Abstract

We propose and demonstrate a proof-of-concept system for a coherently combined multi-aperture slow-light laser radar. By employing slow-light delay elements in short-pulse-emitting systems to ensure synchronized pulse arrival at the target, we show that it is possible to simultaneously achieve high resolution in the transverse and the lateral dimensions with a wide steering angle.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. S. Argall and R. J. Sica, “Lidar,” in Encyclopedia of Imaging Science and Technology, J.P. Hornak, ed. (Wiley, New York, 2002).
  2. P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
    [CrossRef]
  3. P. F. McManamon, J. Shi, and P. K. Bos, “Broadband optical phased-array beam steering,” Opt. Eng. 44(12), 128004 (2005).
    [CrossRef]
  4. S. J. Augst, T. Y. Fan, and A. Sanchez, “Coherent beam combining and phase noise measurements of ytterbium fiber amplifiers,” Opt. Lett. 29(5), 474–476 (2004).
    [CrossRef] [PubMed]
  5. R. Xiao, J. Hou, M. Liu, and Z. F. Jiang, “Coherent combining technology of master oscillator power amplifier fiber arrays,” Opt. Express 16(3), 2015–2022 (2008).
    [CrossRef] [PubMed]
  6. S. Serati, H. Masterson, and A. Linnenberger, “Beam combining using a phased array of phased arrays (PAPA),” in 2004 IEEE Aerospace Conference Proceedings (IEEE, 2004), Vol. 3, 1046–1052.
  7. T. M. Shay, “Theory of electronically phased coherent beam combination without a reference beam,” Opt. Express 14(25), 12188–12195 (2006).
    [CrossRef] [PubMed]
  8. T. M. Shay, V. Benham, J. T. Baker, B. Ward, A. D. Sanchez, M. A. Culpepper, D. Pilkington, J. Spring, D. J. Nelson, and C. A. Lu, “First experimental demonstration of self-synchronous phase locking of an optical array,” Opt. Express 14(25), 12015–12021 (2006).
    [CrossRef] [PubMed]
  9. I. Frigyes and A. J. Seeds, “Optically generated true-time delay in phased-array antennas,” IEEE Trans. Microw. Theory 43(9), 2378–2386 (1995).
    [CrossRef]
  10. S. T. Johns, D. A. Norton, C. W. Keefer, R. Erdman, and R. A. Soref, “Variable time delay of microwave signals using high dispersion fiber,” Electron. Lett. 29(6), 555–556 (1993).
    [CrossRef]
  11. R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, and D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett. 5(11), 1347–1349 (1993).
    [CrossRef]
  12. M. Y. Frankel, P. J. Matthews, R. D. Esman, and L. Goldberg, “Practical optical beam forming networks,” Opt. Quantum Electron. 30(11/12), 1033–1050 (1998).
    [CrossRef]
  13. M. Muszkowski and E. Sędek, “Application of optical dispersion techniques in phased array antenna beam steering,” J. Telecomun. Inform. Tech. 25, C61–C64 (2008).
  14. M. Bashkansky, Z. Dutton, A. Gulian, D. Walker, F. Fatemi, and M. Steiner, “True-time delay steering of phased array radars using slow light,” Proc. SPIE 7226, 72260A, 72260A-13 (2009).
    [CrossRef]
  15. M. Bashkansky, D. Walker, A. Gulian, and M. Steiner, “SBS-based radar true time delay,” Proc. SPIE 7949, 794918, 794918-9 (2011).
    [CrossRef]
  16. D. R. Walker, M. Bashkansky, A. Gulian, F. K. Fatemi, and M. Steiner, “Stabilizing slow light delay in stimulated Brillouin scattering using a Faraday rotator mirror,” J. Opt. Soc. Am. B 25(12), C61–C64 (2008).
    [CrossRef]
  17. F. Vasey, F. K. Reinhart, R. Houdré, and J. M. Stauffer, “Spatial optical beam steering with an AlGaAs integrated phased array,” Appl. Opt. 32(18), 3220–3232 (1993).
    [CrossRef] [PubMed]
  18. F. Xiao, W. Hu, and A. Xu, “Optical phased-array beam steering controlled by wavelength,” Appl. Opt. 44(26), 5429–5433 (2005).
    [CrossRef] [PubMed]
  19. F. Xiao, G. Li, Y. Li, and A. Xu, “Fabrication of irregular optical phased arrays on silicon-on-insulator wavers,” Opt. Eng. Lett. 47, 040503 (2008).
  20. N. J. Miller, M. P. Dierking, and B. D. Duncan, “Optical sparse aperture imaging,” Appl. Opt. 46(23), 5933–5943 (2007).
    [CrossRef] [PubMed]
  21. C. R. DeHainaut, D. C. Duneman, R. C. Dymale, J. P. Blea, B. D. O'Neil, and C. E. Hines, “Wide field performance of a phased array telescope,” Opt. Eng. 34(3), 876–880 (1995).
    [CrossRef]
  22. T. Y. Fan, “Laser beam combining for high-power high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11(3), 567–577 (2005).
    [CrossRef]
  23. J. E. Sharping, Y. Okawachi, J. van Howe, C. Xu, Y. Wang, A. E. Willner, and A. L. Gaeta, “All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion,” Opt. Express 13(20), 7872–7877 (2005).
    [CrossRef] [PubMed]
  24. R. Pant, M. D. Stenner, and M. A. Neifeld, “Distortion, Noise and Delay Study for Wavelength-Conversion and Dispersion Based Slow-Light System,” in Laser Science, OSA Technical Digest (CD) (Optical Society of America, 2007), paper LWE4.
  25. J. H. Abeles and R. J. Deri, “Suppression of sidelobes in the far-field radiation patterns of optical waveguide arrays,” Appl. Phys. Lett. 53(15), 1375–1377 (1988).
    [CrossRef]
  26. S. Yin, J. H. Kim, F. Wu, P. Ruffin, and C. Luo, “Ultra-fast speed, low grating lobe optical beam steering using unequally spaced phased array technique,” Opt. Commun. 270(1), 41–46 (2007).
    [CrossRef]
  27. J. A. Overbeck, M. S. Salisbury, M. B. Mark, and E. A. Watson, “Required energy for a laser radar system incorporating a fiber amplifier or an avalanche photodiode,” Appl. Opt. 34(33), 7724–7730 (1995).
    [CrossRef] [PubMed]

2011 (1)

M. Bashkansky, D. Walker, A. Gulian, and M. Steiner, “SBS-based radar true time delay,” Proc. SPIE 7949, 794918, 794918-9 (2011).
[CrossRef]

2009 (1)

M. Bashkansky, Z. Dutton, A. Gulian, D. Walker, F. Fatemi, and M. Steiner, “True-time delay steering of phased array radars using slow light,” Proc. SPIE 7226, 72260A, 72260A-13 (2009).
[CrossRef]

2008 (4)

M. Muszkowski and E. Sędek, “Application of optical dispersion techniques in phased array antenna beam steering,” J. Telecomun. Inform. Tech. 25, C61–C64 (2008).

F. Xiao, G. Li, Y. Li, and A. Xu, “Fabrication of irregular optical phased arrays on silicon-on-insulator wavers,” Opt. Eng. Lett. 47, 040503 (2008).

R. Xiao, J. Hou, M. Liu, and Z. F. Jiang, “Coherent combining technology of master oscillator power amplifier fiber arrays,” Opt. Express 16(3), 2015–2022 (2008).
[CrossRef] [PubMed]

D. R. Walker, M. Bashkansky, A. Gulian, F. K. Fatemi, and M. Steiner, “Stabilizing slow light delay in stimulated Brillouin scattering using a Faraday rotator mirror,” J. Opt. Soc. Am. B 25(12), C61–C64 (2008).
[CrossRef]

2007 (2)

N. J. Miller, M. P. Dierking, and B. D. Duncan, “Optical sparse aperture imaging,” Appl. Opt. 46(23), 5933–5943 (2007).
[CrossRef] [PubMed]

S. Yin, J. H. Kim, F. Wu, P. Ruffin, and C. Luo, “Ultra-fast speed, low grating lobe optical beam steering using unequally spaced phased array technique,” Opt. Commun. 270(1), 41–46 (2007).
[CrossRef]

2006 (2)

2005 (4)

2004 (1)

1998 (1)

M. Y. Frankel, P. J. Matthews, R. D. Esman, and L. Goldberg, “Practical optical beam forming networks,” Opt. Quantum Electron. 30(11/12), 1033–1050 (1998).
[CrossRef]

1996 (1)

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

1995 (3)

I. Frigyes and A. J. Seeds, “Optically generated true-time delay in phased-array antennas,” IEEE Trans. Microw. Theory 43(9), 2378–2386 (1995).
[CrossRef]

C. R. DeHainaut, D. C. Duneman, R. C. Dymale, J. P. Blea, B. D. O'Neil, and C. E. Hines, “Wide field performance of a phased array telescope,” Opt. Eng. 34(3), 876–880 (1995).
[CrossRef]

J. A. Overbeck, M. S. Salisbury, M. B. Mark, and E. A. Watson, “Required energy for a laser radar system incorporating a fiber amplifier or an avalanche photodiode,” Appl. Opt. 34(33), 7724–7730 (1995).
[CrossRef] [PubMed]

1993 (3)

F. Vasey, F. K. Reinhart, R. Houdré, and J. M. Stauffer, “Spatial optical beam steering with an AlGaAs integrated phased array,” Appl. Opt. 32(18), 3220–3232 (1993).
[CrossRef] [PubMed]

S. T. Johns, D. A. Norton, C. W. Keefer, R. Erdman, and R. A. Soref, “Variable time delay of microwave signals using high dispersion fiber,” Electron. Lett. 29(6), 555–556 (1993).
[CrossRef]

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, and D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett. 5(11), 1347–1349 (1993).
[CrossRef]

1988 (1)

J. H. Abeles and R. J. Deri, “Suppression of sidelobes in the far-field radiation patterns of optical waveguide arrays,” Appl. Phys. Lett. 53(15), 1375–1377 (1988).
[CrossRef]

Abeles, J. H.

J. H. Abeles and R. J. Deri, “Suppression of sidelobes in the far-field radiation patterns of optical waveguide arrays,” Appl. Phys. Lett. 53(15), 1375–1377 (1988).
[CrossRef]

Augst, S. J.

Baker, J. T.

Bashkansky, M.

M. Bashkansky, D. Walker, A. Gulian, and M. Steiner, “SBS-based radar true time delay,” Proc. SPIE 7949, 794918, 794918-9 (2011).
[CrossRef]

M. Bashkansky, Z. Dutton, A. Gulian, D. Walker, F. Fatemi, and M. Steiner, “True-time delay steering of phased array radars using slow light,” Proc. SPIE 7226, 72260A, 72260A-13 (2009).
[CrossRef]

D. R. Walker, M. Bashkansky, A. Gulian, F. K. Fatemi, and M. Steiner, “Stabilizing slow light delay in stimulated Brillouin scattering using a Faraday rotator mirror,” J. Opt. Soc. Am. B 25(12), C61–C64 (2008).
[CrossRef]

Benham, V.

Blea, J. P.

C. R. DeHainaut, D. C. Duneman, R. C. Dymale, J. P. Blea, B. D. O'Neil, and C. E. Hines, “Wide field performance of a phased array telescope,” Opt. Eng. 34(3), 876–880 (1995).
[CrossRef]

Bos, P. K.

P. F. McManamon, J. Shi, and P. K. Bos, “Broadband optical phased-array beam steering,” Opt. Eng. 44(12), 128004 (2005).
[CrossRef]

Cooper, D. G.

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, and D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett. 5(11), 1347–1349 (1993).
[CrossRef]

Corkum, D. L.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Culpepper, M. A.

DeHainaut, C. R.

C. R. DeHainaut, D. C. Duneman, R. C. Dymale, J. P. Blea, B. D. O'Neil, and C. E. Hines, “Wide field performance of a phased array telescope,” Opt. Eng. 34(3), 876–880 (1995).
[CrossRef]

Deri, R. J.

J. H. Abeles and R. J. Deri, “Suppression of sidelobes in the far-field radiation patterns of optical waveguide arrays,” Appl. Phys. Lett. 53(15), 1375–1377 (1988).
[CrossRef]

Dexter, J. L.

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, and D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett. 5(11), 1347–1349 (1993).
[CrossRef]

Dierking, M. P.

Dorschner, T. A.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Duncan, B. D.

Duneman, D. C.

C. R. DeHainaut, D. C. Duneman, R. C. Dymale, J. P. Blea, B. D. O'Neil, and C. E. Hines, “Wide field performance of a phased array telescope,” Opt. Eng. 34(3), 876–880 (1995).
[CrossRef]

Dutton, Z.

M. Bashkansky, Z. Dutton, A. Gulian, D. Walker, F. Fatemi, and M. Steiner, “True-time delay steering of phased array radars using slow light,” Proc. SPIE 7226, 72260A, 72260A-13 (2009).
[CrossRef]

Dymale, R. C.

C. R. DeHainaut, D. C. Duneman, R. C. Dymale, J. P. Blea, B. D. O'Neil, and C. E. Hines, “Wide field performance of a phased array telescope,” Opt. Eng. 34(3), 876–880 (1995).
[CrossRef]

Erdman, R.

S. T. Johns, D. A. Norton, C. W. Keefer, R. Erdman, and R. A. Soref, “Variable time delay of microwave signals using high dispersion fiber,” Electron. Lett. 29(6), 555–556 (1993).
[CrossRef]

Esman, R. D.

M. Y. Frankel, P. J. Matthews, R. D. Esman, and L. Goldberg, “Practical optical beam forming networks,” Opt. Quantum Electron. 30(11/12), 1033–1050 (1998).
[CrossRef]

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, and D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett. 5(11), 1347–1349 (1993).
[CrossRef]

Fan, T. Y.

T. Y. Fan, “Laser beam combining for high-power high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11(3), 567–577 (2005).
[CrossRef]

S. J. Augst, T. Y. Fan, and A. Sanchez, “Coherent beam combining and phase noise measurements of ytterbium fiber amplifiers,” Opt. Lett. 29(5), 474–476 (2004).
[CrossRef] [PubMed]

Fatemi, F.

M. Bashkansky, Z. Dutton, A. Gulian, D. Walker, F. Fatemi, and M. Steiner, “True-time delay steering of phased array radars using slow light,” Proc. SPIE 7226, 72260A, 72260A-13 (2009).
[CrossRef]

Fatemi, F. K.

Frankel, M. Y.

M. Y. Frankel, P. J. Matthews, R. D. Esman, and L. Goldberg, “Practical optical beam forming networks,” Opt. Quantum Electron. 30(11/12), 1033–1050 (1998).
[CrossRef]

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, and D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett. 5(11), 1347–1349 (1993).
[CrossRef]

Friedman, L. J.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Frigyes, I.

I. Frigyes and A. J. Seeds, “Optically generated true-time delay in phased-array antennas,” IEEE Trans. Microw. Theory 43(9), 2378–2386 (1995).
[CrossRef]

Gaeta, A. L.

Goldberg, L.

M. Y. Frankel, P. J. Matthews, R. D. Esman, and L. Goldberg, “Practical optical beam forming networks,” Opt. Quantum Electron. 30(11/12), 1033–1050 (1998).
[CrossRef]

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, and D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett. 5(11), 1347–1349 (1993).
[CrossRef]

Gulian, A.

M. Bashkansky, D. Walker, A. Gulian, and M. Steiner, “SBS-based radar true time delay,” Proc. SPIE 7949, 794918, 794918-9 (2011).
[CrossRef]

M. Bashkansky, Z. Dutton, A. Gulian, D. Walker, F. Fatemi, and M. Steiner, “True-time delay steering of phased array radars using slow light,” Proc. SPIE 7226, 72260A, 72260A-13 (2009).
[CrossRef]

D. R. Walker, M. Bashkansky, A. Gulian, F. K. Fatemi, and M. Steiner, “Stabilizing slow light delay in stimulated Brillouin scattering using a Faraday rotator mirror,” J. Opt. Soc. Am. B 25(12), C61–C64 (2008).
[CrossRef]

Hines, C. E.

C. R. DeHainaut, D. C. Duneman, R. C. Dymale, J. P. Blea, B. D. O'Neil, and C. E. Hines, “Wide field performance of a phased array telescope,” Opt. Eng. 34(3), 876–880 (1995).
[CrossRef]

Hobbs, D. S.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Holz, M.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Hou, J.

Houdré, R.

Hu, W.

Jiang, Z. F.

Johns, S. T.

S. T. Johns, D. A. Norton, C. W. Keefer, R. Erdman, and R. A. Soref, “Variable time delay of microwave signals using high dispersion fiber,” Electron. Lett. 29(6), 555–556 (1993).
[CrossRef]

Keefer, C. W.

S. T. Johns, D. A. Norton, C. W. Keefer, R. Erdman, and R. A. Soref, “Variable time delay of microwave signals using high dispersion fiber,” Electron. Lett. 29(6), 555–556 (1993).
[CrossRef]

Kim, J. H.

S. Yin, J. H. Kim, F. Wu, P. Ruffin, and C. Luo, “Ultra-fast speed, low grating lobe optical beam steering using unequally spaced phased array technique,” Opt. Commun. 270(1), 41–46 (2007).
[CrossRef]

Li, G.

F. Xiao, G. Li, Y. Li, and A. Xu, “Fabrication of irregular optical phased arrays on silicon-on-insulator wavers,” Opt. Eng. Lett. 47, 040503 (2008).

Li, Y.

F. Xiao, G. Li, Y. Li, and A. Xu, “Fabrication of irregular optical phased arrays on silicon-on-insulator wavers,” Opt. Eng. Lett. 47, 040503 (2008).

Liberman, S.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Liu, M.

Lu, C. A.

Luo, C.

S. Yin, J. H. Kim, F. Wu, P. Ruffin, and C. Luo, “Ultra-fast speed, low grating lobe optical beam steering using unequally spaced phased array technique,” Opt. Commun. 270(1), 41–46 (2007).
[CrossRef]

Mark, M. B.

Matthews, P. J.

M. Y. Frankel, P. J. Matthews, R. D. Esman, and L. Goldberg, “Practical optical beam forming networks,” Opt. Quantum Electron. 30(11/12), 1033–1050 (1998).
[CrossRef]

McManamon, P. F.

P. F. McManamon, J. Shi, and P. K. Bos, “Broadband optical phased-array beam steering,” Opt. Eng. 44(12), 128004 (2005).
[CrossRef]

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Miller, N. J.

Muszkowski, M.

M. Muszkowski and E. Sędek, “Application of optical dispersion techniques in phased array antenna beam steering,” J. Telecomun. Inform. Tech. 25, C61–C64 (2008).

Nelson, D. J.

Nguyen, H. Q.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Norton, D. A.

S. T. Johns, D. A. Norton, C. W. Keefer, R. Erdman, and R. A. Soref, “Variable time delay of microwave signals using high dispersion fiber,” Electron. Lett. 29(6), 555–556 (1993).
[CrossRef]

Okawachi, Y.

O'Neil, B. D.

C. R. DeHainaut, D. C. Duneman, R. C. Dymale, J. P. Blea, B. D. O'Neil, and C. E. Hines, “Wide field performance of a phased array telescope,” Opt. Eng. 34(3), 876–880 (1995).
[CrossRef]

Overbeck, J. A.

Parent, M. G.

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, and D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett. 5(11), 1347–1349 (1993).
[CrossRef]

Pilkington, D.

Reinhart, F. K.

Resler, D. P.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Ruffin, P.

S. Yin, J. H. Kim, F. Wu, P. Ruffin, and C. Luo, “Ultra-fast speed, low grating lobe optical beam steering using unequally spaced phased array technique,” Opt. Commun. 270(1), 41–46 (2007).
[CrossRef]

Salisbury, M. S.

Sanchez, A.

Sanchez, A. D.

Sedek, E.

M. Muszkowski and E. Sędek, “Application of optical dispersion techniques in phased array antenna beam steering,” J. Telecomun. Inform. Tech. 25, C61–C64 (2008).

Seeds, A. J.

I. Frigyes and A. J. Seeds, “Optically generated true-time delay in phased-array antennas,” IEEE Trans. Microw. Theory 43(9), 2378–2386 (1995).
[CrossRef]

Sharp, R. C.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Sharping, J. E.

Shay, T. M.

Shi, J.

P. F. McManamon, J. Shi, and P. K. Bos, “Broadband optical phased-array beam steering,” Opt. Eng. 44(12), 128004 (2005).
[CrossRef]

Soref, R. A.

S. T. Johns, D. A. Norton, C. W. Keefer, R. Erdman, and R. A. Soref, “Variable time delay of microwave signals using high dispersion fiber,” Electron. Lett. 29(6), 555–556 (1993).
[CrossRef]

Spring, J.

Stauffer, J. M.

Steiner, M.

M. Bashkansky, D. Walker, A. Gulian, and M. Steiner, “SBS-based radar true time delay,” Proc. SPIE 7949, 794918, 794918-9 (2011).
[CrossRef]

M. Bashkansky, Z. Dutton, A. Gulian, D. Walker, F. Fatemi, and M. Steiner, “True-time delay steering of phased array radars using slow light,” Proc. SPIE 7226, 72260A, 72260A-13 (2009).
[CrossRef]

D. R. Walker, M. Bashkansky, A. Gulian, F. K. Fatemi, and M. Steiner, “Stabilizing slow light delay in stimulated Brillouin scattering using a Faraday rotator mirror,” J. Opt. Soc. Am. B 25(12), C61–C64 (2008).
[CrossRef]

Stilwell, D.

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, and D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett. 5(11), 1347–1349 (1993).
[CrossRef]

van Howe, J.

Vasey, F.

Walker, D.

M. Bashkansky, D. Walker, A. Gulian, and M. Steiner, “SBS-based radar true time delay,” Proc. SPIE 7949, 794918, 794918-9 (2011).
[CrossRef]

M. Bashkansky, Z. Dutton, A. Gulian, D. Walker, F. Fatemi, and M. Steiner, “True-time delay steering of phased array radars using slow light,” Proc. SPIE 7226, 72260A, 72260A-13 (2009).
[CrossRef]

Walker, D. R.

Wang, Y.

Ward, B.

Watson, E. A.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

J. A. Overbeck, M. S. Salisbury, M. B. Mark, and E. A. Watson, “Required energy for a laser radar system incorporating a fiber amplifier or an avalanche photodiode,” Appl. Opt. 34(33), 7724–7730 (1995).
[CrossRef] [PubMed]

Willner, A. E.

Wu, F.

S. Yin, J. H. Kim, F. Wu, P. Ruffin, and C. Luo, “Ultra-fast speed, low grating lobe optical beam steering using unequally spaced phased array technique,” Opt. Commun. 270(1), 41–46 (2007).
[CrossRef]

Xiao, F.

F. Xiao, G. Li, Y. Li, and A. Xu, “Fabrication of irregular optical phased arrays on silicon-on-insulator wavers,” Opt. Eng. Lett. 47, 040503 (2008).

F. Xiao, W. Hu, and A. Xu, “Optical phased-array beam steering controlled by wavelength,” Appl. Opt. 44(26), 5429–5433 (2005).
[CrossRef] [PubMed]

Xiao, R.

Xu, A.

F. Xiao, G. Li, Y. Li, and A. Xu, “Fabrication of irregular optical phased arrays on silicon-on-insulator wavers,” Opt. Eng. Lett. 47, 040503 (2008).

F. Xiao, W. Hu, and A. Xu, “Optical phased-array beam steering controlled by wavelength,” Appl. Opt. 44(26), 5429–5433 (2005).
[CrossRef] [PubMed]

Xu, C.

Yin, S.

S. Yin, J. H. Kim, F. Wu, P. Ruffin, and C. Luo, “Ultra-fast speed, low grating lobe optical beam steering using unequally spaced phased array technique,” Opt. Commun. 270(1), 41–46 (2007).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

J. H. Abeles and R. J. Deri, “Suppression of sidelobes in the far-field radiation patterns of optical waveguide arrays,” Appl. Phys. Lett. 53(15), 1375–1377 (1988).
[CrossRef]

Electron. Lett. (1)

S. T. Johns, D. A. Norton, C. W. Keefer, R. Erdman, and R. A. Soref, “Variable time delay of microwave signals using high dispersion fiber,” Electron. Lett. 29(6), 555–556 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Y. Fan, “Laser beam combining for high-power high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11(3), 567–577 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, and D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett. 5(11), 1347–1349 (1993).
[CrossRef]

IEEE Trans. Microw. Theory (1)

I. Frigyes and A. J. Seeds, “Optically generated true-time delay in phased-array antennas,” IEEE Trans. Microw. Theory 43(9), 2378–2386 (1995).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Telecomun. Inform. Tech. (1)

M. Muszkowski and E. Sędek, “Application of optical dispersion techniques in phased array antenna beam steering,” J. Telecomun. Inform. Tech. 25, C61–C64 (2008).

Opt. Commun. (1)

S. Yin, J. H. Kim, F. Wu, P. Ruffin, and C. Luo, “Ultra-fast speed, low grating lobe optical beam steering using unequally spaced phased array technique,” Opt. Commun. 270(1), 41–46 (2007).
[CrossRef]

Opt. Eng. (2)

P. F. McManamon, J. Shi, and P. K. Bos, “Broadband optical phased-array beam steering,” Opt. Eng. 44(12), 128004 (2005).
[CrossRef]

C. R. DeHainaut, D. C. Duneman, R. C. Dymale, J. P. Blea, B. D. O'Neil, and C. E. Hines, “Wide field performance of a phased array telescope,” Opt. Eng. 34(3), 876–880 (1995).
[CrossRef]

Opt. Eng. Lett. (1)

F. Xiao, G. Li, Y. Li, and A. Xu, “Fabrication of irregular optical phased arrays on silicon-on-insulator wavers,” Opt. Eng. Lett. 47, 040503 (2008).

Opt. Express (4)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

M. Y. Frankel, P. J. Matthews, R. D. Esman, and L. Goldberg, “Practical optical beam forming networks,” Opt. Quantum Electron. 30(11/12), 1033–1050 (1998).
[CrossRef]

Proc. IEEE (1)

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Proc. SPIE (2)

M. Bashkansky, Z. Dutton, A. Gulian, D. Walker, F. Fatemi, and M. Steiner, “True-time delay steering of phased array radars using slow light,” Proc. SPIE 7226, 72260A, 72260A-13 (2009).
[CrossRef]

M. Bashkansky, D. Walker, A. Gulian, and M. Steiner, “SBS-based radar true time delay,” Proc. SPIE 7949, 794918, 794918-9 (2011).
[CrossRef]

Other (3)

P. S. Argall and R. J. Sica, “Lidar,” in Encyclopedia of Imaging Science and Technology, J.P. Hornak, ed. (Wiley, New York, 2002).

S. Serati, H. Masterson, and A. Linnenberger, “Beam combining using a phased array of phased arrays (PAPA),” in 2004 IEEE Aerospace Conference Proceedings (IEEE, 2004), Vol. 3, 1046–1052.

R. Pant, M. D. Stenner, and M. A. Neifeld, “Distortion, Noise and Delay Study for Wavelength-Conversion and Dispersion Based Slow-Light System,” in Laser Science, OSA Technical Digest (CD) (Optical Society of America, 2007), paper LWE4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Conceptual diagram of a SLIDAR system. Each channel must contain independent phase control, and group-delay control as well, if the desired steering angle is too large for a given pulse duration.

Fig. 2
Fig. 2

Partial SLIDAR schematic, showing one channel with the reference and a block diagram of the electronic feedback path. EDFA: Erbium-doped fiber amplifier. EOM: electro-optic modulator, POL: fiber polarizer, φ: electro-optic phase modulator, AOM: acousto-optic modulator. Red lines connecting elements in the diagram represent optical fiber; black lines represent electrical connections.

Fig. 3
Fig. 3

SLIDAR phase locking. Starting at time t1, two of the three channels are locked together. After time t2, all three channels are locked.

Fig. 4
Fig. 4

Demonstration of variable dispersive delay of three SLIDAR channels. In this figure, the relative delay for each channel is set to zero at 1550 nm.

Fig. 5
Fig. 5

(a) Setup for SLIDAR system tests. Diagram is not to scale; ~6 meters separate the emitters and the target. (b) Illustration of how translating apertures simulate side-steering of a larger scale system. The top two images represent our setup; the bottom two represent the equivalent pictures for a steered array. The green and blue bars indicate the differences in path length of light from the farther apertures.

Fig. 6
Fig. 6

Eye diagrams showing phase locking and pulse resynchronization through dispersive delay. 6(a) represents a recorded signal at 1535 nm without phase locking and with the emitters in the straight-ahead position. In going to 6(b), we have turned on the phase locking. When we shift the emitters to imitate an angular sweep, we obtain the signal seen in 6(c). Adjusting the wavelength to 1542 nm gives us the recombined signal of 6(d), showing proper synchronization and phase locking.

Fig. 7
Fig. 7

Data showing tracking of an object moving away from the emitter. The inset shows the time traces of the return signal corresponding to the closest (blue) and furthest (red) positions.

Fig. 8
Fig. 8

Spatial resolution measurements for different beam output configurations. A slit was scanned across the far-field interference pattern of the operational SLIDAR. Trace (a) shows the return signal when two emitters are used. For trace (b), we use three emitters with the same spacing as in (a), and therefore a larger full aperture. The insets beside each data curve show the CCD image of the interference pattern. It can be seen that the addition of a third emitter allows for a narrower central lobe that still contains a high fraction of the beam’s power.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R far field = 1.22 L λ D
I ( θ ) = I 0 ( sin ( α ) α ) 2 ( sin ( N β ) sin ( β ) ) 2

Metrics