Abstract

An ultracompact integrated silicide Schottky barrier detector (SBD) is designed and theoretically investigated to electrically detect the surface plasmon polariton (SPP) propagating along horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides at the telecommunication wavelength of 1550 nm. An ultrathin silicide layer inserted between the silicon core and the insulator, which can be fabricated precisely using the well-developed self-aligned silicide process, absorbs the SPP power effectively if a suitable silicide is chosen. Moreover, the Schottky barrier height in the silicide-silicon-silicide configuration can be tuned substantially by the external voltage through the Schottky effect owing to the very narrow silicon core. For a TaSi2 detector with optimized dimensions, numerical simulation predicts responsivity of ~0.07 A/W, speed of ~60 GHz, dark current of ~66 nA at room temperature, and minimum detectable power of ~-29 dBm. The design also suggests that the device’s size can be reduced and the overall performances will be further improved if a silicide with smaller permittivity is used.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Deleonibus, Electronic Device Architectures for the Nano-CMOS Era: from Ultimate CMOS Scaling to Beyond CMOS Devices (Pan Stanford Publishing, 2009), Chapter 6.
  2. G. T. Reed, Silicon Photonics: The State of the Art (John Wiley & Sons, Ltd., 2008)
  3. M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32(1), 1–41 (2008).
    [CrossRef]
  4. M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics (Springer Science + Business Media LLC, 2007).
  5. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
    [CrossRef] [PubMed]
  6. L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett. 31(14), 2133–2135 (2006).
    [CrossRef] [PubMed]
  7. J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett. 6(9), 1928–1932 (2006).
    [CrossRef] [PubMed]
  8. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
    [CrossRef] [PubMed]
  9. I. De Vlaminck, P. Van Dorpe, L. Lagae, and G. Borghs, “Local electrical detection of single nanoparticle plasmon resonance,” Nano Lett. 7(3), 703–706 (2007).
    [CrossRef] [PubMed]
  10. P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
    [CrossRef]
  11. C. Min and G. Veronis, “Absorption switches in metal-dielectric-metal plasmonic waveguides,” Opt. Express 17(13), 10757–10766 (2009).
    [CrossRef] [PubMed]
  12. P. Bai, M. X. Gu, X. C. Wei, and E. P. Li, “Electrical detection of plasmonic waves using an ultra-compact structure via a nanocavity,” Opt. Express 17(26), 24349–24357 (2009).
    [CrossRef] [PubMed]
  13. D. S. Ly-Gagnon, S. E. Kocabas, and D. A. B. Miller, “Characteristic impedance model for plasmonic metal slot waveguides,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1473–1478 (2008).
    [CrossRef]
  14. A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de Leon Snapp, A. V. Akimov, M.-H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single plasmon sources,” Nat. Phys. 5(7), 475–479 (2009).
    [CrossRef]
  15. S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98(2), 021107 (2011).
    [CrossRef]
  16. S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19(9), 8888–8902 (2011).
    [CrossRef] [PubMed]
  17. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Nanoplasmonic power splitters based on the horizontal nanoplasmonic slot waveguide,” Appl. Phys. Lett. (to be published).
    [PubMed]
  18. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators,” Opt. Express 18(26), 27802–27819 (2010).
    [CrossRef] [PubMed]
  19. K. W. Ang, S. Y. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “High-performance waveguided Ge-on-SOI metal-semiconductor-metal photodetectors with novel silicon-carbon (Si:C) Schottky barrier enhancement layer,” IEEE Photon. Technol. Lett. 20(9), 754–756 (2008).
    [CrossRef]
  20. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
    [CrossRef]
  21. W. A. Cabanski and M. J. Schulz, “Electronic and IR-optical properties of silicide silicon interfaces,” Infrared Phys. 32, 29–44 (1991).
    [CrossRef]
  22. C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron. 46(5), 633–643 (2010).
    [CrossRef]
  23. W. F. Kosonocky, F. W. Shallcross, T. S. Villani, and J. V. Groppe, “160×244 element PtSi Schottky-barrier IR-CCD image sensor,” IEEE Trans. Electron. Dev. 32(8), 1564–1573 (1985).
    [CrossRef]
  24. S. Y. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett. 92(8), 081103 (2008).
    [CrossRef]
  25. S. Y. Zhu, G. Q. Lo, M. B. Yu, and D. L. Kwong, “Silicide Schottky-barrier phototransistor integrated in silicon channel waveguide for in-line power monitoring,” IEEE Photon. Technol. Lett. 21(1–4), 185–187 (2009).
    [CrossRef]
  26. C. Schwarz and H. von Kanel, “Tunable infrared detector with epitaxial silicide/silicon heterostructures,” J. Appl. Phys. 79(11), 8798–8807 (1996).
    [CrossRef]
  27. C. Schwarz, U. Scharer, P. Sutter, R. Stalder, N. Onda, and H. von Kanel, “Application of epitaxial CoSi2/Si/CoSi2 heterostructures to tunable Schottky-barrier detectors,” J. Cryst. Growth 127(1-4), 659–662 (1993).
    [CrossRef]
  28. http://www.rsoftinc.com
  29. N.-N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot waveguide structures for the propagation of surface plasmon polaritons at 1.55 µm,” IEEE J. Quantum Electron. 43(6), 479–485 (2007).
    [CrossRef]
  30. http://refractiveindex.info
  31. http://www.ioffe.ru/SVA/NSM/nk/index.html
  32. J. M. Mooney, “Infrared optical absorption of thin PtSi films between 1 and 6 µm,” J. Appl. Phys. 64(9), 4664–4667 (1988).
    [CrossRef]
  33. F. Nava, K. N. Tu, O. Thomas, J. P. Senateur, R. Madar, A. Borghesi, G. Guizzetti, U. Gottlieb, O. Laborde, and O. Bisi, “Electrical and optical properties of silicide single crystals and thin films,” Mater. Sci. Rep. 9(4-5), 141–200 (1993).
    [CrossRef]
  34. S. Y. Zhu, R. L. van Meirhaeghe, C. Detavernier, F. Cardon, G. P. Ru, and B. Z. Li, “Barrier height inhomogeneties of epitaxial CoSi2 Schottky contacts on n-Si (100) and (111),” Solid-State Electron. 44(4), 663–671 (2000).
    [CrossRef]
  35. A. Noya, M. Takeyama, K. Sasaki, and T. Nakanishi, “First phase nucleation of metal-rich silicide in Ta/Si systems,” J. Appl. Phys. 76(6), 3893–3895 (1994).
    [CrossRef]
  36. J. Pelleg and N. Goldshleger, “Silicide formation in the Ta/Ti/Si system by recation of codeposited Ta and Ti with Si (100) and (111) substrates,” J. Appl. Phys. 85(3), 1531–1539 (1999).
    [CrossRef]
  37. M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter 22(14), 143201 (2010).
    [CrossRef] [PubMed]
  38. R. T. Tung, “Recent advances in Schottky barrier concepts,” Mater. Sci. Eng. Rep. 35(1-3), 1–138 (2001).
    [CrossRef]
  39. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (John Wiley & Sons Inc. Pub., 2007).
  40. C. Scales, I. Breukelaar, and P. Berini, “Surface-plasmon Schottky contact detector based on a symmetric metal stripe in silicon,” Opt. Lett. 35(4), 529–531 (2010).
    [CrossRef] [PubMed]

2011 (2)

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98(2), 021107 (2011).
[CrossRef]

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19(9), 8888–8902 (2011).
[CrossRef] [PubMed]

2010 (4)

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators,” Opt. Express 18(26), 27802–27819 (2010).
[CrossRef] [PubMed]

C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron. 46(5), 633–643 (2010).
[CrossRef]

M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter 22(14), 143201 (2010).
[CrossRef] [PubMed]

C. Scales, I. Breukelaar, and P. Berini, “Surface-plasmon Schottky contact detector based on a symmetric metal stripe in silicon,” Opt. Lett. 35(4), 529–531 (2010).
[CrossRef] [PubMed]

2009 (7)

S. Y. Zhu, G. Q. Lo, M. B. Yu, and D. L. Kwong, “Silicide Schottky-barrier phototransistor integrated in silicon channel waveguide for in-line power monitoring,” IEEE Photon. Technol. Lett. 21(1–4), 185–187 (2009).
[CrossRef]

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de Leon Snapp, A. V. Akimov, M.-H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single plasmon sources,” Nat. Phys. 5(7), 475–479 (2009).
[CrossRef]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[CrossRef] [PubMed]

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
[CrossRef]

C. Min and G. Veronis, “Absorption switches in metal-dielectric-metal plasmonic waveguides,” Opt. Express 17(13), 10757–10766 (2009).
[CrossRef] [PubMed]

P. Bai, M. X. Gu, X. C. Wei, and E. P. Li, “Electrical detection of plasmonic waves using an ultra-compact structure via a nanocavity,” Opt. Express 17(26), 24349–24357 (2009).
[CrossRef] [PubMed]

2008 (5)

D. S. Ly-Gagnon, S. E. Kocabas, and D. A. B. Miller, “Characteristic impedance model for plasmonic metal slot waveguides,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1473–1478 (2008).
[CrossRef]

M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32(1), 1–41 (2008).
[CrossRef]

K. W. Ang, S. Y. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “High-performance waveguided Ge-on-SOI metal-semiconductor-metal photodetectors with novel silicon-carbon (Si:C) Schottky barrier enhancement layer,” IEEE Photon. Technol. Lett. 20(9), 754–756 (2008).
[CrossRef]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[CrossRef]

S. Y. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett. 92(8), 081103 (2008).
[CrossRef]

2007 (2)

N.-N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot waveguide structures for the propagation of surface plasmon polaritons at 1.55 µm,” IEEE J. Quantum Electron. 43(6), 479–485 (2007).
[CrossRef]

I. De Vlaminck, P. Van Dorpe, L. Lagae, and G. Borghs, “Local electrical detection of single nanoparticle plasmon resonance,” Nano Lett. 7(3), 703–706 (2007).
[CrossRef] [PubMed]

2006 (2)

L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett. 31(14), 2133–2135 (2006).
[CrossRef] [PubMed]

J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett. 6(9), 1928–1932 (2006).
[CrossRef] [PubMed]

2001 (1)

R. T. Tung, “Recent advances in Schottky barrier concepts,” Mater. Sci. Eng. Rep. 35(1-3), 1–138 (2001).
[CrossRef]

2000 (1)

S. Y. Zhu, R. L. van Meirhaeghe, C. Detavernier, F. Cardon, G. P. Ru, and B. Z. Li, “Barrier height inhomogeneties of epitaxial CoSi2 Schottky contacts on n-Si (100) and (111),” Solid-State Electron. 44(4), 663–671 (2000).
[CrossRef]

1999 (1)

J. Pelleg and N. Goldshleger, “Silicide formation in the Ta/Ti/Si system by recation of codeposited Ta and Ti with Si (100) and (111) substrates,” J. Appl. Phys. 85(3), 1531–1539 (1999).
[CrossRef]

1996 (1)

C. Schwarz and H. von Kanel, “Tunable infrared detector with epitaxial silicide/silicon heterostructures,” J. Appl. Phys. 79(11), 8798–8807 (1996).
[CrossRef]

1994 (1)

A. Noya, M. Takeyama, K. Sasaki, and T. Nakanishi, “First phase nucleation of metal-rich silicide in Ta/Si systems,” J. Appl. Phys. 76(6), 3893–3895 (1994).
[CrossRef]

1993 (2)

F. Nava, K. N. Tu, O. Thomas, J. P. Senateur, R. Madar, A. Borghesi, G. Guizzetti, U. Gottlieb, O. Laborde, and O. Bisi, “Electrical and optical properties of silicide single crystals and thin films,” Mater. Sci. Rep. 9(4-5), 141–200 (1993).
[CrossRef]

C. Schwarz, U. Scharer, P. Sutter, R. Stalder, N. Onda, and H. von Kanel, “Application of epitaxial CoSi2/Si/CoSi2 heterostructures to tunable Schottky-barrier detectors,” J. Cryst. Growth 127(1-4), 659–662 (1993).
[CrossRef]

1991 (1)

W. A. Cabanski and M. J. Schulz, “Electronic and IR-optical properties of silicide silicon interfaces,” Infrared Phys. 32, 29–44 (1991).
[CrossRef]

1988 (1)

J. M. Mooney, “Infrared optical absorption of thin PtSi films between 1 and 6 µm,” J. Appl. Phys. 64(9), 4664–4667 (1988).
[CrossRef]

1985 (1)

W. F. Kosonocky, F. W. Shallcross, T. S. Villani, and J. V. Groppe, “160×244 element PtSi Schottky-barrier IR-CCD image sensor,” IEEE Trans. Electron. Dev. 32(8), 1564–1573 (1985).
[CrossRef]

Akimov, A. V.

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de Leon Snapp, A. V. Akimov, M.-H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single plasmon sources,” Nat. Phys. 5(7), 475–479 (2009).
[CrossRef]

Ang, K. W.

K. W. Ang, S. Y. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “High-performance waveguided Ge-on-SOI metal-semiconductor-metal photodetectors with novel silicon-carbon (Si:C) Schottky barrier enhancement layer,” IEEE Photon. Technol. Lett. 20(9), 754–756 (2008).
[CrossRef]

Arnold, M. D.

M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter 22(14), 143201 (2010).
[CrossRef] [PubMed]

Atwater, H. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[CrossRef] [PubMed]

J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett. 6(9), 1928–1932 (2006).
[CrossRef] [PubMed]

Bai, P.

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Berini, P.

Bisi, O.

F. Nava, K. N. Tu, O. Thomas, J. P. Senateur, R. Madar, A. Borghesi, G. Guizzetti, U. Gottlieb, O. Laborde, and O. Bisi, “Electrical and optical properties of silicide single crystals and thin films,” Mater. Sci. Rep. 9(4-5), 141–200 (1993).
[CrossRef]

Blaber, M. G.

M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter 22(14), 143201 (2010).
[CrossRef] [PubMed]

Borghesi, A.

F. Nava, K. N. Tu, O. Thomas, J. P. Senateur, R. Madar, A. Borghesi, G. Guizzetti, U. Gottlieb, O. Laborde, and O. Bisi, “Electrical and optical properties of silicide single crystals and thin films,” Mater. Sci. Rep. 9(4-5), 141–200 (1993).
[CrossRef]

Borghs, G.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
[CrossRef]

I. De Vlaminck, P. Van Dorpe, L. Lagae, and G. Borghs, “Local electrical detection of single nanoparticle plasmon resonance,” Nano Lett. 7(3), 703–706 (2007).
[CrossRef] [PubMed]

Breukelaar, I.

Brongersma, M. L.

N.-N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot waveguide structures for the propagation of surface plasmon polaritons at 1.55 µm,” IEEE J. Quantum Electron. 43(6), 479–485 (2007).
[CrossRef]

Cabanski, W. A.

W. A. Cabanski and M. J. Schulz, “Electronic and IR-optical properties of silicide silicon interfaces,” Infrared Phys. 32, 29–44 (1991).
[CrossRef]

Cardon, F.

S. Y. Zhu, R. L. van Meirhaeghe, C. Detavernier, F. Cardon, G. P. Ru, and B. Z. Li, “Barrier height inhomogeneties of epitaxial CoSi2 Schottky contacts on n-Si (100) and (111),” Solid-State Electron. 44(4), 663–671 (2000).
[CrossRef]

Chen, L.

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Dal Negro, L.

N.-N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot waveguide structures for the propagation of surface plasmon polaritons at 1.55 µm,” IEEE J. Quantum Electron. 43(6), 479–485 (2007).
[CrossRef]

de Leon Snapp, N.

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de Leon Snapp, A. V. Akimov, M.-H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single plasmon sources,” Nat. Phys. 5(7), 475–479 (2009).
[CrossRef]

De Vlaminck, I.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
[CrossRef]

I. De Vlaminck, P. Van Dorpe, L. Lagae, and G. Borghs, “Local electrical detection of single nanoparticle plasmon resonance,” Nano Lett. 7(3), 703–706 (2007).
[CrossRef] [PubMed]

Detavernier, C.

S. Y. Zhu, R. L. van Meirhaeghe, C. Detavernier, F. Cardon, G. P. Ru, and B. Z. Li, “Barrier height inhomogeneties of epitaxial CoSi2 Schottky contacts on n-Si (100) and (111),” Solid-State Electron. 44(4), 663–671 (2000).
[CrossRef]

Diest, K.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[CrossRef] [PubMed]

Dionne, J. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[CrossRef] [PubMed]

J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett. 6(9), 1928–1932 (2006).
[CrossRef] [PubMed]

Dragoman, D.

M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32(1), 1–41 (2008).
[CrossRef]

Dragoman, M.

M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32(1), 1–41 (2008).
[CrossRef]

Falk, A. L.

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de Leon Snapp, A. V. Akimov, M.-H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single plasmon sources,” Nat. Phys. 5(7), 475–479 (2009).
[CrossRef]

Feng, N.-N.

N.-N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot waveguide structures for the propagation of surface plasmon polaritons at 1.55 µm,” IEEE J. Quantum Electron. 43(6), 479–485 (2007).
[CrossRef]

Ford, M. J.

M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter 22(14), 143201 (2010).
[CrossRef] [PubMed]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Goldshleger, N.

J. Pelleg and N. Goldshleger, “Silicide formation in the Ta/Ti/Si system by recation of codeposited Ta and Ti with Si (100) and (111) substrates,” J. Appl. Phys. 85(3), 1531–1539 (1999).
[CrossRef]

Gottlieb, U.

F. Nava, K. N. Tu, O. Thomas, J. P. Senateur, R. Madar, A. Borghesi, G. Guizzetti, U. Gottlieb, O. Laborde, and O. Bisi, “Electrical and optical properties of silicide single crystals and thin films,” Mater. Sci. Rep. 9(4-5), 141–200 (1993).
[CrossRef]

Groppe, J. V.

W. F. Kosonocky, F. W. Shallcross, T. S. Villani, and J. V. Groppe, “160×244 element PtSi Schottky-barrier IR-CCD image sensor,” IEEE Trans. Electron. Dev. 32(8), 1564–1573 (1985).
[CrossRef]

Gu, M. X.

Guizzetti, G.

F. Nava, K. N. Tu, O. Thomas, J. P. Senateur, R. Madar, A. Borghesi, G. Guizzetti, U. Gottlieb, O. Laborde, and O. Bisi, “Electrical and optical properties of silicide single crystals and thin films,” Mater. Sci. Rep. 9(4-5), 141–200 (1993).
[CrossRef]

Jo, M.-H.

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de Leon Snapp, A. V. Akimov, M.-H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single plasmon sources,” Nat. Phys. 5(7), 475–479 (2009).
[CrossRef]

Kang, K.

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de Leon Snapp, A. V. Akimov, M.-H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single plasmon sources,” Nat. Phys. 5(7), 475–479 (2009).
[CrossRef]

Kocabas, S. E.

D. S. Ly-Gagnon, S. E. Kocabas, and D. A. B. Miller, “Characteristic impedance model for plasmonic metal slot waveguides,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1473–1478 (2008).
[CrossRef]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[CrossRef]

Koppens, F. H. L.

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de Leon Snapp, A. V. Akimov, M.-H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single plasmon sources,” Nat. Phys. 5(7), 475–479 (2009).
[CrossRef]

Kosonocky, W. F.

W. F. Kosonocky, F. W. Shallcross, T. S. Villani, and J. V. Groppe, “160×244 element PtSi Schottky-barrier IR-CCD image sensor,” IEEE Trans. Electron. Dev. 32(8), 1564–1573 (1985).
[CrossRef]

Kwong, D. L.

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98(2), 021107 (2011).
[CrossRef]

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19(9), 8888–8902 (2011).
[CrossRef] [PubMed]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators,” Opt. Express 18(26), 27802–27819 (2010).
[CrossRef] [PubMed]

S. Y. Zhu, G. Q. Lo, M. B. Yu, and D. L. Kwong, “Silicide Schottky-barrier phototransistor integrated in silicon channel waveguide for in-line power monitoring,” IEEE Photon. Technol. Lett. 21(1–4), 185–187 (2009).
[CrossRef]

S. Y. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett. 92(8), 081103 (2008).
[CrossRef]

K. W. Ang, S. Y. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “High-performance waveguided Ge-on-SOI metal-semiconductor-metal photodetectors with novel silicon-carbon (Si:C) Schottky barrier enhancement layer,” IEEE Photon. Technol. Lett. 20(9), 754–756 (2008).
[CrossRef]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Nanoplasmonic power splitters based on the horizontal nanoplasmonic slot waveguide,” Appl. Phys. Lett. (to be published).
[PubMed]

Laborde, O.

F. Nava, K. N. Tu, O. Thomas, J. P. Senateur, R. Madar, A. Borghesi, G. Guizzetti, U. Gottlieb, O. Laborde, and O. Bisi, “Electrical and optical properties of silicide single crystals and thin films,” Mater. Sci. Rep. 9(4-5), 141–200 (1993).
[CrossRef]

Lagae, L.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
[CrossRef]

I. De Vlaminck, P. Van Dorpe, L. Lagae, and G. Borghs, “Local electrical detection of single nanoparticle plasmon resonance,” Nano Lett. 7(3), 703–706 (2007).
[CrossRef] [PubMed]

Latif, S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[CrossRef]

Lezec, H. J.

J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett. 6(9), 1928–1932 (2006).
[CrossRef] [PubMed]

Li, B. Z.

S. Y. Zhu, R. L. van Meirhaeghe, C. Detavernier, F. Cardon, G. P. Ru, and B. Z. Li, “Barrier height inhomogeneties of epitaxial CoSi2 Schottky contacts on n-Si (100) and (111),” Solid-State Electron. 44(4), 663–671 (2000).
[CrossRef]

Li, E. P.

Liow, T. Y.

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19(9), 8888–8902 (2011).
[CrossRef] [PubMed]

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98(2), 021107 (2011).
[CrossRef]

Lipson, M.

Lo, G. Q.

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98(2), 021107 (2011).
[CrossRef]

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19(9), 8888–8902 (2011).
[CrossRef] [PubMed]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators,” Opt. Express 18(26), 27802–27819 (2010).
[CrossRef] [PubMed]

S. Y. Zhu, G. Q. Lo, M. B. Yu, and D. L. Kwong, “Silicide Schottky-barrier phototransistor integrated in silicon channel waveguide for in-line power monitoring,” IEEE Photon. Technol. Lett. 21(1–4), 185–187 (2009).
[CrossRef]

K. W. Ang, S. Y. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “High-performance waveguided Ge-on-SOI metal-semiconductor-metal photodetectors with novel silicon-carbon (Si:C) Schottky barrier enhancement layer,” IEEE Photon. Technol. Lett. 20(9), 754–756 (2008).
[CrossRef]

S. Y. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett. 92(8), 081103 (2008).
[CrossRef]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Nanoplasmonic power splitters based on the horizontal nanoplasmonic slot waveguide,” Appl. Phys. Lett. (to be published).
[PubMed]

Lukin, M. D.

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de Leon Snapp, A. V. Akimov, M.-H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single plasmon sources,” Nat. Phys. 5(7), 475–479 (2009).
[CrossRef]

Ly-Gagnon, D. S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[CrossRef]

D. S. Ly-Gagnon, S. E. Kocabas, and D. A. B. Miller, “Characteristic impedance model for plasmonic metal slot waveguides,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1473–1478 (2008).
[CrossRef]

Ma, R. M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Madar, R.

F. Nava, K. N. Tu, O. Thomas, J. P. Senateur, R. Madar, A. Borghesi, G. Guizzetti, U. Gottlieb, O. Laborde, and O. Bisi, “Electrical and optical properties of silicide single crystals and thin films,” Mater. Sci. Rep. 9(4-5), 141–200 (1993).
[CrossRef]

Miller, D. A. B.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[CrossRef]

D. S. Ly-Gagnon, S. E. Kocabas, and D. A. B. Miller, “Characteristic impedance model for plasmonic metal slot waveguides,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1473–1478 (2008).
[CrossRef]

Min, C.

Mooney, J. M.

J. M. Mooney, “Infrared optical absorption of thin PtSi films between 1 and 6 µm,” J. Appl. Phys. 64(9), 4664–4667 (1988).
[CrossRef]

Nakanishi, T.

A. Noya, M. Takeyama, K. Sasaki, and T. Nakanishi, “First phase nucleation of metal-rich silicide in Ta/Si systems,” J. Appl. Phys. 76(6), 3893–3895 (1994).
[CrossRef]

Nava, F.

F. Nava, K. N. Tu, O. Thomas, J. P. Senateur, R. Madar, A. Borghesi, G. Guizzetti, U. Gottlieb, O. Laborde, and O. Bisi, “Electrical and optical properties of silicide single crystals and thin films,” Mater. Sci. Rep. 9(4-5), 141–200 (1993).
[CrossRef]

Neutens, P.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
[CrossRef]

Noya, A.

A. Noya, M. Takeyama, K. Sasaki, and T. Nakanishi, “First phase nucleation of metal-rich silicide in Ta/Si systems,” J. Appl. Phys. 76(6), 3893–3895 (1994).
[CrossRef]

Okyay, A. K.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[CrossRef]

Onda, N.

C. Schwarz, U. Scharer, P. Sutter, R. Stalder, N. Onda, and H. von Kanel, “Application of epitaxial CoSi2/Si/CoSi2 heterostructures to tunable Schottky-barrier detectors,” J. Cryst. Growth 127(1-4), 659–662 (1993).
[CrossRef]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Park, H.

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de Leon Snapp, A. V. Akimov, M.-H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single plasmon sources,” Nat. Phys. 5(7), 475–479 (2009).
[CrossRef]

Pelleg, J.

J. Pelleg and N. Goldshleger, “Silicide formation in the Ta/Ti/Si system by recation of codeposited Ta and Ti with Si (100) and (111) substrates,” J. Appl. Phys. 85(3), 1531–1539 (1999).
[CrossRef]

Ru, G. P.

S. Y. Zhu, R. L. van Meirhaeghe, C. Detavernier, F. Cardon, G. P. Ru, and B. Z. Li, “Barrier height inhomogeneties of epitaxial CoSi2 Schottky contacts on n-Si (100) and (111),” Solid-State Electron. 44(4), 663–671 (2000).
[CrossRef]

Saraswat, K. C.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[CrossRef]

Sasaki, K.

A. Noya, M. Takeyama, K. Sasaki, and T. Nakanishi, “First phase nucleation of metal-rich silicide in Ta/Si systems,” J. Appl. Phys. 76(6), 3893–3895 (1994).
[CrossRef]

Scales, C.

Scharer, U.

C. Schwarz, U. Scharer, P. Sutter, R. Stalder, N. Onda, and H. von Kanel, “Application of epitaxial CoSi2/Si/CoSi2 heterostructures to tunable Schottky-barrier detectors,” J. Cryst. Growth 127(1-4), 659–662 (1993).
[CrossRef]

Schulz, M. J.

W. A. Cabanski and M. J. Schulz, “Electronic and IR-optical properties of silicide silicon interfaces,” Infrared Phys. 32, 29–44 (1991).
[CrossRef]

Schwarz, C.

C. Schwarz and H. von Kanel, “Tunable infrared detector with epitaxial silicide/silicon heterostructures,” J. Appl. Phys. 79(11), 8798–8807 (1996).
[CrossRef]

C. Schwarz, U. Scharer, P. Sutter, R. Stalder, N. Onda, and H. von Kanel, “Application of epitaxial CoSi2/Si/CoSi2 heterostructures to tunable Schottky-barrier detectors,” J. Cryst. Growth 127(1-4), 659–662 (1993).
[CrossRef]

Senateur, J. P.

F. Nava, K. N. Tu, O. Thomas, J. P. Senateur, R. Madar, A. Borghesi, G. Guizzetti, U. Gottlieb, O. Laborde, and O. Bisi, “Electrical and optical properties of silicide single crystals and thin films,” Mater. Sci. Rep. 9(4-5), 141–200 (1993).
[CrossRef]

Shakya, J.

Shallcross, F. W.

W. F. Kosonocky, F. W. Shallcross, T. S. Villani, and J. V. Groppe, “160×244 element PtSi Schottky-barrier IR-CCD image sensor,” IEEE Trans. Electron. Dev. 32(8), 1564–1573 (1985).
[CrossRef]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Stalder, R.

C. Schwarz, U. Scharer, P. Sutter, R. Stalder, N. Onda, and H. von Kanel, “Application of epitaxial CoSi2/Si/CoSi2 heterostructures to tunable Schottky-barrier detectors,” J. Cryst. Growth 127(1-4), 659–662 (1993).
[CrossRef]

Sutter, P.

C. Schwarz, U. Scharer, P. Sutter, R. Stalder, N. Onda, and H. von Kanel, “Application of epitaxial CoSi2/Si/CoSi2 heterostructures to tunable Schottky-barrier detectors,” J. Cryst. Growth 127(1-4), 659–662 (1993).
[CrossRef]

Sweatlock, L. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[CrossRef] [PubMed]

Takeyama, M.

A. Noya, M. Takeyama, K. Sasaki, and T. Nakanishi, “First phase nucleation of metal-rich silicide in Ta/Si systems,” J. Appl. Phys. 76(6), 3893–3895 (1994).
[CrossRef]

Tang, L.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[CrossRef]

Thomas, O.

F. Nava, K. N. Tu, O. Thomas, J. P. Senateur, R. Madar, A. Borghesi, G. Guizzetti, U. Gottlieb, O. Laborde, and O. Bisi, “Electrical and optical properties of silicide single crystals and thin films,” Mater. Sci. Rep. 9(4-5), 141–200 (1993).
[CrossRef]

Tu, K. N.

F. Nava, K. N. Tu, O. Thomas, J. P. Senateur, R. Madar, A. Borghesi, G. Guizzetti, U. Gottlieb, O. Laborde, and O. Bisi, “Electrical and optical properties of silicide single crystals and thin films,” Mater. Sci. Rep. 9(4-5), 141–200 (1993).
[CrossRef]

Tung, R. T.

R. T. Tung, “Recent advances in Schottky barrier concepts,” Mater. Sci. Eng. Rep. 35(1-3), 1–138 (2001).
[CrossRef]

Van Dorpe, P.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
[CrossRef]

I. De Vlaminck, P. Van Dorpe, L. Lagae, and G. Borghs, “Local electrical detection of single nanoparticle plasmon resonance,” Nano Lett. 7(3), 703–706 (2007).
[CrossRef] [PubMed]

van Meirhaeghe, R. L.

S. Y. Zhu, R. L. van Meirhaeghe, C. Detavernier, F. Cardon, G. P. Ru, and B. Z. Li, “Barrier height inhomogeneties of epitaxial CoSi2 Schottky contacts on n-Si (100) and (111),” Solid-State Electron. 44(4), 663–671 (2000).
[CrossRef]

Veronis, G.

Villani, T. S.

W. F. Kosonocky, F. W. Shallcross, T. S. Villani, and J. V. Groppe, “160×244 element PtSi Schottky-barrier IR-CCD image sensor,” IEEE Trans. Electron. Dev. 32(8), 1564–1573 (1985).
[CrossRef]

von Kanel, H.

C. Schwarz and H. von Kanel, “Tunable infrared detector with epitaxial silicide/silicon heterostructures,” J. Appl. Phys. 79(11), 8798–8807 (1996).
[CrossRef]

C. Schwarz, U. Scharer, P. Sutter, R. Stalder, N. Onda, and H. von Kanel, “Application of epitaxial CoSi2/Si/CoSi2 heterostructures to tunable Schottky-barrier detectors,” J. Cryst. Growth 127(1-4), 659–662 (1993).
[CrossRef]

Wei, X. C.

Yu, C. L.

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de Leon Snapp, A. V. Akimov, M.-H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single plasmon sources,” Nat. Phys. 5(7), 475–479 (2009).
[CrossRef]

Yu, M. B.

S. Y. Zhu, G. Q. Lo, M. B. Yu, and D. L. Kwong, “Silicide Schottky-barrier phototransistor integrated in silicon channel waveguide for in-line power monitoring,” IEEE Photon. Technol. Lett. 21(1–4), 185–187 (2009).
[CrossRef]

S. Y. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett. 92(8), 081103 (2008).
[CrossRef]

K. W. Ang, S. Y. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “High-performance waveguided Ge-on-SOI metal-semiconductor-metal photodetectors with novel silicon-carbon (Si:C) Schottky barrier enhancement layer,” IEEE Photon. Technol. Lett. 20(9), 754–756 (2008).
[CrossRef]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Zhu, S. Y.

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98(2), 021107 (2011).
[CrossRef]

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19(9), 8888–8902 (2011).
[CrossRef] [PubMed]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators,” Opt. Express 18(26), 27802–27819 (2010).
[CrossRef] [PubMed]

S. Y. Zhu, G. Q. Lo, M. B. Yu, and D. L. Kwong, “Silicide Schottky-barrier phototransistor integrated in silicon channel waveguide for in-line power monitoring,” IEEE Photon. Technol. Lett. 21(1–4), 185–187 (2009).
[CrossRef]

S. Y. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett. 92(8), 081103 (2008).
[CrossRef]

K. W. Ang, S. Y. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “High-performance waveguided Ge-on-SOI metal-semiconductor-metal photodetectors with novel silicon-carbon (Si:C) Schottky barrier enhancement layer,” IEEE Photon. Technol. Lett. 20(9), 754–756 (2008).
[CrossRef]

S. Y. Zhu, R. L. van Meirhaeghe, C. Detavernier, F. Cardon, G. P. Ru, and B. Z. Li, “Barrier height inhomogeneties of epitaxial CoSi2 Schottky contacts on n-Si (100) and (111),” Solid-State Electron. 44(4), 663–671 (2000).
[CrossRef]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Nanoplasmonic power splitters based on the horizontal nanoplasmonic slot waveguide,” Appl. Phys. Lett. (to be published).
[PubMed]

Appl. Phys. Lett. (3)

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98(2), 021107 (2011).
[CrossRef]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Nanoplasmonic power splitters based on the horizontal nanoplasmonic slot waveguide,” Appl. Phys. Lett. (to be published).
[PubMed]

S. Y. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett. 92(8), 081103 (2008).
[CrossRef]

IEEE J. Quantum Electron. (2)

C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron. 46(5), 633–643 (2010).
[CrossRef]

N.-N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot waveguide structures for the propagation of surface plasmon polaritons at 1.55 µm,” IEEE J. Quantum Electron. 43(6), 479–485 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. S. Ly-Gagnon, S. E. Kocabas, and D. A. B. Miller, “Characteristic impedance model for plasmonic metal slot waveguides,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1473–1478 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

K. W. Ang, S. Y. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “High-performance waveguided Ge-on-SOI metal-semiconductor-metal photodetectors with novel silicon-carbon (Si:C) Schottky barrier enhancement layer,” IEEE Photon. Technol. Lett. 20(9), 754–756 (2008).
[CrossRef]

S. Y. Zhu, G. Q. Lo, M. B. Yu, and D. L. Kwong, “Silicide Schottky-barrier phototransistor integrated in silicon channel waveguide for in-line power monitoring,” IEEE Photon. Technol. Lett. 21(1–4), 185–187 (2009).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

W. F. Kosonocky, F. W. Shallcross, T. S. Villani, and J. V. Groppe, “160×244 element PtSi Schottky-barrier IR-CCD image sensor,” IEEE Trans. Electron. Dev. 32(8), 1564–1573 (1985).
[CrossRef]

Infrared Phys. (1)

W. A. Cabanski and M. J. Schulz, “Electronic and IR-optical properties of silicide silicon interfaces,” Infrared Phys. 32, 29–44 (1991).
[CrossRef]

J. Appl. Phys. (4)

C. Schwarz and H. von Kanel, “Tunable infrared detector with epitaxial silicide/silicon heterostructures,” J. Appl. Phys. 79(11), 8798–8807 (1996).
[CrossRef]

J. M. Mooney, “Infrared optical absorption of thin PtSi films between 1 and 6 µm,” J. Appl. Phys. 64(9), 4664–4667 (1988).
[CrossRef]

A. Noya, M. Takeyama, K. Sasaki, and T. Nakanishi, “First phase nucleation of metal-rich silicide in Ta/Si systems,” J. Appl. Phys. 76(6), 3893–3895 (1994).
[CrossRef]

J. Pelleg and N. Goldshleger, “Silicide formation in the Ta/Ti/Si system by recation of codeposited Ta and Ti with Si (100) and (111) substrates,” J. Appl. Phys. 85(3), 1531–1539 (1999).
[CrossRef]

J. Cryst. Growth (1)

C. Schwarz, U. Scharer, P. Sutter, R. Stalder, N. Onda, and H. von Kanel, “Application of epitaxial CoSi2/Si/CoSi2 heterostructures to tunable Schottky-barrier detectors,” J. Cryst. Growth 127(1-4), 659–662 (1993).
[CrossRef]

J. Phys. Condens. Matter (1)

M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter 22(14), 143201 (2010).
[CrossRef] [PubMed]

Mater. Sci. Eng. Rep. (1)

R. T. Tung, “Recent advances in Schottky barrier concepts,” Mater. Sci. Eng. Rep. 35(1-3), 1–138 (2001).
[CrossRef]

Mater. Sci. Rep. (1)

F. Nava, K. N. Tu, O. Thomas, J. P. Senateur, R. Madar, A. Borghesi, G. Guizzetti, U. Gottlieb, O. Laborde, and O. Bisi, “Electrical and optical properties of silicide single crystals and thin films,” Mater. Sci. Rep. 9(4-5), 141–200 (1993).
[CrossRef]

Nano Lett. (3)

J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett. 6(9), 1928–1932 (2006).
[CrossRef] [PubMed]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[CrossRef] [PubMed]

I. De Vlaminck, P. Van Dorpe, L. Lagae, and G. Borghs, “Local electrical detection of single nanoparticle plasmon resonance,” Nano Lett. 7(3), 703–706 (2007).
[CrossRef] [PubMed]

Nat. Photonics (2)

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
[CrossRef]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[CrossRef]

Nat. Phys. (1)

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de Leon Snapp, A. V. Akimov, M.-H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single plasmon sources,” Nat. Phys. 5(7), 475–479 (2009).
[CrossRef]

Nature (1)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Prog. Quantum Electron. (1)

M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32(1), 1–41 (2008).
[CrossRef]

Solid-State Electron. (1)

S. Y. Zhu, R. L. van Meirhaeghe, C. Detavernier, F. Cardon, G. P. Ru, and B. Z. Li, “Barrier height inhomogeneties of epitaxial CoSi2 Schottky contacts on n-Si (100) and (111),” Solid-State Electron. 44(4), 663–671 (2000).
[CrossRef]

Other (7)

http://refractiveindex.info

http://www.ioffe.ru/SVA/NSM/nk/index.html

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (John Wiley & Sons Inc. Pub., 2007).

http://www.rsoftinc.com

M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics (Springer Science + Business Media LLC, 2007).

S. Deleonibus, Electronic Device Architectures for the Nano-CMOS Era: from Ultimate CMOS Scaling to Beyond CMOS Devices (Pan Stanford Publishing, 2009), Chapter 6.

G. T. Reed, Silicon Photonics: The State of the Art (John Wiley & Sons, Ltd., 2008)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Design of silicide Schottky-barrier detector inserted in the horizontal metal-insulator-Si-insulator-metal nanoplasmonic slot waveguide: (a) three-dimensional (3-D) view of the whole device; (b) cross-sectional view of metal-insulator-Si-insulator-meta nanoplasmonic waveguide; (c) cross sectional view of the detector’s absorber part, which is a metal-insulator-silicide-Si-silicide-insulator-metal waveguide; and (d) cross-sectional view of the detector’s contact part, which is a metal-silicide-Si-silicide-metal waveguide.

Fig. 2
Fig. 2

Calculated propagation loss of Cu-SiO2(10 nm)-silicide(5 nm)-Si(45 nm)-silicide(5 nm)- SiO2(10 nm)-Cu waveguide as a function of the real (n) and imaginary (k) parts of silicide complex index. The position of silicides listed in Table 1 is indicated.

Fig. 3
Fig. 3

(a) Y-component magnetic field (Hy) distributions along the waveguide (z-direction); and (b) the x-component electric field (Ex) along the cross section of the waveguide (x-axis) for silicide with the complex index of 1.0 + 1.5i; (c) and (d) the corresponding figures for silicide with complex index of 4.0 + 5.0i.

Fig. 4
Fig. 4

Calculated internal quantum efficiency (ηi) as a function of t/L for various barrier height (ΦB) at hν = 0.8 eV, where t is silicide thickness and L is the hot carrier attenuation length. Inset shows a schematic sketch of the band diagram of the silicide/Si/silicide structure under a positive bias. The applied voltage can substantially reduce both Φn and Φp. Both hot electrons and hot holes can contribute the photocurrent.

Fig. 5
Fig. 5

The calculated absorption (top) and external quantum efficiency (bottom) as a function of TaSi2 thickness. The other parameters of the detector are set as: WSi = (50 nm – WTaSi2), WSiN = 10 nm, Labs = 1 or 2 µm, L = 100 nm, ΦB = 0.45 or 0.55 eV, and hν = 0.8 eV.

Fig. 6
Fig. 6

The calculated propagation loss (left) and absorption in the silicide region (right) as a function of Si core width (WSi). The other parameters are set as: WTaSi2 = 3 nm, WSiN = 10 nm, and Labs = 1 µm. The propagation loss for a corresponding nanoplasmonic slot waveguide without silicide is also shown for comparison.

Fig. 7
Fig. 7

The calculated propagation loss (left) and absorption in the silicide region (right) as a function of Si3N4 width (WSiN). The other parameters are set as: WTaSi2 = 3 nm, WSi = 50 nm, and Labs = 1 µm. The propagation loss for a corresponding nanoplasmonic slot waveguide without silicide is also shown for comparison.

Tables (1)

Tables Icon

Table 1 Calculated Optical Properties for 1-µm-long Cu-Si3N4(10 nm)-Silicide(5 nm)-Si(45 nm)-Silicide(10 nm)-Si3N4(10 nm)-Cu Absorber at 1550 nm

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ε S i E x ( S i ) = | ε s i l i c i d e | E x ( s i l i c i d e + )
| ε s i l i c i d e | E x ( s i l i c i d e ) = ε S i O 2 E x ( S i O 2 )
A = γ C ( 1 10 α L a b s ) r a t i o
Δ Φ = e V 4 π ε 0 ε S i W S i
η e = A η i
I d a r k = ( L a b s + L c o n ) h e i g h t T 2 ( A n * * exp ( e Φ n k T ) + A p * * exp ( e Φ p k T ) )
f max = 1 2 π × R C

Metrics