Abstract

This paper presents a high-sensitivity, all-silica, all-fiber Fabry-Perot strain-sensor. The proposed sensor provides a long active length, arbitrary length of Fabry-Perot cavity, and low intrinsic temperature sensitivity. The sensor was micro-machined from purposely-developed sensor-forming fiber that is etched and directly spliced to the lead-in fiber. This manufacturing process has good potential for cost-effective, high-volume production. Its measurement range of over 3000 µε, and strain-resolution better than 1 µε were demonstrated by the application of a commercial, multimode fiber-based signal processor.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. J. Rao, “Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
    [CrossRef]
  2. É. Pinet, “Fabry–Perot fiber-optics sensors for physical parameters measurements in challenging conditions,” J. Sensors 2009, Article ID 720980, 9 pages, (2009).
    [CrossRef]
  3. J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13(7), 1256–1263 (1995).
    [CrossRef]
  4. E. Cibula and D. Donlagic, “In-line short cavity Fabry–Perot strain sensor for quasi distributed measurement utilizing standard OTDR,” Opt. Express 15(14), 8719–8730 (2007).
    [CrossRef] [PubMed]
  5. T. Wei, Y. K. Han, H. L. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry–Perot interferometer fabricated with a femtosecond laser,” Opt. Lett. 33(6), 536–538 (2008).
    [CrossRef] [PubMed]
  6. Z. L. Ran, Y. J. Rao, H. Y. Deng, and X. Liao, “Miniature in-line photonic crystal fiber etalon fabricated by 157 nm laser micromachining,” Opt. Lett. 32(21), 3071–3073 (2007).
    [CrossRef] [PubMed]
  7. Y. J. Rao, M. Deng, D. W. Duan, X. C. Yang, T. Zhu, and G. H. Cheng, “Micro Fabry–Perot interferometers in silica fibers machined by femtosecond laser,” Opt. Express 15(21), 14123–14128 (2007).
    [CrossRef] [PubMed]
  8. K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, and R. O. Claus, “Quadrature phase-shifted, extrinsic Fabry-Perot optical fiber sensors,” Opt. Lett. 16(4), 273–275 (1991).
    [CrossRef] [PubMed]
  9. T. A. Tran, W. V. Miller, K. A. Murphy, A. M. Vengsarkar, and R. O. Claus, “Stabilized Extrinsic Fiber-Optic Fizeau Sensor for Surface Acoustic Wave Detection,” J. Lightwave Technol. 10(10), 1499–1506 (1992).
    [CrossRef]
  10. J. A. Etches and G. F. Fernando, “Evaluation of embedded optical fiber sensors in composites: EFPI sensor fabrication and quasi-static evaluation,” Polym. Composite. 30(9), 1265–1274 (2009).
    [CrossRef]
  11. J. Zhang, G. D. Peng, L. Yuan, and W. Sun, “Composite-cavity-based Fabry–Perot interferometric strain sensors,” Opt. Lett. 32(13), 1833–1835 (2007).
    [CrossRef] [PubMed]
  12. Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry–Perot interferometer using a graded index fiber collimator,” IEEE Photon. J. 2(3), 469–481 (2010).
    [CrossRef]
  13. A. Sakamoto and J. Nishii, “Fiber Fabry–Perot interferometer with precision glass-ceramic jacketing,” IEEE Photon. Technol. Lett. 17(7), 1462–1464 (2005).
    [CrossRef]
  14. Q. Shi, F. Y. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry–Perot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20(4), 237–239 (2008).
    [CrossRef]
  15. Y. J. Rao, T. Zhu, X. C. Yang, and D. W. Duan, “In-line fiber-optic etalon formed by hollow-core photonic crystal fiber,” Opt. Lett. 32(18), 2662–2664 (2007).
    [CrossRef] [PubMed]
  16. Y. Gong, Y. J. Rao, Y. Guo, Z. L. Ran, and Y. Wu, “Temperature-insensitive micro Fabry–Perot strain sensor fabricated by chemically etching Er-doped fiber,” IEEE Photon. Technol. Lett. 21(22), 1725–1727 (2009).
    [CrossRef]
  17. T. Zhao, Y. Gong, Y. Rao, Y. Wu, Z. Ran, and H. Wu, “Fiber-optic Fabry–Perot strain sensor based on graded-index multimode fiber,” Chin. Opt. Lett. 9(5), 050602–050605 (2011).
    [CrossRef]
  18. C. Belleville and G. Duplain, “White-light interferometric multimode fiber-optic strain sensor,” Opt. Lett. 18(1), 78–80 (1993).
    [CrossRef] [PubMed]
  19. Y. Jiang, “Fourier-transform phase comparator for the measurement of extrinsic Fabry–Perot interferometric sensors,” Microw. Opt. Technol. Lett. 50(10), 2621–2625 (2008).
    [CrossRef]
  20. Y. L. Lo, J. S. Sirkis, and C. C. Chang, “Passive signal processing of in-line fiber etalon sensors for high strain-rate loading,” J. Lightwave Technol. 15(8), 1578–1586 (1997).
    [CrossRef]
  21. A. J. Willshire, P. Niewczas, and J. R. McDonald, “An arrayed waveguide grating based multiplexer and interrogator for Fabry–Perot sensors,” IEEE Sens. J. 5(5), 964–969 (2005).
    [CrossRef]
  22. B. Yu, A. B. Wang, and G. R. Pickrell, “Analysis of fiber Fabry–Perot interferometric sensors using low-coherence light sources,” J. Lightwave Technol. 24(4), 1758–1767 (2006).
    [CrossRef]
  23. M. Schmidt, B. Werther, N. Fuerstenau, M. Matthias, and T. Melz, “Fiber-optic extrinsic Fabry–Perot interferometer strain sensor with <50 pm displacement resolution using three-wavelength digital phase demodulation,” Opt. Express 8(8), 475–480 (2001).
    [CrossRef] [PubMed]
  24. F. B. Shen and A. B. Wang, “Frequency-estimation-based signal-processing algorithm for white-light optical fiber Fabry–Perot interferometers,” Appl. Opt. 44(25), 5206–5214 (2005).
    [CrossRef] [PubMed]
  25. www.fiso.com
  26. Y. Z. Zhu and A. B. Wang, “Miniature fiber-optic pressure sensor,” IEEE Photon. Technol. Lett. 17(2), 447–449 (2005).
    [CrossRef]
  27. E. Cibula, S. Pevec, B. Lenardic, E. Pinet, and D. Donlagic, “Miniature all-glass robust pressure sensor,” Opt. Express 17(7), 5098–5106 (2009).
    [CrossRef] [PubMed]
  28. S. Pevec, E. Cibula, B. Lenardic, and D. Donlagic, “Micromachining of optical fibers using selective etching based on phosphorus pentoxide doping,” IEEE Photon. J. 3(4), 627–632 (2011).
    [CrossRef]
  29. J. Kochan, T. Wintgens, R. Hochstrat, and T. Melin, “Impact of wetting agents on the filtration performance of polymeric ultrafiltration membranes,” Desalination 241(1-3), 34–42 (2009).
    [CrossRef]

2011 (2)

T. Zhao, Y. Gong, Y. Rao, Y. Wu, Z. Ran, and H. Wu, “Fiber-optic Fabry–Perot strain sensor based on graded-index multimode fiber,” Chin. Opt. Lett. 9(5), 050602–050605 (2011).
[CrossRef]

S. Pevec, E. Cibula, B. Lenardic, and D. Donlagic, “Micromachining of optical fibers using selective etching based on phosphorus pentoxide doping,” IEEE Photon. J. 3(4), 627–632 (2011).
[CrossRef]

2010 (1)

Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry–Perot interferometer using a graded index fiber collimator,” IEEE Photon. J. 2(3), 469–481 (2010).
[CrossRef]

2009 (5)

J. A. Etches and G. F. Fernando, “Evaluation of embedded optical fiber sensors in composites: EFPI sensor fabrication and quasi-static evaluation,” Polym. Composite. 30(9), 1265–1274 (2009).
[CrossRef]

Y. Gong, Y. J. Rao, Y. Guo, Z. L. Ran, and Y. Wu, “Temperature-insensitive micro Fabry–Perot strain sensor fabricated by chemically etching Er-doped fiber,” IEEE Photon. Technol. Lett. 21(22), 1725–1727 (2009).
[CrossRef]

É. Pinet, “Fabry–Perot fiber-optics sensors for physical parameters measurements in challenging conditions,” J. Sensors 2009, Article ID 720980, 9 pages, (2009).
[CrossRef]

J. Kochan, T. Wintgens, R. Hochstrat, and T. Melin, “Impact of wetting agents on the filtration performance of polymeric ultrafiltration membranes,” Desalination 241(1-3), 34–42 (2009).
[CrossRef]

E. Cibula, S. Pevec, B. Lenardic, E. Pinet, and D. Donlagic, “Miniature all-glass robust pressure sensor,” Opt. Express 17(7), 5098–5106 (2009).
[CrossRef] [PubMed]

2008 (3)

Y. Jiang, “Fourier-transform phase comparator for the measurement of extrinsic Fabry–Perot interferometric sensors,” Microw. Opt. Technol. Lett. 50(10), 2621–2625 (2008).
[CrossRef]

T. Wei, Y. K. Han, H. L. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry–Perot interferometer fabricated with a femtosecond laser,” Opt. Lett. 33(6), 536–538 (2008).
[CrossRef] [PubMed]

Q. Shi, F. Y. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry–Perot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20(4), 237–239 (2008).
[CrossRef]

2007 (5)

2006 (2)

Y. J. Rao, “Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[CrossRef]

B. Yu, A. B. Wang, and G. R. Pickrell, “Analysis of fiber Fabry–Perot interferometric sensors using low-coherence light sources,” J. Lightwave Technol. 24(4), 1758–1767 (2006).
[CrossRef]

2005 (4)

F. B. Shen and A. B. Wang, “Frequency-estimation-based signal-processing algorithm for white-light optical fiber Fabry–Perot interferometers,” Appl. Opt. 44(25), 5206–5214 (2005).
[CrossRef] [PubMed]

Y. Z. Zhu and A. B. Wang, “Miniature fiber-optic pressure sensor,” IEEE Photon. Technol. Lett. 17(2), 447–449 (2005).
[CrossRef]

A. J. Willshire, P. Niewczas, and J. R. McDonald, “An arrayed waveguide grating based multiplexer and interrogator for Fabry–Perot sensors,” IEEE Sens. J. 5(5), 964–969 (2005).
[CrossRef]

A. Sakamoto and J. Nishii, “Fiber Fabry–Perot interferometer with precision glass-ceramic jacketing,” IEEE Photon. Technol. Lett. 17(7), 1462–1464 (2005).
[CrossRef]

2001 (1)

1997 (1)

Y. L. Lo, J. S. Sirkis, and C. C. Chang, “Passive signal processing of in-line fiber etalon sensors for high strain-rate loading,” J. Lightwave Technol. 15(8), 1578–1586 (1997).
[CrossRef]

1995 (1)

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13(7), 1256–1263 (1995).
[CrossRef]

1993 (1)

1992 (1)

T. A. Tran, W. V. Miller, K. A. Murphy, A. M. Vengsarkar, and R. O. Claus, “Stabilized Extrinsic Fiber-Optic Fizeau Sensor for Surface Acoustic Wave Detection,” J. Lightwave Technol. 10(10), 1499–1506 (1992).
[CrossRef]

1991 (1)

Belleville, C.

Berkoff, T. A.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13(7), 1256–1263 (1995).
[CrossRef]

Chang, C. C.

Y. L. Lo, J. S. Sirkis, and C. C. Chang, “Passive signal processing of in-line fiber etalon sensors for high strain-rate loading,” J. Lightwave Technol. 15(8), 1578–1586 (1997).
[CrossRef]

Chen, G.

Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry–Perot interferometer using a graded index fiber collimator,” IEEE Photon. J. 2(3), 469–481 (2010).
[CrossRef]

Cheng, G. H.

Cibula, E.

Claus, R. O.

T. A. Tran, W. V. Miller, K. A. Murphy, A. M. Vengsarkar, and R. O. Claus, “Stabilized Extrinsic Fiber-Optic Fizeau Sensor for Surface Acoustic Wave Detection,” J. Lightwave Technol. 10(10), 1499–1506 (1992).
[CrossRef]

K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, and R. O. Claus, “Quadrature phase-shifted, extrinsic Fabry-Perot optical fiber sensors,” Opt. Lett. 16(4), 273–275 (1991).
[CrossRef] [PubMed]

Deng, H. Y.

Deng, M.

Dong, X.

Q. Shi, F. Y. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry–Perot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20(4), 237–239 (2008).
[CrossRef]

Donlagic, D.

Duan, D. W.

Duplain, G.

Etches, J. A.

J. A. Etches and G. F. Fernando, “Evaluation of embedded optical fiber sensors in composites: EFPI sensor fabrication and quasi-static evaluation,” Polym. Composite. 30(9), 1265–1274 (2009).
[CrossRef]

Fernando, G. F.

J. A. Etches and G. F. Fernando, “Evaluation of embedded optical fiber sensors in composites: EFPI sensor fabrication and quasi-static evaluation,” Polym. Composite. 30(9), 1265–1274 (2009).
[CrossRef]

Friebele, E. J.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13(7), 1256–1263 (1995).
[CrossRef]

Fuerstenau, N.

Gong, Y.

T. Zhao, Y. Gong, Y. Rao, Y. Wu, Z. Ran, and H. Wu, “Fiber-optic Fabry–Perot strain sensor based on graded-index multimode fiber,” Chin. Opt. Lett. 9(5), 050602–050605 (2011).
[CrossRef]

Y. Gong, Y. J. Rao, Y. Guo, Z. L. Ran, and Y. Wu, “Temperature-insensitive micro Fabry–Perot strain sensor fabricated by chemically etching Er-doped fiber,” IEEE Photon. Technol. Lett. 21(22), 1725–1727 (2009).
[CrossRef]

Gunther, M. F.

Guo, Y.

Y. Gong, Y. J. Rao, Y. Guo, Z. L. Ran, and Y. Wu, “Temperature-insensitive micro Fabry–Perot strain sensor fabricated by chemically etching Er-doped fiber,” IEEE Photon. Technol. Lett. 21(22), 1725–1727 (2009).
[CrossRef]

Han, Y. K.

Hochstrat, R.

J. Kochan, T. Wintgens, R. Hochstrat, and T. Melin, “Impact of wetting agents on the filtration performance of polymeric ultrafiltration membranes,” Desalination 241(1-3), 34–42 (2009).
[CrossRef]

Hu, J. J.

Q. Shi, F. Y. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry–Perot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20(4), 237–239 (2008).
[CrossRef]

Huang, Y.

Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry–Perot interferometer using a graded index fiber collimator,” IEEE Photon. J. 2(3), 469–481 (2010).
[CrossRef]

Jiang, Y.

Y. Jiang, “Fourier-transform phase comparator for the measurement of extrinsic Fabry–Perot interferometric sensors,” Microw. Opt. Technol. Lett. 50(10), 2621–2625 (2008).
[CrossRef]

Jin, L.

Q. Shi, F. Y. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry–Perot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20(4), 237–239 (2008).
[CrossRef]

Jones, R. T.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13(7), 1256–1263 (1995).
[CrossRef]

Kai, G.

Q. Shi, F. Y. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry–Perot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20(4), 237–239 (2008).
[CrossRef]

Kersey, A. D.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13(7), 1256–1263 (1995).
[CrossRef]

Kochan, J.

J. Kochan, T. Wintgens, R. Hochstrat, and T. Melin, “Impact of wetting agents on the filtration performance of polymeric ultrafiltration membranes,” Desalination 241(1-3), 34–42 (2009).
[CrossRef]

Lan, X.

Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry–Perot interferometer using a graded index fiber collimator,” IEEE Photon. J. 2(3), 469–481 (2010).
[CrossRef]

Lenardic, B.

S. Pevec, E. Cibula, B. Lenardic, and D. Donlagic, “Micromachining of optical fibers using selective etching based on phosphorus pentoxide doping,” IEEE Photon. J. 3(4), 627–632 (2011).
[CrossRef]

E. Cibula, S. Pevec, B. Lenardic, E. Pinet, and D. Donlagic, “Miniature all-glass robust pressure sensor,” Opt. Express 17(7), 5098–5106 (2009).
[CrossRef] [PubMed]

Li, Y.

Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry–Perot interferometer using a graded index fiber collimator,” IEEE Photon. J. 2(3), 469–481 (2010).
[CrossRef]

Liao, X.

Liu, Z.

Q. Shi, F. Y. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry–Perot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20(4), 237–239 (2008).
[CrossRef]

Lo, Y. L.

Y. L. Lo, J. S. Sirkis, and C. C. Chang, “Passive signal processing of in-line fiber etalon sensors for high strain-rate loading,” J. Lightwave Technol. 15(8), 1578–1586 (1997).
[CrossRef]

Lv, F. Y.

Q. Shi, F. Y. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry–Perot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20(4), 237–239 (2008).
[CrossRef]

Matthias, M.

McDonald, J. R.

A. J. Willshire, P. Niewczas, and J. R. McDonald, “An arrayed waveguide grating based multiplexer and interrogator for Fabry–Perot sensors,” IEEE Sens. J. 5(5), 964–969 (2005).
[CrossRef]

Melin, T.

J. Kochan, T. Wintgens, R. Hochstrat, and T. Melin, “Impact of wetting agents on the filtration performance of polymeric ultrafiltration membranes,” Desalination 241(1-3), 34–42 (2009).
[CrossRef]

Melz, T.

Miller, W. V.

T. A. Tran, W. V. Miller, K. A. Murphy, A. M. Vengsarkar, and R. O. Claus, “Stabilized Extrinsic Fiber-Optic Fizeau Sensor for Surface Acoustic Wave Detection,” J. Lightwave Technol. 10(10), 1499–1506 (1992).
[CrossRef]

Murphy, K. A.

T. A. Tran, W. V. Miller, K. A. Murphy, A. M. Vengsarkar, and R. O. Claus, “Stabilized Extrinsic Fiber-Optic Fizeau Sensor for Surface Acoustic Wave Detection,” J. Lightwave Technol. 10(10), 1499–1506 (1992).
[CrossRef]

K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, and R. O. Claus, “Quadrature phase-shifted, extrinsic Fabry-Perot optical fiber sensors,” Opt. Lett. 16(4), 273–275 (1991).
[CrossRef] [PubMed]

Niewczas, P.

A. J. Willshire, P. Niewczas, and J. R. McDonald, “An arrayed waveguide grating based multiplexer and interrogator for Fabry–Perot sensors,” IEEE Sens. J. 5(5), 964–969 (2005).
[CrossRef]

Nishii, J.

A. Sakamoto and J. Nishii, “Fiber Fabry–Perot interferometer with precision glass-ceramic jacketing,” IEEE Photon. Technol. Lett. 17(7), 1462–1464 (2005).
[CrossRef]

Peng, G. D.

Pevec, S.

S. Pevec, E. Cibula, B. Lenardic, and D. Donlagic, “Micromachining of optical fibers using selective etching based on phosphorus pentoxide doping,” IEEE Photon. J. 3(4), 627–632 (2011).
[CrossRef]

E. Cibula, S. Pevec, B. Lenardic, E. Pinet, and D. Donlagic, “Miniature all-glass robust pressure sensor,” Opt. Express 17(7), 5098–5106 (2009).
[CrossRef] [PubMed]

Pickrell, G. R.

Pinet, E.

Pinet, É.

É. Pinet, “Fabry–Perot fiber-optics sensors for physical parameters measurements in challenging conditions,” J. Sensors 2009, Article ID 720980, 9 pages, (2009).
[CrossRef]

Putnam, M. A.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13(7), 1256–1263 (1995).
[CrossRef]

Ran, Z.

Ran, Z. L.

Y. Gong, Y. J. Rao, Y. Guo, Z. L. Ran, and Y. Wu, “Temperature-insensitive micro Fabry–Perot strain sensor fabricated by chemically etching Er-doped fiber,” IEEE Photon. Technol. Lett. 21(22), 1725–1727 (2009).
[CrossRef]

Z. L. Ran, Y. J. Rao, H. Y. Deng, and X. Liao, “Miniature in-line photonic crystal fiber etalon fabricated by 157 nm laser micromachining,” Opt. Lett. 32(21), 3071–3073 (2007).
[CrossRef] [PubMed]

Rao, Y.

Rao, Y. J.

Sakamoto, A.

A. Sakamoto and J. Nishii, “Fiber Fabry–Perot interferometer with precision glass-ceramic jacketing,” IEEE Photon. Technol. Lett. 17(7), 1462–1464 (2005).
[CrossRef]

Schmidt, M.

Shen, F. B.

Shi, Q.

Q. Shi, F. Y. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry–Perot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20(4), 237–239 (2008).
[CrossRef]

Singh, H.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13(7), 1256–1263 (1995).
[CrossRef]

Sirkis, J.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13(7), 1256–1263 (1995).
[CrossRef]

Sirkis, J. S.

Y. L. Lo, J. S. Sirkis, and C. C. Chang, “Passive signal processing of in-line fiber etalon sensors for high strain-rate loading,” J. Lightwave Technol. 15(8), 1578–1586 (1997).
[CrossRef]

Sun, W.

Tran, T. A.

T. A. Tran, W. V. Miller, K. A. Murphy, A. M. Vengsarkar, and R. O. Claus, “Stabilized Extrinsic Fiber-Optic Fizeau Sensor for Surface Acoustic Wave Detection,” J. Lightwave Technol. 10(10), 1499–1506 (1992).
[CrossRef]

Tsai, H. L.

Vengsarkar, A. M.

T. A. Tran, W. V. Miller, K. A. Murphy, A. M. Vengsarkar, and R. O. Claus, “Stabilized Extrinsic Fiber-Optic Fizeau Sensor for Surface Acoustic Wave Detection,” J. Lightwave Technol. 10(10), 1499–1506 (1992).
[CrossRef]

K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, and R. O. Claus, “Quadrature phase-shifted, extrinsic Fabry-Perot optical fiber sensors,” Opt. Lett. 16(4), 273–275 (1991).
[CrossRef] [PubMed]

Wang, A. B.

Wang, Z.

Q. Shi, F. Y. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry–Perot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20(4), 237–239 (2008).
[CrossRef]

Wei, T.

Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry–Perot interferometer using a graded index fiber collimator,” IEEE Photon. J. 2(3), 469–481 (2010).
[CrossRef]

T. Wei, Y. K. Han, H. L. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry–Perot interferometer fabricated with a femtosecond laser,” Opt. Lett. 33(6), 536–538 (2008).
[CrossRef] [PubMed]

Werther, B.

Willshire, A. J.

A. J. Willshire, P. Niewczas, and J. R. McDonald, “An arrayed waveguide grating based multiplexer and interrogator for Fabry–Perot sensors,” IEEE Sens. J. 5(5), 964–969 (2005).
[CrossRef]

Wintgens, T.

J. Kochan, T. Wintgens, R. Hochstrat, and T. Melin, “Impact of wetting agents on the filtration performance of polymeric ultrafiltration membranes,” Desalination 241(1-3), 34–42 (2009).
[CrossRef]

Wu, H.

Wu, Y.

T. Zhao, Y. Gong, Y. Rao, Y. Wu, Z. Ran, and H. Wu, “Fiber-optic Fabry–Perot strain sensor based on graded-index multimode fiber,” Chin. Opt. Lett. 9(5), 050602–050605 (2011).
[CrossRef]

Y. Gong, Y. J. Rao, Y. Guo, Z. L. Ran, and Y. Wu, “Temperature-insensitive micro Fabry–Perot strain sensor fabricated by chemically etching Er-doped fiber,” IEEE Photon. Technol. Lett. 21(22), 1725–1727 (2009).
[CrossRef]

Xiao, H.

Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry–Perot interferometer using a graded index fiber collimator,” IEEE Photon. J. 2(3), 469–481 (2010).
[CrossRef]

T. Wei, Y. K. Han, H. L. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry–Perot interferometer fabricated with a femtosecond laser,” Opt. Lett. 33(6), 536–538 (2008).
[CrossRef] [PubMed]

Yang, X. C.

Yu, B.

Yuan, L.

Zhang, J.

Zhang, Y.

Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry–Perot interferometer using a graded index fiber collimator,” IEEE Photon. J. 2(3), 469–481 (2010).
[CrossRef]

Zhao, T.

Zhu, T.

Zhu, Y. Z.

Y. Z. Zhu and A. B. Wang, “Miniature fiber-optic pressure sensor,” IEEE Photon. Technol. Lett. 17(2), 447–449 (2005).
[CrossRef]

Appl. Opt. (1)

Chin. Opt. Lett. (1)

Desalination (1)

J. Kochan, T. Wintgens, R. Hochstrat, and T. Melin, “Impact of wetting agents on the filtration performance of polymeric ultrafiltration membranes,” Desalination 241(1-3), 34–42 (2009).
[CrossRef]

IEEE Photon. J. (2)

S. Pevec, E. Cibula, B. Lenardic, and D. Donlagic, “Micromachining of optical fibers using selective etching based on phosphorus pentoxide doping,” IEEE Photon. J. 3(4), 627–632 (2011).
[CrossRef]

Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry–Perot interferometer using a graded index fiber collimator,” IEEE Photon. J. 2(3), 469–481 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

A. Sakamoto and J. Nishii, “Fiber Fabry–Perot interferometer with precision glass-ceramic jacketing,” IEEE Photon. Technol. Lett. 17(7), 1462–1464 (2005).
[CrossRef]

Q. Shi, F. Y. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry–Perot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20(4), 237–239 (2008).
[CrossRef]

Y. Gong, Y. J. Rao, Y. Guo, Z. L. Ran, and Y. Wu, “Temperature-insensitive micro Fabry–Perot strain sensor fabricated by chemically etching Er-doped fiber,” IEEE Photon. Technol. Lett. 21(22), 1725–1727 (2009).
[CrossRef]

Y. Z. Zhu and A. B. Wang, “Miniature fiber-optic pressure sensor,” IEEE Photon. Technol. Lett. 17(2), 447–449 (2005).
[CrossRef]

IEEE Sens. J. (1)

A. J. Willshire, P. Niewczas, and J. R. McDonald, “An arrayed waveguide grating based multiplexer and interrogator for Fabry–Perot sensors,” IEEE Sens. J. 5(5), 964–969 (2005).
[CrossRef]

J. Lightwave Technol. (4)

B. Yu, A. B. Wang, and G. R. Pickrell, “Analysis of fiber Fabry–Perot interferometric sensors using low-coherence light sources,” J. Lightwave Technol. 24(4), 1758–1767 (2006).
[CrossRef]

Y. L. Lo, J. S. Sirkis, and C. C. Chang, “Passive signal processing of in-line fiber etalon sensors for high strain-rate loading,” J. Lightwave Technol. 15(8), 1578–1586 (1997).
[CrossRef]

T. A. Tran, W. V. Miller, K. A. Murphy, A. M. Vengsarkar, and R. O. Claus, “Stabilized Extrinsic Fiber-Optic Fizeau Sensor for Surface Acoustic Wave Detection,” J. Lightwave Technol. 10(10), 1499–1506 (1992).
[CrossRef]

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13(7), 1256–1263 (1995).
[CrossRef]

J. Sensors (1)

É. Pinet, “Fabry–Perot fiber-optics sensors for physical parameters measurements in challenging conditions,” J. Sensors 2009, Article ID 720980, 9 pages, (2009).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

Y. Jiang, “Fourier-transform phase comparator for the measurement of extrinsic Fabry–Perot interferometric sensors,” Microw. Opt. Technol. Lett. 50(10), 2621–2625 (2008).
[CrossRef]

Opt. Express (4)

Opt. Fiber Technol. (1)

Y. J. Rao, “Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[CrossRef]

Opt. Lett. (6)

Polym. Composite. (1)

J. A. Etches and G. F. Fernando, “Evaluation of embedded optical fiber sensors in composites: EFPI sensor fabrication and quasi-static evaluation,” Polym. Composite. 30(9), 1265–1274 (2009).
[CrossRef]

Other (1)

www.fiso.com

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

All fiber long active length strain-sensor.

Fig. 2
Fig. 2

(a) Optical microscopic image of the strain-sensor forming fiber cross-section; (b) the strain-sensor forming fiber after etching - frontal view (scanning electron microscopic image); (c) the strain-sensor forming fiber after etching - side view under an optical microscope.

Fig. 3
Fig. 3

Micromachining of proposed strain-sensor: (a) cleaving of sensor-forming fiber; (b) etching of the strain-sensor forming fiber; (c) fusion splicing of lead-in and strain-sensor forming fiber.

Fig. 4
Fig. 4

Optical microscope image of produced strain-sensor (360 µm long active length, FP cavity length 5.1 µm).

Fig. 5
Fig. 5

Sensors’s spectral characteristics within 800 and 1600 nm band.

Fig. 6
Fig. 6

Typically experimentally measured sensor’s cavity length elongation as a function of strain applied to: (a) steel bar; (b) PMMA bar.

Fig. 7
Fig. 7

Demonstration of strain-resolution: values in the circles indicate strain applied to the steel bar with test-sensor; graphs show measured strain versus time as measured by Fiso Technology’s FP signal processor: (a) in the case of 10 Hz sampling rate (b) in the case of 1 Hz sampling rate.

Fig. 8
Fig. 8

Sensors’s cavity length change due to the temperature change.

Tables (1)

Tables Icon

Table 1 FSS-2000 Splicing Sequence/Process (this Sequence is Automatically Executed by Splicer)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ L c = l 0 ε ,
ε = 1 k Δ L c l 0 ,

Metrics