Abstract

Temporal stability of the broadband source, such as supercontinuum (SC), is the key enabling factor for realizing high performance ultrafast serial time-encoded amplified microscopy (STEAM). Owing to that the long-pulse SC (picosecond to nanosecond) generation generally results in an ultrabroadband spectrum with significant pulse-to-pulse fluctuation, only the ultrashort-pulse (femtosecond) SC sources, which offer better temporal stability, have been employed in STEAM so far. Here we report a simple approach to achieve active control of picosecond SC stability and to help extend the applicability of SC in STEAM from the femtosecond to the picosecond or even nanosecond regimes. We experimentally demonstrate stable single-shot STEAM imaging at a frame rate of 4.9 MHz using the CW-triggered picosecond SC source. Such CW-stabilized SC can greatly reduce the shot-to-shot fluctuation, and thus improves the STEAM image quality significantly.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. R. Petty, “Spatiotemporal chemical dynamics in living cells: from information trafficking to cell physiology,” Biosystems 83(2-3), 217–224 (2006).
    [CrossRef] [PubMed]
  2. J. V. Watson, Introduction to Flow Cytometry (Cambridge University Press, 2004).
  3. K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
    [CrossRef] [PubMed]
  4. K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett. 93(13), 131109 (2008).
    [CrossRef]
  5. K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18(10), 10016–10028 (2010).
    [CrossRef] [PubMed]
  6. A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, “High-speed nanometer-resolved imaging vibrometer and velocimeter,” Appl. Phys. Lett. 98(10), 101107 (2011).
    [CrossRef]
  7. S. H. Kim, K. Goda, A. Fard, and B. Jalali, “Optical time-domain analog pattern correlator for high-speed real-time image recognition,” Opt. Lett. 36(2), 220–222 (2011).
    [CrossRef] [PubMed]
  8. K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Simultaneous mechanical-scan-free confocal microscopy and laser microsurgery,” Opt. Lett. 34(14), 2099–2101 (2009).
    [CrossRef] [PubMed]
  9. J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University Press, 2010).
  10. P. M. Moselund, M. H. Frosz, C. L. Thomsen, and O. Bang, “Back-seeding of higher order gain processes in picosecond supercontinuum generation,” Opt. Express 16(16), 11954–11968 (2008).
    [CrossRef] [PubMed]
  11. J. N. Kutz, C. Lyngå, and B. J. Eggleton, “Enhanced supercontinuum generation through dispersion-management,” Opt. Express 13(11), 3989–3998 (2005).
    [CrossRef] [PubMed]
  12. D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101(23), 233902 (2008).
    [CrossRef] [PubMed]
  13. D. R. Solli, B. Jalali, and C. Ropers, “Seeded supercontinuum generation with optical parametric down-conversion,” Phys. Rev. Lett. 105(23), 233902 (2010).
    [CrossRef] [PubMed]
  14. G. Genty, J. M. Dudley, and B. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
    [CrossRef]
  15. K. K. Y. Cheung, C. Zhang, Y. Zhou, K. K. Y. Wong, and K. K. Tsia, “Manipulating supercontinuum generation by minute continuous wave,” Opt. Lett. 36(2), 160–162 (2011).
    [CrossRef] [PubMed]
  16. K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80(4), 043821 (2009).
    [CrossRef]
  17. D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength–time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
    [CrossRef]
  18. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
    [CrossRef] [PubMed]
  19. M. N. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 548–559 (2002).
    [CrossRef]
  20. D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27(3), 653–670, viii (2007).
    [CrossRef] [PubMed]
  21. J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
    [CrossRef]

2011

2010

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18(10), 10016–10028 (2010).
[CrossRef] [PubMed]

D. R. Solli, B. Jalali, and C. Ropers, “Seeded supercontinuum generation with optical parametric down-conversion,” Phys. Rev. Lett. 105(23), 233902 (2010).
[CrossRef] [PubMed]

2009

G. Genty, J. M. Dudley, and B. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
[CrossRef]

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80(4), 043821 (2009).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[CrossRef] [PubMed]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Simultaneous mechanical-scan-free confocal microscopy and laser microsurgery,” Opt. Lett. 34(14), 2099–2101 (2009).
[CrossRef] [PubMed]

2008

P. M. Moselund, M. H. Frosz, C. L. Thomsen, and O. Bang, “Back-seeding of higher order gain processes in picosecond supercontinuum generation,” Opt. Express 16(16), 11954–11968 (2008).
[CrossRef] [PubMed]

K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett. 93(13), 131109 (2008).
[CrossRef]

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101(23), 233902 (2008).
[CrossRef] [PubMed]

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength–time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[CrossRef]

2007

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[CrossRef] [PubMed]

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27(3), 653–670, viii (2007).
[CrossRef] [PubMed]

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[CrossRef]

2006

H. R. Petty, “Spatiotemporal chemical dynamics in living cells: from information trafficking to cell physiology,” Biosystems 83(2-3), 217–224 (2006).
[CrossRef] [PubMed]

2005

2002

M. N. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 548–559 (2002).
[CrossRef]

Ayazi, A.

A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, “High-speed nanometer-resolved imaging vibrometer and velocimeter,” Appl. Phys. Lett. 98(10), 101107 (2011).
[CrossRef]

Bang, O.

Basiji, D. A.

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27(3), 653–670, viii (2007).
[CrossRef] [PubMed]

Boyraz, O.

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[CrossRef]

Capewell, D.

Cheung, K. K. Y.

Chou, J.

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength–time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[CrossRef]

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[CrossRef]

Dudley, J. M.

G. Genty, J. M. Dudley, and B. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
[CrossRef]

Eggleton, B.

G. Genty, J. M. Dudley, and B. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
[CrossRef]

Eggleton, B. J.

Fard, A.

A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, “High-speed nanometer-resolved imaging vibrometer and velocimeter,” Appl. Phys. Lett. 98(10), 101107 (2011).
[CrossRef]

S. H. Kim, K. Goda, A. Fard, and B. Jalali, “Optical time-domain analog pattern correlator for high-speed real-time image recognition,” Opt. Lett. 36(2), 220–222 (2011).
[CrossRef] [PubMed]

Frosz, M. H.

Genty, G.

G. Genty, J. M. Dudley, and B. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
[CrossRef]

Goda, K.

S. H. Kim, K. Goda, A. Fard, and B. Jalali, “Optical time-domain analog pattern correlator for high-speed real-time image recognition,” Opt. Lett. 36(2), 220–222 (2011).
[CrossRef] [PubMed]

A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, “High-speed nanometer-resolved imaging vibrometer and velocimeter,” Appl. Phys. Lett. 98(10), 101107 (2011).
[CrossRef]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18(10), 10016–10028 (2010).
[CrossRef] [PubMed]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Simultaneous mechanical-scan-free confocal microscopy and laser microsurgery,” Opt. Lett. 34(14), 2099–2101 (2009).
[CrossRef] [PubMed]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[CrossRef] [PubMed]

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80(4), 043821 (2009).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett. 93(13), 131109 (2008).
[CrossRef]

Islam, M. N.

M. N. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 548–559 (2002).
[CrossRef]

Jalali, B.

S. H. Kim, K. Goda, A. Fard, and B. Jalali, “Optical time-domain analog pattern correlator for high-speed real-time image recognition,” Opt. Lett. 36(2), 220–222 (2011).
[CrossRef] [PubMed]

A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, “High-speed nanometer-resolved imaging vibrometer and velocimeter,” Appl. Phys. Lett. 98(10), 101107 (2011).
[CrossRef]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18(10), 10016–10028 (2010).
[CrossRef] [PubMed]

D. R. Solli, B. Jalali, and C. Ropers, “Seeded supercontinuum generation with optical parametric down-conversion,” Phys. Rev. Lett. 105(23), 233902 (2010).
[CrossRef] [PubMed]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Simultaneous mechanical-scan-free confocal microscopy and laser microsurgery,” Opt. Lett. 34(14), 2099–2101 (2009).
[CrossRef] [PubMed]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[CrossRef] [PubMed]

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80(4), 043821 (2009).
[CrossRef]

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101(23), 233902 (2008).
[CrossRef] [PubMed]

K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett. 93(13), 131109 (2008).
[CrossRef]

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength–time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[CrossRef]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[CrossRef] [PubMed]

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[CrossRef]

Kim, S. H.

S. H. Kim, K. Goda, A. Fard, and B. Jalali, “Optical time-domain analog pattern correlator for high-speed real-time image recognition,” Opt. Lett. 36(2), 220–222 (2011).
[CrossRef] [PubMed]

A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, “High-speed nanometer-resolved imaging vibrometer and velocimeter,” Appl. Phys. Lett. 98(10), 101107 (2011).
[CrossRef]

Koonath, P.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[CrossRef] [PubMed]

Kutz, J. N.

Liang, L.

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27(3), 653–670, viii (2007).
[CrossRef] [PubMed]

Lyngå, C.

Mahjoubfar, A.

A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, “High-speed nanometer-resolved imaging vibrometer and velocimeter,” Appl. Phys. Lett. 98(10), 101107 (2011).
[CrossRef]

Morrissey, P.

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27(3), 653–670, viii (2007).
[CrossRef] [PubMed]

Moselund, P. M.

Ortyn, W. E.

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27(3), 653–670, viii (2007).
[CrossRef] [PubMed]

Petty, H. R.

H. R. Petty, “Spatiotemporal chemical dynamics in living cells: from information trafficking to cell physiology,” Biosystems 83(2-3), 217–224 (2006).
[CrossRef] [PubMed]

Ropers, C.

D. R. Solli, B. Jalali, and C. Ropers, “Seeded supercontinuum generation with optical parametric down-conversion,” Phys. Rev. Lett. 105(23), 233902 (2010).
[CrossRef] [PubMed]

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101(23), 233902 (2008).
[CrossRef] [PubMed]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[CrossRef] [PubMed]

Solli, D.

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[CrossRef]

Solli, D. R.

D. R. Solli, B. Jalali, and C. Ropers, “Seeded supercontinuum generation with optical parametric down-conversion,” Phys. Rev. Lett. 105(23), 233902 (2010).
[CrossRef] [PubMed]

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80(4), 043821 (2009).
[CrossRef]

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength–time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[CrossRef]

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101(23), 233902 (2008).
[CrossRef] [PubMed]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[CrossRef] [PubMed]

Thomsen, C. L.

Tsia, K. K.

K. K. Y. Cheung, C. Zhang, Y. Zhou, K. K. Y. Wong, and K. K. Tsia, “Manipulating supercontinuum generation by minute continuous wave,” Opt. Lett. 36(2), 160–162 (2011).
[CrossRef] [PubMed]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18(10), 10016–10028 (2010).
[CrossRef] [PubMed]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Simultaneous mechanical-scan-free confocal microscopy and laser microsurgery,” Opt. Lett. 34(14), 2099–2101 (2009).
[CrossRef] [PubMed]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[CrossRef] [PubMed]

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80(4), 043821 (2009).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett. 93(13), 131109 (2008).
[CrossRef]

Venkatachalam, V.

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27(3), 653–670, viii (2007).
[CrossRef] [PubMed]

Wong, K. K. Y.

Zhang, C.

Zhou, Y.

Appl. Phys. B

G. Genty, J. M. Dudley, and B. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
[CrossRef]

Appl. Phys. Lett.

K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett. 93(13), 131109 (2008).
[CrossRef]

A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, “High-speed nanometer-resolved imaging vibrometer and velocimeter,” Appl. Phys. Lett. 98(10), 101107 (2011).
[CrossRef]

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[CrossRef]

Biosystems

H. R. Petty, “Spatiotemporal chemical dynamics in living cells: from information trafficking to cell physiology,” Biosystems 83(2-3), 217–224 (2006).
[CrossRef] [PubMed]

Clin. Lab. Med.

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27(3), 653–670, viii (2007).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron.

M. N. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 548–559 (2002).
[CrossRef]

Nat. Photonics

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength–time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[CrossRef]

Nature

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[CrossRef] [PubMed]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. A

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80(4), 043821 (2009).
[CrossRef]

Phys. Rev. Lett.

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101(23), 233902 (2008).
[CrossRef] [PubMed]

D. R. Solli, B. Jalali, and C. Ropers, “Seeded supercontinuum generation with optical parametric down-conversion,” Phys. Rev. Lett. 105(23), 233902 (2010).
[CrossRef] [PubMed]

Other

J. V. Watson, Introduction to Flow Cytometry (Cambridge University Press, 2004).

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University Press, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the STEAM system based on the CW-stabilized picosecond SC source. (a) CW-triggering mechanism for SC generation (bottom). The untriggered SC generation (top) is also shown for comparison; (b) Space-wavelength mapping: a diffraction grating is used to encode the spatial information into the spectrum; (c) Wavelength-time mapping: A Raman-amplified dispersive fiber maps the spectrally encoded image of a sample into a temporal waveform, which is then captured by the photodetector and digitized by the real-time oscilloscope.

Fig. 2
Fig. 2

Spectral and temporal characteristics of the CW-triggered SC source. (a) Measured SC spectra as a function of the CW-trigger wavelength; (b) Filtered pulse-to-pulse amplitude histograms of the untriggered SC (triangles) and the CW-triggered SC (squares), with similar average SC power level. The shaded region represents the noise floor of the measurements. The insets show the real-time pulse traces of (lower inset) the untriggered SC and (upper inset) the CW-triggered SC.

Fig. 3
Fig. 3

(a) Comparison between the image-encoded temporal waveform (single shot) captured by the oscilloscope (blue top) and the image-encoded spectrum measured by optical spectrum analyzer (red bottom). The consistency between them validates the wavelength-time mapping operation; (b) Temporal waveform encoded with another test barcode (overlaid with the waveform). The space-time mapping can be clearly visualized by the time axis and the length-scale axis.

Fig. 4
Fig. 4

STEAM images of a resolution target (USAF-1951) (a), (c) using a CW-triggered SC and (b), (d) using an untriggered SC source.

Fig. 5
Fig. 5

STEAM images of a lens paper (a) using the untriggered SC and (b) the CW-triggered SC. (c) shows a bright-field microscope image of the same area shown in (a) and (b).

Metrics