Abstract

Parametric tunable dispersion compensator (P-TDC), which allows format-independent operation owing to seamlessly wide bandwidth, is expected to be one of the key building blocks of the future ultra-high speed optical network. In this paper, a design of ultra-wide band P-TDC is presented showing that bandwidth over 2.5 THz can be achieved by compensating the chromatic dispersion up to the 4th order without employing additional method. In order to demonstrate the potential application of P-TDC in the Tbit/s optical time division multiplexing transmissions, 400 fs optical pulses were successfully transmitted through a dispersion managed 6-km DSF fiber span.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Vorbeck and R. Leppla, “Dispersion and dispersion slope tolerance of 160-Gb/s systems, considering the temperature dependence of chromatic dispersion,” IEEE Photon. Technol. Lett. 15(10), 1470–1472 (2003).
    [CrossRef]
  2. S. Arahira, S. Kutsuzawa, Y. Matsui, and Y. Ogawa, “Higher order chirp compensation of femtosecond mode-locked semiconductor lasers using optical fibers with different group-velocity dispersions,” IEEE J. Sel. Top. Quantum Electron. 2(3), 480–486 (1996).
    [CrossRef]
  3. T. Yamamoto and M. Nakazawa, “Third- and fourth-order active dispersion compensation with a phase modulator in a terabit-per-second optical time-division multiplexed transmission,” Opt. Lett. 26(9), 647–649 (2001).
    [CrossRef] [PubMed]
  4. B. P.-P. Kuo, E. Myslivets, A. O. J. Wiberg, S. Zlatanovic, C. Bres, S. Moro, F. Gholami, A. Peric, N. Alic, and S. Radic, “Transmission of 640-Gb/s RZ-OOK channel over 100km SSMF by wavelength-transparent conjugation,” J. Lightwave Technol. 29(4), 516–523 (2011).
    [CrossRef]
  5. S. Namiki, “Wide-band and -range tunable dispersion compensation through parametric wavelength conversion and dispersive optical fibers,” J. Lightwave Technol. 26(1), 28–35 (2008).
    [CrossRef]
  6. K. Tanizawa, J. Kurumida, H. Ishida, Y. Oikawa, N. Shiga, M. Takahashi, T. Yagi, and S. Namiki, “Microsecond switching of parametric tunable dispersion compensator,” Opt. Lett. 35(18), 3039–3041 (2010).
    [CrossRef] [PubMed]
  7. R. E. Kennedy and J. R. Taylor, “All-fiber integrated chirped pulse amplification at 1.06μm using aircore photonic bandgap fiber,” Appl. Phys. Lett. 87(16), 161106 (2005).
    [CrossRef]
  8. K. Tanizawa, T. Kurosu, and S. Namiki, “High-speed optical transmissions over a second- and third-order dispersion-managed DSF span with parametric tunable dispersion compensator,” Opt. Express 18(10), 10594–10603 (2010).
    [CrossRef] [PubMed]
  9. T. Kurosu and S. Namiki, “Continuously tunable 22 ns delay for wideband optical signals using a parametric delay-dispersion tuner,” Opt. Lett. 34(9), 1441–1443 (2009).
    [CrossRef] [PubMed]
  10. N. Alic, E. Myslivets, S. Moro, B. P.-P. Kuo, R. M. Jopson, C. J. McKinstrie, and S. Radic, “Microsecond parametric optical delays,” J. Lightwave Technol. 28(4), 448–455 (2010).
    [CrossRef]
  11. S. R. Nuccio, O. F. Yilmaz, X. Wang, H. Huang, J. Wang, X. Wu, and A. E. Willner, “Higher-order dispersion compensation to enable a 3.6 micros wavelength-maintaining delay of a 100 Gb/s DQPSK signal,” Opt. Lett. 35(17), 2985–2987 (2010).
    [CrossRef] [PubMed]
  12. M. Takahashi, K. Mukasa, and T. Yagi, “Full C-L band tunable wavelength conversion by zero dispersion and zero dispersion slope HNLF,” in 35th European Conference and Exhibition on Optical Communication (ECOC2009), Technical Digest (CD), paper P1.08 (2009).
  13. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  14. T. Inoue, H. Tobioka, K. Igarashi, and S. Namiki, “Optical pulse compression based on stationary rescaled pulse propagation in a comblike profiled fiber,” J. Lightwave Technol. 24(7), 2510–2522 (2006).
    [CrossRef]
  15. T. Kurosu, K. Tanizawa, S. Petit, and S. Namiki, “Parametric tunable dispersion compensation for sub-picosecond optical pulses,” in CLEO2011, Proceedings CMJ7 (2011).
  16. S. Petit, T. Kurosu, M. Takahashi, T. Yagi, and S. Namiki, “Low penalty uniformly tunable wavelength conversion without spectral inversion over 30 nm using SBS-suppressed low dispersion slope highly nonlinear fibers,” IEEE Photon. Technol. Lett. 23(9), 546–548 (2011).
    [CrossRef]

2011 (2)

B. P.-P. Kuo, E. Myslivets, A. O. J. Wiberg, S. Zlatanovic, C. Bres, S. Moro, F. Gholami, A. Peric, N. Alic, and S. Radic, “Transmission of 640-Gb/s RZ-OOK channel over 100km SSMF by wavelength-transparent conjugation,” J. Lightwave Technol. 29(4), 516–523 (2011).
[CrossRef]

S. Petit, T. Kurosu, M. Takahashi, T. Yagi, and S. Namiki, “Low penalty uniformly tunable wavelength conversion without spectral inversion over 30 nm using SBS-suppressed low dispersion slope highly nonlinear fibers,” IEEE Photon. Technol. Lett. 23(9), 546–548 (2011).
[CrossRef]

2010 (4)

2009 (1)

2008 (1)

2006 (1)

2005 (1)

R. E. Kennedy and J. R. Taylor, “All-fiber integrated chirped pulse amplification at 1.06μm using aircore photonic bandgap fiber,” Appl. Phys. Lett. 87(16), 161106 (2005).
[CrossRef]

2003 (1)

S. Vorbeck and R. Leppla, “Dispersion and dispersion slope tolerance of 160-Gb/s systems, considering the temperature dependence of chromatic dispersion,” IEEE Photon. Technol. Lett. 15(10), 1470–1472 (2003).
[CrossRef]

2001 (1)

1996 (1)

S. Arahira, S. Kutsuzawa, Y. Matsui, and Y. Ogawa, “Higher order chirp compensation of femtosecond mode-locked semiconductor lasers using optical fibers with different group-velocity dispersions,” IEEE J. Sel. Top. Quantum Electron. 2(3), 480–486 (1996).
[CrossRef]

Alic, N.

Arahira, S.

S. Arahira, S. Kutsuzawa, Y. Matsui, and Y. Ogawa, “Higher order chirp compensation of femtosecond mode-locked semiconductor lasers using optical fibers with different group-velocity dispersions,” IEEE J. Sel. Top. Quantum Electron. 2(3), 480–486 (1996).
[CrossRef]

Bres, C.

Gholami, F.

Huang, H.

Igarashi, K.

Inoue, T.

Ishida, H.

Jopson, R. M.

Kennedy, R. E.

R. E. Kennedy and J. R. Taylor, “All-fiber integrated chirped pulse amplification at 1.06μm using aircore photonic bandgap fiber,” Appl. Phys. Lett. 87(16), 161106 (2005).
[CrossRef]

Kuo, B. P.-P.

Kurosu, T.

Kurumida, J.

Kutsuzawa, S.

S. Arahira, S. Kutsuzawa, Y. Matsui, and Y. Ogawa, “Higher order chirp compensation of femtosecond mode-locked semiconductor lasers using optical fibers with different group-velocity dispersions,” IEEE J. Sel. Top. Quantum Electron. 2(3), 480–486 (1996).
[CrossRef]

Leppla, R.

S. Vorbeck and R. Leppla, “Dispersion and dispersion slope tolerance of 160-Gb/s systems, considering the temperature dependence of chromatic dispersion,” IEEE Photon. Technol. Lett. 15(10), 1470–1472 (2003).
[CrossRef]

Matsui, Y.

S. Arahira, S. Kutsuzawa, Y. Matsui, and Y. Ogawa, “Higher order chirp compensation of femtosecond mode-locked semiconductor lasers using optical fibers with different group-velocity dispersions,” IEEE J. Sel. Top. Quantum Electron. 2(3), 480–486 (1996).
[CrossRef]

McKinstrie, C. J.

Moro, S.

Myslivets, E.

Nakazawa, M.

Namiki, S.

Nuccio, S. R.

Ogawa, Y.

S. Arahira, S. Kutsuzawa, Y. Matsui, and Y. Ogawa, “Higher order chirp compensation of femtosecond mode-locked semiconductor lasers using optical fibers with different group-velocity dispersions,” IEEE J. Sel. Top. Quantum Electron. 2(3), 480–486 (1996).
[CrossRef]

Oikawa, Y.

Peric, A.

Petit, S.

S. Petit, T. Kurosu, M. Takahashi, T. Yagi, and S. Namiki, “Low penalty uniformly tunable wavelength conversion without spectral inversion over 30 nm using SBS-suppressed low dispersion slope highly nonlinear fibers,” IEEE Photon. Technol. Lett. 23(9), 546–548 (2011).
[CrossRef]

Radic, S.

Shiga, N.

Takahashi, M.

S. Petit, T. Kurosu, M. Takahashi, T. Yagi, and S. Namiki, “Low penalty uniformly tunable wavelength conversion without spectral inversion over 30 nm using SBS-suppressed low dispersion slope highly nonlinear fibers,” IEEE Photon. Technol. Lett. 23(9), 546–548 (2011).
[CrossRef]

K. Tanizawa, J. Kurumida, H. Ishida, Y. Oikawa, N. Shiga, M. Takahashi, T. Yagi, and S. Namiki, “Microsecond switching of parametric tunable dispersion compensator,” Opt. Lett. 35(18), 3039–3041 (2010).
[CrossRef] [PubMed]

Tanizawa, K.

Taylor, J. R.

R. E. Kennedy and J. R. Taylor, “All-fiber integrated chirped pulse amplification at 1.06μm using aircore photonic bandgap fiber,” Appl. Phys. Lett. 87(16), 161106 (2005).
[CrossRef]

Tobioka, H.

Vorbeck, S.

S. Vorbeck and R. Leppla, “Dispersion and dispersion slope tolerance of 160-Gb/s systems, considering the temperature dependence of chromatic dispersion,” IEEE Photon. Technol. Lett. 15(10), 1470–1472 (2003).
[CrossRef]

Wang, J.

Wang, X.

Wiberg, A. O. J.

Willner, A. E.

Wu, X.

Yagi, T.

S. Petit, T. Kurosu, M. Takahashi, T. Yagi, and S. Namiki, “Low penalty uniformly tunable wavelength conversion without spectral inversion over 30 nm using SBS-suppressed low dispersion slope highly nonlinear fibers,” IEEE Photon. Technol. Lett. 23(9), 546–548 (2011).
[CrossRef]

K. Tanizawa, J. Kurumida, H. Ishida, Y. Oikawa, N. Shiga, M. Takahashi, T. Yagi, and S. Namiki, “Microsecond switching of parametric tunable dispersion compensator,” Opt. Lett. 35(18), 3039–3041 (2010).
[CrossRef] [PubMed]

Yamamoto, T.

Yilmaz, O. F.

Zlatanovic, S.

Appl. Phys. Lett. (1)

R. E. Kennedy and J. R. Taylor, “All-fiber integrated chirped pulse amplification at 1.06μm using aircore photonic bandgap fiber,” Appl. Phys. Lett. 87(16), 161106 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Arahira, S. Kutsuzawa, Y. Matsui, and Y. Ogawa, “Higher order chirp compensation of femtosecond mode-locked semiconductor lasers using optical fibers with different group-velocity dispersions,” IEEE J. Sel. Top. Quantum Electron. 2(3), 480–486 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

S. Vorbeck and R. Leppla, “Dispersion and dispersion slope tolerance of 160-Gb/s systems, considering the temperature dependence of chromatic dispersion,” IEEE Photon. Technol. Lett. 15(10), 1470–1472 (2003).
[CrossRef]

S. Petit, T. Kurosu, M. Takahashi, T. Yagi, and S. Namiki, “Low penalty uniformly tunable wavelength conversion without spectral inversion over 30 nm using SBS-suppressed low dispersion slope highly nonlinear fibers,” IEEE Photon. Technol. Lett. 23(9), 546–548 (2011).
[CrossRef]

J. Lightwave Technol. (4)

Opt. Express (1)

Opt. Lett. (4)

Other (3)

M. Takahashi, K. Mukasa, and T. Yagi, “Full C-L band tunable wavelength conversion by zero dispersion and zero dispersion slope HNLF,” in 35th European Conference and Exhibition on Optical Communication (ECOC2009), Technical Digest (CD), paper P1.08 (2009).

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

T. Kurosu, K. Tanizawa, S. Petit, and S. Namiki, “Parametric tunable dispersion compensation for sub-picosecond optical pulses,” in CLEO2011, Proceedings CMJ7 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

The output waveform of sub-picosecond Gaussian pulses after transmission through a DSF with or without CD compensation. τ in: Input pulse width. (a) 100-m DSF without CD compensation, (b) 100-m DSF with SOD compensation, (c) 6-km DSF with compensation of SOD and TOD.

Fig. 2
Fig. 2

The configuration and operating principle of P-TDC. FC/SI: Frequency converter with spectral inversion.

Fig. 3
Fig. 3

(a) Typical dispersion profile of SMF, DSF and DCF. (b) Quadratic dispersion profile obtained from a combination of “1-km SMF and 153-m DCF”. (c) Linear dispersion profile obtained from a combination of “1-km DSF, 500-m SMF and 75-m DCF”.

Fig. 4
Fig. 4

The optimum configuration of P-TDC designed for 6-km DSF span.

Fig. 5
Fig. 5

(a) Effective dispersion calculated for several converted wavelengths (input signal: 1535 nm) and the dispersion of DSF. (b) Output pulse width estimated for Gaussian pulses with a width of 100 fs (blue) and 400 fs (red).

Fig. 6
Fig. 6

Waveforms of 100-fs Gaussian pulse after transmission of 6-km-DSF with optimally arranged P-TDC (solid curve) and CD compensation up to the 3rd order (dashed curve).

Fig. 7
Fig. 7

Experimental setup and dispersion property of the used fibers. TL: Tunable CW-laser, PC: Polarization controller, FC: Frequency converter, F: Optical bandpass filter, HNLF; Highly nonlinear fiber, AC: auto-correlator.

Fig. 8
Fig. 8

Effective dispersion calculated for several converted wavelengths.

Fig. 9
Fig. 9

The auto-correlation trace (a) and spectra of the input pulse (b). The curve in fig. (b) is a theoretical fit to the data.

Fig. 10
Fig. 10

Output pulse width measured for various conversed wavelength. Two curves show the theoretical estimations made with (bold) or without (dash) including the effect of EDFA and bandpass filter. Inset shows the AC traces for input and restored pulse.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

i z u ( z , t ) = k i k β k k ! k t k u ( z , t ) ,
u ( z = L , t ) = 1 2 π u ˜ ( ω ) exp [ i φ ( ω ) ] exp ( i ω t ) d ω ,
φ ( ω ) = k = 0 β k L ω k k ! .
u o u t ( t ) = 1 2 π u ˜ ( ω ) exp [ i φ   T ( ω ) ] exp ( i ω t ) d ω ,
φ   T ( ω ) = k = 0 [ β k ( 2 ) L 2 ω k β k ( 1 ) L 1 ( ω ) k ] k ! .
u o u t ( t ) = 1 2 π u ˜ ( ω ) H ( ± ω ) exp [ i φ T ( ω ) ] exp ( i ω t ) d ω ,
d e f f ( ω ) = d 2 d ω 2 φ T ( ω ) = k = 0 [ β k + 2 ( 2 ) L 2 + ( 1 ) k + 1 β k + 2 ( 1 ) L 1 ] ω k k ! ,
F ( ω ) =       1     ( | ω | B f i l t e r / 2 )                       0     ( | ω | > B f i l t e r / 2 ) ,
G ( ω ) = exp [ ( ω 2 / 2 B E D F A 2 ) ] ,

Metrics