Abstract

We propose a novel optical design of organic solar cell with a hybrid plasmonic system, which comprises a plasmonic cavity coupled with a dielectric core-metal shell nanosphere. From a rigorous solution of Maxwell’s equations, called volume integral equation method, optical absorption of the active polymer material has a four-fold increase. The significant enhancement mainly attributes to the coupling of symmetric surface wave modes supported by the cavity resonator. The dispersion relation of the plasmonic cavity is characterized by solving an 1D eigenvalue problem of the air/metal/polymer/metal/air structure with finite thicknesses of metal layers. We demonstrate that the optical enhancement strongly depends on the decay length of surface plasmon waves penetrated into the active material. Furthermore, the coherent interplay between the cavity and the dielectric core-metal shell nanosphere is undoubtedly confirmed by our theoretical model. The work offers detailed physical explanations to the hybrid plasmonic cavity device structure for enhancing the optical absorption of organic photovoltaics.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. L. Chopra, P. D. Paulson, and V. Dutta, “Thin-film solar cells: an overview,” Prog. Photovoltaics 12, 69–92 (2004).
    [CrossRef]
  2. H. Hoppe and N. S. Sariciftci, “Organic solar cells: an overview,” J. Mater. Res. 19, 1924–1945 (2004).
    [CrossRef]
  3. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
    [CrossRef]
  4. W. E. I. Sha, W. C. H. Choy, and W. C. Chew, “A comprehensive study for the plasmonic thin-film solar cell with periodic structure,” Opt. Express 18, 5993–6007 (2010).
    [CrossRef] [PubMed]
  5. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef] [PubMed]
  6. J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
    [CrossRef] [PubMed]
  7. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  8. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
    [CrossRef] [PubMed]
  9. A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92, 013504 (2008).
    [CrossRef]
  10. W. L. Bai, Q. Q. Gan, G. F. Song, L. H. Chen, Z. Kafafi, and F. Bartoli, “Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics,” Opt. Express 18, A620–A630 (2010).
    [CrossRef] [PubMed]
  11. M. G. Kang, T. Xu, H. J. Park, X. G. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mater. 22, 4378–4383 (2010).
    [CrossRef] [PubMed]
  12. C. J. Min, J. Li, G. Veronis, J. Y. Lee, S. H. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
    [CrossRef]
  13. W. E. I. Sha, W. C. H. Choy, and W. C. Chew, “Angular response of thin-film organic solar cells with periodic metal back nanostrips,” Opt. Lett. 36, 478–480 (2011).
    [CrossRef] [PubMed]
  14. D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93, 1377–1382 (2009).
    [CrossRef]
  15. J. Jung, T. G. Pedersen, T. Sondergaard, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Electrostatic plasmon resonances of metal nanospheres in layered geometries,” Phys. Rev. B 81, 125413 (2010).
    [CrossRef]
  16. S. J. Tsai, M. Ballarotto, D. B. Romero, W. N. Herman, H. C. Kan, and R. J. Phaneuf, “Effect of gold nanopillar arrays on the absorption spectrum of a bulk heterojunction organic solar cell,” Opt. Express 18, A528–A535 (2010).
    [CrossRef] [PubMed]
  17. I. Diukman, L. Tzabari, N. Berkovitch, N. Tessler, and M. Orenstein, “Controlling absorption enhancement in organic photovoltaic cells by patterning Au nano disks within the active layer,” Opt. Express 19, A64–A71 (2011).
    [CrossRef] [PubMed]
  18. J. Jung, T. Sondergaard, T. G. Pedersen, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Dyadic Green’s functions of thin films: Applications within plasmonic solar cells,” Phys. Rev. B 83, 085419 (2011).
    [CrossRef]
  19. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
    [CrossRef]
  20. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
    [CrossRef]
  21. A. M. Kern and O. J. F. Martin, “Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures,” J. Opt. Soc. Am. A 26, 732–740 (2009).
    [CrossRef]
  22. A. W. Glisson and D. R. Wilton, “Simple and efficient numerical methods for problems of electromagnetic radiation and scattering from surfaces,” IEEE Trans. Antennas Propag. 28, 593–603 (1980).
    [CrossRef]
  23. M. F. Catedra, E. Gago, and L. Nuno, “A numerical scheme to obtain the RCS of three-dimensional bodies of resonant size using the conjugate gradient method and the fast Fourier transform,” IEEE Trans. Antennas Propag. 37, 528–537 (1989).
    [CrossRef]
  24. H. A. Vandervorst, “Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput. 13, 631–644 (1992).
    [CrossRef]
  25. W. C. H. Choy and H. H. Fong, “Comprehensive investigation of absolute optical properties of organic materials,” J. Phys. D: Appl. Phys. 41, 155109 (2008).
    [CrossRef]
  26. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
    [CrossRef]
  27. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  28. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
    [CrossRef] [PubMed]
  29. W. C. Chew, Waves and Fields in Inhomogenous Media (Wiley-IEEE Press, 1999).
    [CrossRef]
  30. L. Tsang, J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves: Theories and Applications (Wiley, 2000).
    [CrossRef]
  31. B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric-constant,” Phys. Rev. B 44, 13556–13572 (1991).
    [CrossRef]
  32. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic-waves,” J. Comput. Phys. 114, 185–200 (1994).
    [CrossRef]
  33. W. C. Chew and W. H. Weedon, “A 3-D perfectly matched medium from modified Maxwell’s equations with stretched coordinates,” Microw. Opt. Technol. Lett. 7, 599–604 (1994).
    [CrossRef]

2011

2010

W. L. Bai, Q. Q. Gan, G. F. Song, L. H. Chen, Z. Kafafi, and F. Bartoli, “Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics,” Opt. Express 18, A620–A630 (2010).
[CrossRef] [PubMed]

M. G. Kang, T. Xu, H. J. Park, X. G. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mater. 22, 4378–4383 (2010).
[CrossRef] [PubMed]

C. J. Min, J. Li, G. Veronis, J. Y. Lee, S. H. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

W. E. I. Sha, W. C. H. Choy, and W. C. Chew, “A comprehensive study for the plasmonic thin-film solar cell with periodic structure,” Opt. Express 18, 5993–6007 (2010).
[CrossRef] [PubMed]

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

J. Jung, T. G. Pedersen, T. Sondergaard, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Electrostatic plasmon resonances of metal nanospheres in layered geometries,” Phys. Rev. B 81, 125413 (2010).
[CrossRef]

S. J. Tsai, M. Ballarotto, D. B. Romero, W. N. Herman, H. C. Kan, and R. J. Phaneuf, “Effect of gold nanopillar arrays on the absorption spectrum of a bulk heterojunction organic solar cell,” Opt. Express 18, A528–A535 (2010).
[CrossRef] [PubMed]

2009

A. M. Kern and O. J. F. Martin, “Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures,” J. Opt. Soc. Am. A 26, 732–740 (2009).
[CrossRef]

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[CrossRef]

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93, 1377–1382 (2009).
[CrossRef]

2008

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[CrossRef]

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92, 013504 (2008).
[CrossRef]

W. C. H. Choy and H. H. Fong, “Comprehensive investigation of absolute optical properties of organic materials,” J. Phys. D: Appl. Phys. 41, 155109 (2008).
[CrossRef]

2007

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

2004

K. L. Chopra, P. D. Paulson, and V. Dutta, “Thin-film solar cells: an overview,” Prog. Photovoltaics 12, 69–92 (2004).
[CrossRef]

H. Hoppe and N. S. Sariciftci, “Organic solar cells: an overview,” J. Mater. Res. 19, 1924–1945 (2004).
[CrossRef]

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef] [PubMed]

2000

L. Tsang, J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves: Theories and Applications (Wiley, 2000).
[CrossRef]

1999

W. C. Chew, Waves and Fields in Inhomogenous Media (Wiley-IEEE Press, 1999).
[CrossRef]

1998

1994

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic-waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

W. C. Chew and W. H. Weedon, “A 3-D perfectly matched medium from modified Maxwell’s equations with stretched coordinates,” Microw. Opt. Technol. Lett. 7, 599–604 (1994).
[CrossRef]

B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
[CrossRef]

1992

H. A. Vandervorst, “Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput. 13, 631–644 (1992).
[CrossRef]

1991

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric-constant,” Phys. Rev. B 44, 13556–13572 (1991).
[CrossRef]

1989

M. F. Catedra, E. Gago, and L. Nuno, “A numerical scheme to obtain the RCS of three-dimensional bodies of resonant size using the conjugate gradient method and the fast Fourier transform,” IEEE Trans. Antennas Propag. 37, 528–537 (1989).
[CrossRef]

1980

A. W. Glisson and D. R. Wilton, “Simple and efficient numerical methods for problems of electromagnetic radiation and scattering from surfaces,” IEEE Trans. Antennas Propag. 28, 593–603 (1980).
[CrossRef]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[CrossRef]

Bai, W. L.

Ballarotto, M.

Barnard, E.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[CrossRef]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Bartoli, F.

Berenger, J. P.

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic-waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

Berkovitch, N.

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef] [PubMed]

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[CrossRef]

Cai, W. S.

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef] [PubMed]

Catedra, M. F.

M. F. Catedra, E. Gago, and L. Nuno, “A numerical scheme to obtain the RCS of three-dimensional bodies of resonant size using the conjugate gradient method and the fast Fourier transform,” IEEE Trans. Antennas Propag. 37, 528–537 (1989).
[CrossRef]

Chen, L. H.

Chew, W. C.

Chopra, K. L.

K. L. Chopra, P. D. Paulson, and V. Dutta, “Thin-film solar cells: an overview,” Prog. Photovoltaics 12, 69–92 (2004).
[CrossRef]

Choy, W. C. H.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Ding, K. H.

L. Tsang, J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves: Theories and Applications (Wiley, 2000).
[CrossRef]

Diukman, I.

Djurisic, A. B.

Draine, B. T.

Duche, D.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93, 1377–1382 (2009).
[CrossRef]

Dutta, V.

K. L. Chopra, P. D. Paulson, and V. Dutta, “Thin-film solar cells: an overview,” Prog. Photovoltaics 12, 69–92 (2004).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Elazar, J. M.

Escoubas, L.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93, 1377–1382 (2009).
[CrossRef]

Fan, S. H.

C. J. Min, J. Li, G. Veronis, J. Y. Lee, S. H. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

Ferry, V. E.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[CrossRef]

Flatau, P. J.

Flory, F.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93, 1377–1382 (2009).
[CrossRef]

Fong, H. H.

W. C. H. Choy and H. H. Fong, “Comprehensive investigation of absolute optical properties of organic materials,” J. Phys. D: Appl. Phys. 41, 155109 (2008).
[CrossRef]

Gago, E.

M. F. Catedra, E. Gago, and L. Nuno, “A numerical scheme to obtain the RCS of three-dimensional bodies of resonant size using the conjugate gradient method and the fast Fourier transform,” IEEE Trans. Antennas Propag. 37, 528–537 (1989).
[CrossRef]

Gan, Q. Q.

Glisson, A. W.

A. W. Glisson and D. R. Wilton, “Simple and efficient numerical methods for problems of electromagnetic radiation and scattering from surfaces,” IEEE Trans. Antennas Propag. 28, 593–603 (1980).
[CrossRef]

Guo, L. J.

M. G. Kang, T. Xu, H. J. Park, X. G. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mater. 22, 4378–4383 (2010).
[CrossRef] [PubMed]

Halas, N. J.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef] [PubMed]

Herman, W. N.

Hoppe, H.

H. Hoppe and N. S. Sariciftci, “Organic solar cells: an overview,” J. Mater. Res. 19, 1924–1945 (2004).
[CrossRef]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef] [PubMed]

Jung, J.

J. Jung, T. Sondergaard, T. G. Pedersen, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Dyadic Green’s functions of thin films: Applications within plasmonic solar cells,” Phys. Rev. B 83, 085419 (2011).
[CrossRef]

J. Jung, T. G. Pedersen, T. Sondergaard, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Electrostatic plasmon resonances of metal nanospheres in layered geometries,” Phys. Rev. B 81, 125413 (2010).
[CrossRef]

Kafafi, Z.

Kan, H. C.

Kang, M. G.

M. G. Kang, T. Xu, H. J. Park, X. G. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mater. 22, 4378–4383 (2010).
[CrossRef] [PubMed]

Kern, A. M.

Kong, J. A.

L. Tsang, J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves: Theories and Applications (Wiley, 2000).
[CrossRef]

Larsen, A. N.

J. Jung, T. Sondergaard, T. G. Pedersen, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Dyadic Green’s functions of thin films: Applications within plasmonic solar cells,” Phys. Rev. B 83, 085419 (2011).
[CrossRef]

J. Jung, T. G. Pedersen, T. Sondergaard, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Electrostatic plasmon resonances of metal nanospheres in layered geometries,” Phys. Rev. B 81, 125413 (2010).
[CrossRef]

Lee, J. Y.

C. J. Min, J. Li, G. Veronis, J. Y. Lee, S. H. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

Li, J.

C. J. Min, J. Li, G. Veronis, J. Y. Lee, S. H. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

Liu, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[CrossRef]

Luo, X. G.

M. G. Kang, T. Xu, H. J. Park, X. G. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mater. 22, 4378–4383 (2010).
[CrossRef] [PubMed]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Majewski, M. L.

Martin, O. J. F.

Mathian, G.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93, 1377–1382 (2009).
[CrossRef]

Min, C. J.

C. J. Min, J. Li, G. Veronis, J. Y. Lee, S. H. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

Monestier, F.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93, 1377–1382 (2009).
[CrossRef]

Morfa, A. J.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92, 013504 (2008).
[CrossRef]

Mysyrowicz, A.

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric-constant,” Phys. Rev. B 44, 13556–13572 (1991).
[CrossRef]

Nielsen, B. B.

J. Jung, T. Sondergaard, T. G. Pedersen, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Dyadic Green’s functions of thin films: Applications within plasmonic solar cells,” Phys. Rev. B 83, 085419 (2011).
[CrossRef]

J. Jung, T. G. Pedersen, T. Sondergaard, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Electrostatic plasmon resonances of metal nanospheres in layered geometries,” Phys. Rev. B 81, 125413 (2010).
[CrossRef]

Nordlander, P.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef] [PubMed]

Nuno, L.

M. F. Catedra, E. Gago, and L. Nuno, “A numerical scheme to obtain the RCS of three-dimensional bodies of resonant size using the conjugate gradient method and the fast Fourier transform,” IEEE Trans. Antennas Propag. 37, 528–537 (1989).
[CrossRef]

Orenstein, M.

Pacifici, D.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[CrossRef]

Pala, R. A.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).

Park, H. J.

M. G. Kang, T. Xu, H. J. Park, X. G. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mater. 22, 4378–4383 (2010).
[CrossRef] [PubMed]

Paulson, P. D.

K. L. Chopra, P. D. Paulson, and V. Dutta, “Thin-film solar cells: an overview,” Prog. Photovoltaics 12, 69–92 (2004).
[CrossRef]

Pedersen, K.

J. Jung, T. Sondergaard, T. G. Pedersen, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Dyadic Green’s functions of thin films: Applications within plasmonic solar cells,” Phys. Rev. B 83, 085419 (2011).
[CrossRef]

J. Jung, T. G. Pedersen, T. Sondergaard, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Electrostatic plasmon resonances of metal nanospheres in layered geometries,” Phys. Rev. B 81, 125413 (2010).
[CrossRef]

Pedersen, T. G.

J. Jung, T. Sondergaard, T. G. Pedersen, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Dyadic Green’s functions of thin films: Applications within plasmonic solar cells,” Phys. Rev. B 83, 085419 (2011).
[CrossRef]

J. Jung, T. G. Pedersen, T. Sondergaard, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Electrostatic plasmon resonances of metal nanospheres in layered geometries,” Phys. Rev. B 81, 125413 (2010).
[CrossRef]

Peumans, P.

C. J. Min, J. Li, G. Veronis, J. Y. Lee, S. H. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

Phaneuf, R. J.

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

Prade, B.

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric-constant,” Phys. Rev. B 44, 13556–13572 (1991).
[CrossRef]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef] [PubMed]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef] [PubMed]

Rakic, A. D.

Reilly, T. H.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92, 013504 (2008).
[CrossRef]

Romero, D. B.

Romero, M. J.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92, 013504 (2008).
[CrossRef]

Rowlen, K. L.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92, 013504 (2008).
[CrossRef]

Sariciftci, N. S.

H. Hoppe and N. S. Sariciftci, “Organic solar cells: an overview,” J. Mater. Res. 19, 1924–1945 (2004).
[CrossRef]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef] [PubMed]

Sha, W. E. I.

Simon, J. J.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93, 1377–1382 (2009).
[CrossRef]

Sondergaard, T.

J. Jung, T. Sondergaard, T. G. Pedersen, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Dyadic Green’s functions of thin films: Applications within plasmonic solar cells,” Phys. Rev. B 83, 085419 (2011).
[CrossRef]

J. Jung, T. G. Pedersen, T. Sondergaard, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Electrostatic plasmon resonances of metal nanospheres in layered geometries,” Phys. Rev. B 81, 125413 (2010).
[CrossRef]

Song, G. F.

Sweatlock, L. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[CrossRef]

Tessler, N.

Torchio, P.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93, 1377–1382 (2009).
[CrossRef]

Tsai, S. J.

Tsang, L.

L. Tsang, J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves: Theories and Applications (Wiley, 2000).
[CrossRef]

Tzabari, L.

van de Lagemaat, J.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92, 013504 (2008).
[CrossRef]

Vandervorst, H. A.

H. A. Vandervorst, “Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput. 13, 631–644 (1992).
[CrossRef]

Veronis, G.

C. J. Min, J. Li, G. Veronis, J. Y. Lee, S. H. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

Vinet, J. Y.

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric-constant,” Phys. Rev. B 44, 13556–13572 (1991).
[CrossRef]

Weedon, W. H.

W. C. Chew and W. H. Weedon, “A 3-D perfectly matched medium from modified Maxwell’s equations with stretched coordinates,” Microw. Opt. Technol. Lett. 7, 599–604 (1994).
[CrossRef]

White, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[CrossRef]

White, J. S.

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef] [PubMed]

Wilton, D. R.

A. W. Glisson and D. R. Wilton, “Simple and efficient numerical methods for problems of electromagnetic radiation and scattering from surfaces,” IEEE Trans. Antennas Propag. 28, 593–603 (1980).
[CrossRef]

Xu, T.

M. G. Kang, T. Xu, H. J. Park, X. G. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mater. 22, 4378–4383 (2010).
[CrossRef] [PubMed]

Adv. Mater.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[CrossRef]

M. G. Kang, T. Xu, H. J. Park, X. G. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mater. 22, 4378–4383 (2010).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

C. J. Min, J. Li, G. Veronis, J. Y. Lee, S. H. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92, 013504 (2008).
[CrossRef]

IEEE Trans. Antennas Propag.

A. W. Glisson and D. R. Wilton, “Simple and efficient numerical methods for problems of electromagnetic radiation and scattering from surfaces,” IEEE Trans. Antennas Propag. 28, 593–603 (1980).
[CrossRef]

M. F. Catedra, E. Gago, and L. Nuno, “A numerical scheme to obtain the RCS of three-dimensional bodies of resonant size using the conjugate gradient method and the fast Fourier transform,” IEEE Trans. Antennas Propag. 37, 528–537 (1989).
[CrossRef]

J. Comput. Phys.

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic-waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

J. Mater. Res.

H. Hoppe and N. S. Sariciftci, “Organic solar cells: an overview,” J. Mater. Res. 19, 1924–1945 (2004).
[CrossRef]

J. Opt. Soc. Am. A

J. Phys. D: Appl. Phys.

W. C. H. Choy and H. H. Fong, “Comprehensive investigation of absolute optical properties of organic materials,” J. Phys. D: Appl. Phys. 41, 155109 (2008).
[CrossRef]

Microw. Opt. Technol. Lett.

W. C. Chew and W. H. Weedon, “A 3-D perfectly matched medium from modified Maxwell’s equations with stretched coordinates,” Microw. Opt. Technol. Lett. 7, 599–604 (1994).
[CrossRef]

Nano Lett.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[CrossRef]

Nat. Mater.

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

J. Jung, T. Sondergaard, T. G. Pedersen, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Dyadic Green’s functions of thin films: Applications within plasmonic solar cells,” Phys. Rev. B 83, 085419 (2011).
[CrossRef]

J. Jung, T. G. Pedersen, T. Sondergaard, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Electrostatic plasmon resonances of metal nanospheres in layered geometries,” Phys. Rev. B 81, 125413 (2010).
[CrossRef]

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric-constant,” Phys. Rev. B 44, 13556–13572 (1991).
[CrossRef]

Prog. Photovoltaics

K. L. Chopra, P. D. Paulson, and V. Dutta, “Thin-film solar cells: an overview,” Prog. Photovoltaics 12, 69–92 (2004).
[CrossRef]

Science

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef] [PubMed]

SIAM J. Sci. Stat. Comput.

H. A. Vandervorst, “Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput. 13, 631–644 (1992).
[CrossRef]

Sol. Energy Mater. Sol. Cells

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93, 1377–1382 (2009).
[CrossRef]

Other

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).

W. C. Chew, Waves and Fields in Inhomogenous Media (Wiley-IEEE Press, 1999).
[CrossRef]

L. Tsang, J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves: Theories and Applications (Wiley, 2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(Color online) The schematic pattern of a heterojunction OSC. A hybrid plasmonic system, which comprises a plasmonic cavity coupled with a dielectric core-metal shell nanosphere, is employed for improving the optical absorption of the active polymer material. A transparent spacer is inserted to avoid local shunt and extract carriers. The structural parameters are t 1 = 20 nm, t 2 = 60 nm, w 1 = 30 nm, w 2 = 90 nm, and d = 21 nm. The radius of the core layer (denoted by the yellow arrow) and that of the shell layer (denoted by the blue arrow) are set to r 1 = 7.5 nm and r 2 = 15 nm, respectively. For a bonding coupling mode in the hybrid system, the polarity of its polarization charge is also marked.

Fig. 2
Fig. 2

(Color online) (a) The real and imaginary parts of the refractive index of the active material; (b) The spectral enhancement factors for various nanospheres. D denotes the dielectric sphere (n=4, k=0), M denotes the metal silver sphere, MC-DS denotes the metal core-dielectric shell sphere, and DC-MS denotes the dielectric core-metal shell sphere. The SiO2 and Ag as a dielectric and metal layers are adopted for the core-shell spheres; (c) The scattering cross section (SCS) normalized to the geometrical cross section of each nanosphere; (d) The SCS of the DC-MS sphere as a function of the core radius (nm).

Fig. 3
Fig. 3

(Color online) (a) The spectral enhancement factor (SEF) for the plasmonic cavity (Cav) and for that coupled with the dielectric (D) or the metal-core dielectric-shell (MC-DS) sphere; (b) The dispersion relations of surface plasmon polariton (SPP), and a symmetric (Sym) and asymmetric (Asym) surface wave modes. The surface plasmon polariton propagates at the interface between semi-infinite polymer and Ag half-spaces. The symmetric and asymmetric modes propagate in the active polymer layer bounded between the two metal claddings with finite thicknesses; (c) The decay lengths penetrated into the active material; (d) The SEFs for the plasmonic cavity and for that coupled with the metal (M) or the dielectric-core metal-shell (DC-MS) sphere.

Fig. 4
Fig. 4

(Color online) The near-field distributions in the active polymer layer at the wavelengths denoted with the arrows of Fig. 3(a). (a) 500 nm; (b) 580 nm; (c) 800 nm.

Fig. 5
Fig. 5

(Color online) The spectral enhancement factor (SEF) comparisons. The SEF by the cavity (Cav) coupled with the dielectric core-metal shell (DC-MS) sphere is drawn with red straight line. The algebraic summation of the SEF by the uncoupled single cavity and that by the uncoupled single DC-MS sphere is plotted with black dash line. The near-field distributions at the wavelengths denoted with the green arrows are shown in the inset on a logarithmic scale. The metal dissipation ratio of the cavity is defined as the metal loss of the coupled cavity over that of the uncoupled one. Likewise, the metal dissipation ratio of the DC-MS sphere is defined as the metal loss of the coupled DC-MS sphere over that of the uncoupled one.

Fig. 6
Fig. 6

(Color online) The polarization charge distributions on the surface of the cavity at the wavelengths denoted with the arrows of Fig. 5.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

E i ( r ) = J ( r ) i 0 ω ( ɛ ( r ) ɛ 0 ) i 0 ω μ 0 v G ¯ ( r , r ) J ( r ) d r
E s ( r ) = i 0 ω μ 0 v G ¯ ( r , r ) J ( r ) d r
[ E 1 s E 2 s E 3 s ] = [ L 11 L 12 L 13 L 21 L 22 L 23 L 31 L 32 L 33 ] [ J 1 J 2 J 3 ]
L i j = { L i i c + L i i q , i = j L i j q , i j
L i i c J i = i 0 ω μ 0 v g ( r , r ) J i ( r ) d r
L i j q J j = i 0 ω ɛ 0 u i v g ( r , r ) J j ( r ) u j d r
J ( r ) = i = 1 3 u i k , m , n J i D ( k , m , n ) T k , m , n i
T k , m , n 1 = Λ k ( u 1 ) Π m ( u 2 ) Π n ( u 3 ) T k , m , n 2 = Π k ( u 1 ) Λ m ( u 2 ) Π n ( u 3 ) T k , m , n 3 = Π k ( u 1 ) Π m ( u 2 ) Λ n ( u 3 )
Λ k ( u 1 ) = { 1 | u 1 k Δ u 1 | Δ u 1 , | u 1 k Δ u 1 | Δ u 1 0 , else Π m ( u 2 ) = { 1 , | u 2 ( m 1 2 ) Δ u 2 | < Δ u 2 2 0 , else
L i i D , c J i D = i 0 ω μ 0 g D J i D
g D J i D = k , m , n g D ( k k , m m , n n ) J i D ( k , m , n )
g D ( k , m , n ) = 0 Δ u 1 0 Δ u 2 0 Δ u 3 g ( u 1 , k u 1 , u 2 , m u 2 , u 3 , n u 3 ) d u 1 d u 2 d u 3
L 12 D , q J 2 D = i 0 ω ɛ 0 Δ u 1 Δ u 2 [ g D ( k + 1 , m , n ) g D ( k , m , n ) [ J 2 D ( k , m , n ) J 2 D ( k , m 1 , n ) ] = i 0 ω ɛ 0 Δ u 1 Δ u 2 { [ g D ( k + 1 , m , n ) g D ( k , m , n ) ] [ g D ( k + 1 , m 1 , n ) g D ( k , m 1 , n ) ] } J 2 D ( k , m , n )
S A ( λ ) = v n r ( λ ) k i ( λ ) 2 π c 0 λ ɛ 0 | E | 2 d V
T A = 400 nm 800 nm S A ( λ ) Γ ( λ ) d λ
ρ p = ( ɛ 0 E ) = P
σ s = 2 π K 3 2 m = 1 ( 2 m + 1 ) ( | R ˜ 3 , 2 TM ( m ) | 2 + | R ˜ 3 , 2 TE ( m ) | 2 )
R ˜ i , i 1 TM = R i , i 1 TM + T i 1 , i TM R ˜ i 1 , i 2 TM T i , i 1 TM 1 R i 1 , i TM R ˜ i 1 , i 2 TM
R i , i + 1 TM = ɛ i + 1 μ i H ^ m ( 1 ) ( K i + 1 r i ) H ^ m ( 1 ) ( K i r i ) ɛ i μ i + 1 H ^ m ( 1 ) ( K i + 1 r i ) H ^ m ( 1 ) ( K i r i ) ɛ i μ i + 1 J ^ m ( K i r i ) H ^ m ( 1 ) ( K i + 1 r i ) ɛ i + 1 μ i H ^ m ( 1 ) ( K i + 1 r i ) J ^ m ( K i r i )
T i , i + 1 TM = i 0 ɛ i + 1 μ i + 1 / ɛ i ɛ i μ i + 1 J ^ m ( K i r i ) H ^ m ( 1 ) ( K i + 1 r i ) ɛ i + 1 μ i H ^ m ( 1 ) ( K i + 1 r i ) J ^ m ( K i r i )
R i , i 1 TM = ɛ i μ i 1 J ^ m ( K i r i 1 ) J ^ m ( K i 1 r i 1 ) ɛ i 1 μ i J ^ m ( K i r i 1 ) J ^ m ( K i 1 r i 1 ) ɛ i 1 μ i J ^ m ( K i 1 r i 1 ) H ^ m ( 1 ) ( K i r i 1 ) ɛ i μ i 1 H ^ m ( 1 ) ( K i r i 1 ) J ^ m ( K i 1 r i 1 )
T i , i 1 TM = i 0 ɛ i 1 μ i 1 / ɛ i ɛ i 1 μ i J ^ m ( K i 1 r i 1 ) H ^ m ( 1 ) ( K i r i 1 ) ɛ i μ i 1 H ^ m ( 1 ) ( K i r i 1 ) J ^ m ( K i 1 r i 1 )
[ p d d x p 1 d d x + K 2 ( x ) ] φ ( x ) = K z 2 φ ( x )
K s = K 0 ɛ A g ɛ p o l ɛ A g + ɛ p o l

Metrics