogomalar, N. R.

N. R. Yogomalar and A. C. Bose, “Burnstein-Moss shift and room temperature near-band-edge luminescence in lithium doped zinc oxide,” Appl. Phys., A Mater. Sci. Process. 103(1), 33–42 (2011).
[CrossRef]

Yukawa, H.

Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54 μm photoemission,” Appl. Phys. Lett. 87(9), 091109 (2005).
[CrossRef]

Zhang, Q.

T. Fan, Q. Zhang, and Z. Jiang, “Enhanced near-infrared luminescence in Y2O3:Yb3+ nanocrystals by codoping with Li+ ions,” Opt. Commun. 284(1), 249–251 (2011).
[CrossRef]

Zhou, J.

Zhou, Z.

Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54 μm photoemission,” Appl. Phys. Lett. 87(9), 091109 (2005).
[CrossRef]

Zhu, B.

Adv. Mater. (Deerfield Beach Fla.)

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. (Deerfield Beach Fla.) 21(30), 3073 (2009).
[CrossRef]

Appl. Phys. Lett.

Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54 μm photoemission,” Appl. Phys. Lett. 87(9), 091109 (2005).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

N. R. Yogomalar and A. C. Bose, “Burnstein-Moss shift and room temperature near-band-edge luminescence in lithium doped zinc oxide,” Appl. Phys., A Mater. Sci. Process. 103(1), 33–42 (2011).
[CrossRef]

Chem. Mater.

Y. Hashimoto, M. Wakeshima, K. Matsuhira, Y. Hinatsu, and Y. Ishii, “Structures and magnetic properties of ternary lithium oxides LiRO2 (R=Rare Earths),” Chem. Mater. 14(8), 3245–3251 (2002).
[CrossRef]

J. Alloy. Comp.

J. Méndez-Ramos, V. K. Tikhomirov, V. D. Rodríguez, and D. Furniss, “Infrared tunable up-conversion phosphor based on Er3+ doped nano-glass-ceramics,” J. Alloy. Comp. 440(1-2), 328–332 (2007).
[CrossRef]

J. Appl. Phys.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–518 (1961).
[CrossRef]

Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[CrossRef]

J. Chem. Phys.

A. N. Alexandrova, A. I. Boldyrev, X. Li, H. W. Sarkas, J. H. Hendricks, S. T. Arnold, and K. H. Bowen, “Lithium cluster anions: photoelectron spectroscopy and ab initio calculations,” J. Chem. Phys. 134(4), 044322 (2011).
[CrossRef] [PubMed]

J. Electron Microsc. (Tokyo)

Y. Ding and Z. L. Wang, “Electron energy-loss spectroscopy study of ZnO nanobelts,” J. Electron Microsc. (Tokyo) 54(3), 287–291 (2005).
[CrossRef] [PubMed]

J. Lumin.

T. Hirai, Y. Harada, S. Hashimoto, T. Itoh, and N. Ohno, “Luminescence of excitons in mesoscopic ZnO particles,” J. Lumin. 112(1-4), 196–199 (2005).
[CrossRef]

A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, “The luminescence of nanocrystalline ZnO particles: the mechanism of the ultraviolet and visible emission,” J. Lumin. 87–89, 454–456 (2000).
[CrossRef]

J. Nanosci. Nanotechnol.

V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, J. del-Castillo, and C. Görller-Walrand, “Measurement of quantum yield of up-conversion Luminescence in Er(3+)-doped nano-glass-ceramics,” J. Nanosci. Nanotechnol. 9(3), 2072–2075 (2009).
[CrossRef] [PubMed]

Key Eng. Mater.

I. Sakaguchi, Y. Adachi, T. Ogaki, K. Matsumoto, S. Hishita, H. Haneda, and N. Ohashi, “Impurity contamination and diffusion during annealing in implanted ZnO,” Key Eng. Mater. 388, 23–26 (2009).
[CrossRef]

Nanotechnology

A. N. Baranov, G. N. Panin, T. W. Kang, and Y.-J. Oh, “Growth of ZnO nanorods from a salt mixture,” Nanotechnology 16(9), 1918–1923 (2005).
[CrossRef]

A. N. Baranov, C. H. Chang, O. A. Shlyakhtin, G. N. Panin, T. W. Kang, and Y.-J. Oh, “In situ study of the ZnO–NaCl system during the growth of ZnO nanorods,” Nanotechnology 15(11), 1613–1619 (2004).
[CrossRef]

Opt. Commun.

T. Fan, Q. Zhang, and Z. Jiang, “Enhanced near-infrared luminescence in Y2O3:Yb3+ nanocrystals by codoping with Li+ ions,” Opt. Commun. 284(1), 249–251 (2011).
[CrossRef]

Opt. Express

Opt. Mater.

G. Alombert-Godet, C. Armellini, S. Berneschi, A. Chiappini, A. Chiasera, M. Ferrari, S. Guddala, E. Moser, S. Pelli, D. N. Rao, and G. C. Righini, “Tb3+/Yb3+ co-activated silica-hafnia glass ceramic waveguides,” Opt. Mater. 33(2), 227–230 (2010).
[CrossRef]

T. Fukuda, S. Kato, E. Kin, K. Okaniwa, H. Morikawa, Z. Honda, and N. Kamata, “Wavelength conversion film with glass coated Eu chelate for enhanced silicon-photovoltaic cell performance,” Opt. Mater. 32(1), 22–25 (2009).
[CrossRef]

Phys. Rev.

E. L. Nicholas and H. L. Howes, “The photolumenscence of flames,” Phys. Rev. 22(5), 425–431 (1923).
[CrossRef]

Phys. Rev. A

L. J. Radziemski, R. Engleman, and J. W. Brault, “Fourier-transform-spectroscopy measurements in the spectra of neutral lithium, 6Li,” Phys. Rev. A 52(6), 4462–4470 (1995).
[CrossRef] [PubMed]

R. E. LaVilla, “M4,5 emission spectra from Gd2O3 and Yb2O3,” Phys. Rev. A 9(5), 1801–1805 (1974).
[CrossRef]

Phys. Rev. B

C. Dallera, E. Annese, J.-P. Rueff, A. Palenzona, G. Vanko, L. Braicovich, A. Shukla, and M. Grioni, “Determination of pressure-induced valence changes in YbAl2 by resonant inelastic X-ray emission,” Phys. Rev. B 68(24), 245114 (2003).
[CrossRef]

Phys. Status Solidi, B Basic Res.

C. Klingshirn, “ZnO: From basics towards applications,” Phys. Status Solidi, B Basic Res. 244(9), 3027–3073 (2007).
[CrossRef]

Physica B

A. Carvahlo, A. Alakauskas, A. Pasquarello, A. K. Tagantsev, and N. Setter, “Li-related defects in ZnO: Hybrid functional calculations,” Physica B 404(23-24), 4797–4799 (2009).
[CrossRef]

Sol. Energy Mater. Sol. Cells

V. D. Rodríquez, V. K. Tikhomirov, J. Méndez-Ramos, A. C. Yanes, and V. V. Moshchalkov, “Towards broad range and highly efficient down-conversion of solar spectrum by Er3+-Yb3+ co-doped nano-structured glass-ceramics,” Sol. Energy Mater. Sol. Cells 94(10), 1612–1617 (2010).
[CrossRef]

B. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells 90(15), 2329–2337 (2006).
[CrossRef]

T. Trupke, A. Shalav, B. S. Richards, P. W. Würfel, and M. A. Green, “Efficiency enhancement of solar cells by luminescent up-conversion of sun light,” Sol. Energy Mater. Sol. Cells 90(18-19), 3327–3338 (2006).
[CrossRef]

J. de Wild, J. K. Rath, A. Meijerink, W. Van Sark, and R. E. I. Schropp, “Enhanced near-infrared response of a-Si:H solar cells with β-NaYF4:Yb3+ (18%), Er3+ (2%) up-conversion phosphors,” Sol. Energy Mater. Sol. Cells 94(12), 2395–2398 (2010).
[CrossRef]

Other

A. Klein, B. Rech, and K. Ellme, Transparent Conductive Zinc Oxide, eds. (Springer, Berlin, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

XRD pattern taken from nanopowders of ZnO (black curve), ZnO:Li (red curve) and ZnO:Li-Yb (blue curve). Insert shows zoomed areas for ZnO:Li-Yb nanopowder before and after heat-treatment at 600°C for 30 minutes. Miller indices indicate the crystalline planes of ZnO wurtzite structure. The diffraction peaks corresponding to the Yb2O3 and LiYbO2 crystalline phases are marked by star * and down-headed arrow ↓ respectively. CuKα X-ray line was used.

Fig. 2
Fig. 2

(a) TEM image and (b) TEM EDX spectrum of ZnO:Li-Yb nanopowder. The Yb-M4,5 peaks between 1.50 and 2.00 keV are indicated and zoomed. Other peaks corresponding to the Yb, Zn and O are also labeled. Cu and C peaks are due to the sample holder.

Fig. 3
Fig. 3

(a) A piece of ZnO:Li-Yb nanopowder pellet showing a bright luminescent spot when illuminated by an invisible laser beam of Ar laser at 355 nm. (b,c,d) Excitation (left side) and emission (right side, black curves) spectra of ZnO (b), ZnO:Li (c) and ZnO:Li-Yb (d) nanopowders; in excitation spectra the green curves correspond to detection at 550 nm (intrinsic defect emission), red curves to detection at 770 nm (Li emission) and blue curve to detection at 980 nm (Yb emission).

Fig. 4
Fig. 4

Effect of heat treatment in air at 600°C for 30 minutes on emission spectrum of ZnO:Li nanopowder. Excitation was at 355 nm and 1 mW power of Ar laser.

Fig. 5
Fig. 5

Lg-Lg dependence of the emission intensity I versus the pump power P for the green 550 nm intrinsic emission band of ZnO (green color), for the 770 nm emission band of Li (red color) and for the 1000 nm emission band of Yb (blue color). The samples compositions and the slopes of the dependences are post-signed.

Fig. 6
Fig. 6

Energy level diagram illustrating the energy transfer processes by quantum cutting from ZnO to Li-Li and to Yb3+-Li nanoclusters. Excitation and emission transitions are shown by solid up-headed and down-headed arrows, respectively. A wavy black line shows de-excitation of electrons from the conduction band CB of ZnO to its intrinsic defect (oxygen vacancies) levels post-signed by the letter V, with subsequent emission of intrinsic green luminescence (green arrow). Thick red horizontal lines show energy levels of Li dimers/nanoclusters deduced from experimental data of Fig. 3c,d; the red down-headed arrows correspond to emission from Li-Li nanoclusters. Thin red horizontal line shows energy level of a single Li atom, which has the highest emission cross-section [29]. Blue horizontal lines show energy levels of Yb3+-Li clusters and the blue arrows indicate an experimentally detected emission of Yb at about 1000 nm. Dashed black lines indicate an energy transfer processes by quantum cutting from the ZnO exciton to the Li-Li pairs/dimers and to the Yb3+-Li pairs/dimers, respectively.

Metrics