Abstract

The ability to use a laser to direct-write tracks of localized emission enhancement in PECVD-deposited Silicon rich oxide (SRO) films is demonstrated. For this purpose, 400nm thick SRO films with varying excess Si content were irradiated with loosely focused 355nm, 12ps pulses at 80MHz while being translated at 2mm/s. Mapping of areas irradiated with energies between 4.7nJ and 5.5nJ/pulse exhibits regions with the largest emission enhancement. Raman and photoluminescence (PL) measurements suggest precipitation of amorphous and crystalline Si nanoclusters. In the most emissive regions, the PL efficiency of the laser-annealed films was ~70% of that obtained by standard oven-annealing processes. Stress in Si crystals in some areas is identified as leading to quenching of the PL and is hypothesized to be caused by the densification of SRO matrix.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, “Optical interconnects to silicon,” Selected. Topics. In Quantum. Electronics. IEEE. Journal. Of. DOI - 10 1109/2944. 902184. 6, 1312–1317 (2000).
  2. L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57(10), 1046–1048 (1990).
    [CrossRef]
  3. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
    [CrossRef] [PubMed]
  4. H. Xia, Y. L. He, L. C. Wang, W. Zhang, X. N. Liu, X. K. Zhang, D. Feng, and H. E. Jackson, “Phonon mode study of Si nanocrystals using micro-Raman spectroscopy,” J. Appl. Phys. 78(11), 6705–6708 (1995).
    [CrossRef]
  5. S. Guha, M. D. Pace, D. N. Dunn, and I. L. Singer, “Visible light emission from Si nanocrystals grown by ion implantation and subsequent annealing,” Appl. Phys. Lett. 70(10), 1207–1209 (1997).
    [CrossRef]
  6. C. F. Lin, W. T. Tseng, and M. S. Feng, “Formation and characteristics of silicon nanocrystals in plasma-enhanced chemical-vapor-deposited silicon-rich oxide,” J. Appl. Phys. 87(6), 2808–2815 (2000).
    [CrossRef]
  7. B. Garrido, M. Lopez, O. Gonzalez, A. Perez-Rodriguez, J. R. Morante, and C. Bonafos, “Correlation between structural and optical properties of Si nanocrystals embedded in SiO[sub 2]: The mechanism of visible light emission,” Appl. Phys. Lett. 77(20), 3143–3145 (2000).
    [CrossRef]
  8. B. Garrido, M. López, A. Pérez-Rodríguez, C. García, P. Pellegrino, R. Ferré, J. A. Moreno, J. R. Morante, C. Bonafos, M. Carrada, A. Claverie, J. de la Torre, and A. Souifi, “Optical and electrical properties of Si-nanocrystals ion beam synthesized in SiO2,” Nucl. Instrum. Methods Phys. Res. B 216, 213–221 (2004).
    [CrossRef]
  9. H. Rinnert, M. Vergnat, and A. Burneau, “Evidence of light-emitting amorphous silicon clusters confined in a silicon oxide matrix,” J. Appl. Phys. 89(1), 237–243 (2001).
    [CrossRef]
  10. M. Molinari, H. Rinnert, and M. Vergnat, “Effects of the amorphous-crystalline transition on the luminescence of quantum confined silicon nanoclusters,” EPL 66(5), 674–679 (2004) (Europhysics Letters).
    [CrossRef]
  11. R. J. Walters, J. Kalkman, A. Polman, H. A. Atwater, and M. J. A. de Dood, “Photoluminescence quantum efficiency of dense silicon nanocrystal ensembles in SiO_{2},” Phys. Rev. B 73(13), 132302 (2006).
    [CrossRef]
  12. R. D. Kekatpure and M. L. Brongersma, “Quantification of free-carrier absorption in silicon nanocrystals with an optical microcavity,” Nano Lett. 8(11), 3787–3793 (2008).
    [CrossRef] [PubMed]
  13. M. Makarova, J. Vuckovic, H. Sanda, and Y. Nishi, “Silicon-based photonic crystal nanocavity light emitters,” Appl. Phys. Lett. 89(22), 221101 (2006).
    [CrossRef]
  14. K. S. Cho, N. Park, T. Kim, K. Kim, G. Y. Sung, and J. H. Shin, “High efficiency visible electroluminescence from silicon nanocrystals embedded in silicon nitride using a transparent doping layer,” Appl. Phys. Lett. 86(7), 071909 (2005).
    [CrossRef]
  15. A. H. Nejadmalayeri, P. Scrutton, J. Mak, A. S. Helmy, P. R. Herman, J. Burghoff, S. Nolte, A. Tünnermann, and J. Kaspar, “Solid phase formation of silicon nanocrystals by bulk ultrafast laser-matter interaction,” Opt. Lett. 32(24), 3474–3476 (2007).
    [CrossRef] [PubMed]
  16. L. Khriachtchev, M. Rasanen, and S. Novikov, “Laser-controlled stress of Si nanocrystals in a free-standing Si/SiO[sub 2] superlattice,” Appl. Phys. Lett. 88(1), 013102 (2006).
    [CrossRef]
  17. C. B. Schaffer, A. Brodeur, J. F. García, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26(2), 93–95 (2001).
    [CrossRef] [PubMed]
  18. A. H. Nejadmalayeri and P. R. Herman, “Rapid thermal annealing in high repetition rate ultrafast laser waveguide writing in lithium niobate,” Opt. Express 15(17), 10842–10854 (2007).
    [CrossRef] [PubMed]
  19. S. Cheylan and R. G. Elliman, “Effect of hydrogen on the photoluminescence of Si nanocrystals embedded in a SiO2 matrix,” Appl. Phys. Lett. 78(9), 1225–1227 (2001).
    [CrossRef]
  20. M. López, B. Garrido, C. Garcia, P. Pellegrino, A. Perez-Rodriguez, J. R. Morante, C. Bonafos, M. Carrada, and A. Claverie, “Elucidation of the surface passivation role on the photoluminescence emission yield of silicon nanocrystals embedded in SiO2,” Appl. Phys. Lett. 80(9), 1637–1639 (2002).
    [CrossRef]
  21. L. Vaccaro, M. Cannas, and R. Boscaino, “Phonon coupling of non-bridging oxygen hole center with the silica environment: Temperature dependence of the 1.9 eV emission spectra,” J. Lumin. 128(7), 1132–1136 (2008).
    [CrossRef]
  22. A. Morales, J. Barreto, C. Domínguez, M. Riera, M. Aceves, and J. Carrillo, “Comparative study between silicon-rich oxide films obtained by LPCVD and PECVD,” Physica E 38(1-2), 54–58 (2007).
    [CrossRef]
  23. F. Iacona, C. Bongiorno, C. Spinella, S. Boninelli, and F. Priolo, “Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiOx films,” J. Appl. Phys. 95(7), 3723–3732 (2004).
    [CrossRef]
  24. N. Daldosso, G. Das, S. Larcheri, G. Mariotto, G. Dalba, L. Pavesi, A. Irrera, F. Priolo, F. Iacona, and F. Rocca, “Silicon nanocrystal formation in annealed silicon-rich silicon oxide films prepared by plasma enhanced chemical vapor deposition,” J. Appl. Phys. 101(11), 113510 (2007).
    [CrossRef]
  25. I. D. Wolf, “Stress measurements in Si microelectronics devices using Raman spectroscopy,” J. Raman Spectrosc. 30(10), 877–883 (1999).
    [CrossRef]
  26. G. Faraci, S. Gibilisco, P. Russo, A. R. Pennisi, and S. La Rosa, “Modified Raman confinement model for Si nanocrystals,” Phys. Rev. B 73(3), 033307 (2006).
    [CrossRef]
  27. G. Ledoux, J. Gong, F. Huisken, O. Guillois, and C. Reynaud, “Photoluminescence of size-separated silicon nanocrystals: Confirmation of quantum confinement,” Appl. Phys. Lett. 80(25), 4834–4836 (2002).
    [CrossRef]
  28. F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Perez-Rodriguez, and P. Loza-Alvarez, “Mechanisms of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett. 87(2), 021109 (2005).
    [CrossRef]
  29. L. Huang and J. Kieffer, “Anomalous thermomechanical properties and laser-induced densification of vitreous silica,” Appl. Phys. Lett. 89(14), 141915 (2006).
    [CrossRef]

2008 (2)

R. D. Kekatpure and M. L. Brongersma, “Quantification of free-carrier absorption in silicon nanocrystals with an optical microcavity,” Nano Lett. 8(11), 3787–3793 (2008).
[CrossRef] [PubMed]

L. Vaccaro, M. Cannas, and R. Boscaino, “Phonon coupling of non-bridging oxygen hole center with the silica environment: Temperature dependence of the 1.9 eV emission spectra,” J. Lumin. 128(7), 1132–1136 (2008).
[CrossRef]

2007 (4)

A. Morales, J. Barreto, C. Domínguez, M. Riera, M. Aceves, and J. Carrillo, “Comparative study between silicon-rich oxide films obtained by LPCVD and PECVD,” Physica E 38(1-2), 54–58 (2007).
[CrossRef]

N. Daldosso, G. Das, S. Larcheri, G. Mariotto, G. Dalba, L. Pavesi, A. Irrera, F. Priolo, F. Iacona, and F. Rocca, “Silicon nanocrystal formation in annealed silicon-rich silicon oxide films prepared by plasma enhanced chemical vapor deposition,” J. Appl. Phys. 101(11), 113510 (2007).
[CrossRef]

A. H. Nejadmalayeri, P. Scrutton, J. Mak, A. S. Helmy, P. R. Herman, J. Burghoff, S. Nolte, A. Tünnermann, and J. Kaspar, “Solid phase formation of silicon nanocrystals by bulk ultrafast laser-matter interaction,” Opt. Lett. 32(24), 3474–3476 (2007).
[CrossRef] [PubMed]

A. H. Nejadmalayeri and P. R. Herman, “Rapid thermal annealing in high repetition rate ultrafast laser waveguide writing in lithium niobate,” Opt. Express 15(17), 10842–10854 (2007).
[CrossRef] [PubMed]

2006 (5)

L. Khriachtchev, M. Rasanen, and S. Novikov, “Laser-controlled stress of Si nanocrystals in a free-standing Si/SiO[sub 2] superlattice,” Appl. Phys. Lett. 88(1), 013102 (2006).
[CrossRef]

M. Makarova, J. Vuckovic, H. Sanda, and Y. Nishi, “Silicon-based photonic crystal nanocavity light emitters,” Appl. Phys. Lett. 89(22), 221101 (2006).
[CrossRef]

R. J. Walters, J. Kalkman, A. Polman, H. A. Atwater, and M. J. A. de Dood, “Photoluminescence quantum efficiency of dense silicon nanocrystal ensembles in SiO_{2},” Phys. Rev. B 73(13), 132302 (2006).
[CrossRef]

G. Faraci, S. Gibilisco, P. Russo, A. R. Pennisi, and S. La Rosa, “Modified Raman confinement model for Si nanocrystals,” Phys. Rev. B 73(3), 033307 (2006).
[CrossRef]

L. Huang and J. Kieffer, “Anomalous thermomechanical properties and laser-induced densification of vitreous silica,” Appl. Phys. Lett. 89(14), 141915 (2006).
[CrossRef]

2005 (2)

F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Perez-Rodriguez, and P. Loza-Alvarez, “Mechanisms of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett. 87(2), 021109 (2005).
[CrossRef]

K. S. Cho, N. Park, T. Kim, K. Kim, G. Y. Sung, and J. H. Shin, “High efficiency visible electroluminescence from silicon nanocrystals embedded in silicon nitride using a transparent doping layer,” Appl. Phys. Lett. 86(7), 071909 (2005).
[CrossRef]

2004 (3)

M. Molinari, H. Rinnert, and M. Vergnat, “Effects of the amorphous-crystalline transition on the luminescence of quantum confined silicon nanoclusters,” EPL 66(5), 674–679 (2004) (Europhysics Letters).
[CrossRef]

B. Garrido, M. López, A. Pérez-Rodríguez, C. García, P. Pellegrino, R. Ferré, J. A. Moreno, J. R. Morante, C. Bonafos, M. Carrada, A. Claverie, J. de la Torre, and A. Souifi, “Optical and electrical properties of Si-nanocrystals ion beam synthesized in SiO2,” Nucl. Instrum. Methods Phys. Res. B 216, 213–221 (2004).
[CrossRef]

F. Iacona, C. Bongiorno, C. Spinella, S. Boninelli, and F. Priolo, “Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiOx films,” J. Appl. Phys. 95(7), 3723–3732 (2004).
[CrossRef]

2002 (2)

M. López, B. Garrido, C. Garcia, P. Pellegrino, A. Perez-Rodriguez, J. R. Morante, C. Bonafos, M. Carrada, and A. Claverie, “Elucidation of the surface passivation role on the photoluminescence emission yield of silicon nanocrystals embedded in SiO2,” Appl. Phys. Lett. 80(9), 1637–1639 (2002).
[CrossRef]

G. Ledoux, J. Gong, F. Huisken, O. Guillois, and C. Reynaud, “Photoluminescence of size-separated silicon nanocrystals: Confirmation of quantum confinement,” Appl. Phys. Lett. 80(25), 4834–4836 (2002).
[CrossRef]

2001 (3)

H. Rinnert, M. Vergnat, and A. Burneau, “Evidence of light-emitting amorphous silicon clusters confined in a silicon oxide matrix,” J. Appl. Phys. 89(1), 237–243 (2001).
[CrossRef]

C. B. Schaffer, A. Brodeur, J. F. García, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26(2), 93–95 (2001).
[CrossRef] [PubMed]

S. Cheylan and R. G. Elliman, “Effect of hydrogen on the photoluminescence of Si nanocrystals embedded in a SiO2 matrix,” Appl. Phys. Lett. 78(9), 1225–1227 (2001).
[CrossRef]

2000 (3)

C. F. Lin, W. T. Tseng, and M. S. Feng, “Formation and characteristics of silicon nanocrystals in plasma-enhanced chemical-vapor-deposited silicon-rich oxide,” J. Appl. Phys. 87(6), 2808–2815 (2000).
[CrossRef]

B. Garrido, M. Lopez, O. Gonzalez, A. Perez-Rodriguez, J. R. Morante, and C. Bonafos, “Correlation between structural and optical properties of Si nanocrystals embedded in SiO[sub 2]: The mechanism of visible light emission,” Appl. Phys. Lett. 77(20), 3143–3145 (2000).
[CrossRef]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

1999 (1)

I. D. Wolf, “Stress measurements in Si microelectronics devices using Raman spectroscopy,” J. Raman Spectrosc. 30(10), 877–883 (1999).
[CrossRef]

1997 (1)

S. Guha, M. D. Pace, D. N. Dunn, and I. L. Singer, “Visible light emission from Si nanocrystals grown by ion implantation and subsequent annealing,” Appl. Phys. Lett. 70(10), 1207–1209 (1997).
[CrossRef]

1995 (1)

H. Xia, Y. L. He, L. C. Wang, W. Zhang, X. N. Liu, X. K. Zhang, D. Feng, and H. E. Jackson, “Phonon mode study of Si nanocrystals using micro-Raman spectroscopy,” J. Appl. Phys. 78(11), 6705–6708 (1995).
[CrossRef]

1990 (1)

L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57(10), 1046–1048 (1990).
[CrossRef]

Aceves, M.

A. Morales, J. Barreto, C. Domínguez, M. Riera, M. Aceves, and J. Carrillo, “Comparative study between silicon-rich oxide films obtained by LPCVD and PECVD,” Physica E 38(1-2), 54–58 (2007).
[CrossRef]

Armengol, J.

F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Perez-Rodriguez, and P. Loza-Alvarez, “Mechanisms of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett. 87(2), 021109 (2005).
[CrossRef]

Atwater, H. A.

R. J. Walters, J. Kalkman, A. Polman, H. A. Atwater, and M. J. A. de Dood, “Photoluminescence quantum efficiency of dense silicon nanocrystal ensembles in SiO_{2},” Phys. Rev. B 73(13), 132302 (2006).
[CrossRef]

Barcones, B.

F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Perez-Rodriguez, and P. Loza-Alvarez, “Mechanisms of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett. 87(2), 021109 (2005).
[CrossRef]

Barreto, J.

A. Morales, J. Barreto, C. Domínguez, M. Riera, M. Aceves, and J. Carrillo, “Comparative study between silicon-rich oxide films obtained by LPCVD and PECVD,” Physica E 38(1-2), 54–58 (2007).
[CrossRef]

Bonafos, C.

B. Garrido, M. López, A. Pérez-Rodríguez, C. García, P. Pellegrino, R. Ferré, J. A. Moreno, J. R. Morante, C. Bonafos, M. Carrada, A. Claverie, J. de la Torre, and A. Souifi, “Optical and electrical properties of Si-nanocrystals ion beam synthesized in SiO2,” Nucl. Instrum. Methods Phys. Res. B 216, 213–221 (2004).
[CrossRef]

M. López, B. Garrido, C. Garcia, P. Pellegrino, A. Perez-Rodriguez, J. R. Morante, C. Bonafos, M. Carrada, and A. Claverie, “Elucidation of the surface passivation role on the photoluminescence emission yield of silicon nanocrystals embedded in SiO2,” Appl. Phys. Lett. 80(9), 1637–1639 (2002).
[CrossRef]

B. Garrido, M. Lopez, O. Gonzalez, A. Perez-Rodriguez, J. R. Morante, and C. Bonafos, “Correlation between structural and optical properties of Si nanocrystals embedded in SiO[sub 2]: The mechanism of visible light emission,” Appl. Phys. Lett. 77(20), 3143–3145 (2000).
[CrossRef]

Bongiorno, C.

F. Iacona, C. Bongiorno, C. Spinella, S. Boninelli, and F. Priolo, “Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiOx films,” J. Appl. Phys. 95(7), 3723–3732 (2004).
[CrossRef]

Boninelli, S.

F. Iacona, C. Bongiorno, C. Spinella, S. Boninelli, and F. Priolo, “Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiOx films,” J. Appl. Phys. 95(7), 3723–3732 (2004).
[CrossRef]

Boscaino, R.

L. Vaccaro, M. Cannas, and R. Boscaino, “Phonon coupling of non-bridging oxygen hole center with the silica environment: Temperature dependence of the 1.9 eV emission spectra,” J. Lumin. 128(7), 1132–1136 (2008).
[CrossRef]

Brodeur, A.

Brongersma, M. L.

R. D. Kekatpure and M. L. Brongersma, “Quantification of free-carrier absorption in silicon nanocrystals with an optical microcavity,” Nano Lett. 8(11), 3787–3793 (2008).
[CrossRef] [PubMed]

Burghoff, J.

Burneau, A.

H. Rinnert, M. Vergnat, and A. Burneau, “Evidence of light-emitting amorphous silicon clusters confined in a silicon oxide matrix,” J. Appl. Phys. 89(1), 237–243 (2001).
[CrossRef]

Canham, L. T.

L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57(10), 1046–1048 (1990).
[CrossRef]

Cannas, M.

L. Vaccaro, M. Cannas, and R. Boscaino, “Phonon coupling of non-bridging oxygen hole center with the silica environment: Temperature dependence of the 1.9 eV emission spectra,” J. Lumin. 128(7), 1132–1136 (2008).
[CrossRef]

Carrada, M.

B. Garrido, M. López, A. Pérez-Rodríguez, C. García, P. Pellegrino, R. Ferré, J. A. Moreno, J. R. Morante, C. Bonafos, M. Carrada, A. Claverie, J. de la Torre, and A. Souifi, “Optical and electrical properties of Si-nanocrystals ion beam synthesized in SiO2,” Nucl. Instrum. Methods Phys. Res. B 216, 213–221 (2004).
[CrossRef]

M. López, B. Garrido, C. Garcia, P. Pellegrino, A. Perez-Rodriguez, J. R. Morante, C. Bonafos, M. Carrada, and A. Claverie, “Elucidation of the surface passivation role on the photoluminescence emission yield of silicon nanocrystals embedded in SiO2,” Appl. Phys. Lett. 80(9), 1637–1639 (2002).
[CrossRef]

Carrillo, J.

A. Morales, J. Barreto, C. Domínguez, M. Riera, M. Aceves, and J. Carrillo, “Comparative study between silicon-rich oxide films obtained by LPCVD and PECVD,” Physica E 38(1-2), 54–58 (2007).
[CrossRef]

Cheylan, S.

S. Cheylan and R. G. Elliman, “Effect of hydrogen on the photoluminescence of Si nanocrystals embedded in a SiO2 matrix,” Appl. Phys. Lett. 78(9), 1225–1227 (2001).
[CrossRef]

Cho, K. S.

K. S. Cho, N. Park, T. Kim, K. Kim, G. Y. Sung, and J. H. Shin, “High efficiency visible electroluminescence from silicon nanocrystals embedded in silicon nitride using a transparent doping layer,” Appl. Phys. Lett. 86(7), 071909 (2005).
[CrossRef]

Claverie, A.

B. Garrido, M. López, A. Pérez-Rodríguez, C. García, P. Pellegrino, R. Ferré, J. A. Moreno, J. R. Morante, C. Bonafos, M. Carrada, A. Claverie, J. de la Torre, and A. Souifi, “Optical and electrical properties of Si-nanocrystals ion beam synthesized in SiO2,” Nucl. Instrum. Methods Phys. Res. B 216, 213–221 (2004).
[CrossRef]

M. López, B. Garrido, C. Garcia, P. Pellegrino, A. Perez-Rodriguez, J. R. Morante, C. Bonafos, M. Carrada, and A. Claverie, “Elucidation of the surface passivation role on the photoluminescence emission yield of silicon nanocrystals embedded in SiO2,” Appl. Phys. Lett. 80(9), 1637–1639 (2002).
[CrossRef]

Dal Negro, L.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Dalba, G.

N. Daldosso, G. Das, S. Larcheri, G. Mariotto, G. Dalba, L. Pavesi, A. Irrera, F. Priolo, F. Iacona, and F. Rocca, “Silicon nanocrystal formation in annealed silicon-rich silicon oxide films prepared by plasma enhanced chemical vapor deposition,” J. Appl. Phys. 101(11), 113510 (2007).
[CrossRef]

Daldosso, N.

N. Daldosso, G. Das, S. Larcheri, G. Mariotto, G. Dalba, L. Pavesi, A. Irrera, F. Priolo, F. Iacona, and F. Rocca, “Silicon nanocrystal formation in annealed silicon-rich silicon oxide films prepared by plasma enhanced chemical vapor deposition,” J. Appl. Phys. 101(11), 113510 (2007).
[CrossRef]

Das, G.

N. Daldosso, G. Das, S. Larcheri, G. Mariotto, G. Dalba, L. Pavesi, A. Irrera, F. Priolo, F. Iacona, and F. Rocca, “Silicon nanocrystal formation in annealed silicon-rich silicon oxide films prepared by plasma enhanced chemical vapor deposition,” J. Appl. Phys. 101(11), 113510 (2007).
[CrossRef]

de Dood, M. J. A.

R. J. Walters, J. Kalkman, A. Polman, H. A. Atwater, and M. J. A. de Dood, “Photoluminescence quantum efficiency of dense silicon nanocrystal ensembles in SiO_{2},” Phys. Rev. B 73(13), 132302 (2006).
[CrossRef]

de la Torre, J.

B. Garrido, M. López, A. Pérez-Rodríguez, C. García, P. Pellegrino, R. Ferré, J. A. Moreno, J. R. Morante, C. Bonafos, M. Carrada, A. Claverie, J. de la Torre, and A. Souifi, “Optical and electrical properties of Si-nanocrystals ion beam synthesized in SiO2,” Nucl. Instrum. Methods Phys. Res. B 216, 213–221 (2004).
[CrossRef]

Diez-Blanco, V.

F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Perez-Rodriguez, and P. Loza-Alvarez, “Mechanisms of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett. 87(2), 021109 (2005).
[CrossRef]

Domínguez, C.

A. Morales, J. Barreto, C. Domínguez, M. Riera, M. Aceves, and J. Carrillo, “Comparative study between silicon-rich oxide films obtained by LPCVD and PECVD,” Physica E 38(1-2), 54–58 (2007).
[CrossRef]

Dunn, D. N.

S. Guha, M. D. Pace, D. N. Dunn, and I. L. Singer, “Visible light emission from Si nanocrystals grown by ion implantation and subsequent annealing,” Appl. Phys. Lett. 70(10), 1207–1209 (1997).
[CrossRef]

Elliman, R. G.

S. Cheylan and R. G. Elliman, “Effect of hydrogen on the photoluminescence of Si nanocrystals embedded in a SiO2 matrix,” Appl. Phys. Lett. 78(9), 1225–1227 (2001).
[CrossRef]

Faraci, G.

G. Faraci, S. Gibilisco, P. Russo, A. R. Pennisi, and S. La Rosa, “Modified Raman confinement model for Si nanocrystals,” Phys. Rev. B 73(3), 033307 (2006).
[CrossRef]

Feng, D.

H. Xia, Y. L. He, L. C. Wang, W. Zhang, X. N. Liu, X. K. Zhang, D. Feng, and H. E. Jackson, “Phonon mode study of Si nanocrystals using micro-Raman spectroscopy,” J. Appl. Phys. 78(11), 6705–6708 (1995).
[CrossRef]

Feng, M. S.

C. F. Lin, W. T. Tseng, and M. S. Feng, “Formation and characteristics of silicon nanocrystals in plasma-enhanced chemical-vapor-deposited silicon-rich oxide,” J. Appl. Phys. 87(6), 2808–2815 (2000).
[CrossRef]

Ferré, R.

B. Garrido, M. López, A. Pérez-Rodríguez, C. García, P. Pellegrino, R. Ferré, J. A. Moreno, J. R. Morante, C. Bonafos, M. Carrada, A. Claverie, J. de la Torre, and A. Souifi, “Optical and electrical properties of Si-nanocrystals ion beam synthesized in SiO2,” Nucl. Instrum. Methods Phys. Res. B 216, 213–221 (2004).
[CrossRef]

Franzò, G.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Garcia, C.

M. López, B. Garrido, C. Garcia, P. Pellegrino, A. Perez-Rodriguez, J. R. Morante, C. Bonafos, M. Carrada, and A. Claverie, “Elucidation of the surface passivation role on the photoluminescence emission yield of silicon nanocrystals embedded in SiO2,” Appl. Phys. Lett. 80(9), 1637–1639 (2002).
[CrossRef]

García, C.

B. Garrido, M. López, A. Pérez-Rodríguez, C. García, P. Pellegrino, R. Ferré, J. A. Moreno, J. R. Morante, C. Bonafos, M. Carrada, A. Claverie, J. de la Torre, and A. Souifi, “Optical and electrical properties of Si-nanocrystals ion beam synthesized in SiO2,” Nucl. Instrum. Methods Phys. Res. B 216, 213–221 (2004).
[CrossRef]

García, J. F.

Garrido, B.

B. Garrido, M. López, A. Pérez-Rodríguez, C. García, P. Pellegrino, R. Ferré, J. A. Moreno, J. R. Morante, C. Bonafos, M. Carrada, A. Claverie, J. de la Torre, and A. Souifi, “Optical and electrical properties of Si-nanocrystals ion beam synthesized in SiO2,” Nucl. Instrum. Methods Phys. Res. B 216, 213–221 (2004).
[CrossRef]

M. López, B. Garrido, C. Garcia, P. Pellegrino, A. Perez-Rodriguez, J. R. Morante, C. Bonafos, M. Carrada, and A. Claverie, “Elucidation of the surface passivation role on the photoluminescence emission yield of silicon nanocrystals embedded in SiO2,” Appl. Phys. Lett. 80(9), 1637–1639 (2002).
[CrossRef]

B. Garrido, M. Lopez, O. Gonzalez, A. Perez-Rodriguez, J. R. Morante, and C. Bonafos, “Correlation between structural and optical properties of Si nanocrystals embedded in SiO[sub 2]: The mechanism of visible light emission,” Appl. Phys. Lett. 77(20), 3143–3145 (2000).
[CrossRef]

Gibilisco, S.

G. Faraci, S. Gibilisco, P. Russo, A. R. Pennisi, and S. La Rosa, “Modified Raman confinement model for Si nanocrystals,” Phys. Rev. B 73(3), 033307 (2006).
[CrossRef]

Gong, J.

G. Ledoux, J. Gong, F. Huisken, O. Guillois, and C. Reynaud, “Photoluminescence of size-separated silicon nanocrystals: Confirmation of quantum confinement,” Appl. Phys. Lett. 80(25), 4834–4836 (2002).
[CrossRef]

Gonzalez, O.

B. Garrido, M. Lopez, O. Gonzalez, A. Perez-Rodriguez, J. R. Morante, and C. Bonafos, “Correlation between structural and optical properties of Si nanocrystals embedded in SiO[sub 2]: The mechanism of visible light emission,” Appl. Phys. Lett. 77(20), 3143–3145 (2000).
[CrossRef]

Guha, S.

S. Guha, M. D. Pace, D. N. Dunn, and I. L. Singer, “Visible light emission from Si nanocrystals grown by ion implantation and subsequent annealing,” Appl. Phys. Lett. 70(10), 1207–1209 (1997).
[CrossRef]

Guillois, O.

G. Ledoux, J. Gong, F. Huisken, O. Guillois, and C. Reynaud, “Photoluminescence of size-separated silicon nanocrystals: Confirmation of quantum confinement,” Appl. Phys. Lett. 80(25), 4834–4836 (2002).
[CrossRef]

He, Y. L.

H. Xia, Y. L. He, L. C. Wang, W. Zhang, X. N. Liu, X. K. Zhang, D. Feng, and H. E. Jackson, “Phonon mode study of Si nanocrystals using micro-Raman spectroscopy,” J. Appl. Phys. 78(11), 6705–6708 (1995).
[CrossRef]

Helmy, A. S.

Herman, P. R.

Huang, L.

L. Huang and J. Kieffer, “Anomalous thermomechanical properties and laser-induced densification of vitreous silica,” Appl. Phys. Lett. 89(14), 141915 (2006).
[CrossRef]

Huisken, F.

G. Ledoux, J. Gong, F. Huisken, O. Guillois, and C. Reynaud, “Photoluminescence of size-separated silicon nanocrystals: Confirmation of quantum confinement,” Appl. Phys. Lett. 80(25), 4834–4836 (2002).
[CrossRef]

Iacona, F.

N. Daldosso, G. Das, S. Larcheri, G. Mariotto, G. Dalba, L. Pavesi, A. Irrera, F. Priolo, F. Iacona, and F. Rocca, “Silicon nanocrystal formation in annealed silicon-rich silicon oxide films prepared by plasma enhanced chemical vapor deposition,” J. Appl. Phys. 101(11), 113510 (2007).
[CrossRef]

F. Iacona, C. Bongiorno, C. Spinella, S. Boninelli, and F. Priolo, “Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiOx films,” J. Appl. Phys. 95(7), 3723–3732 (2004).
[CrossRef]

Irrera, A.

N. Daldosso, G. Das, S. Larcheri, G. Mariotto, G. Dalba, L. Pavesi, A. Irrera, F. Priolo, F. Iacona, and F. Rocca, “Silicon nanocrystal formation in annealed silicon-rich silicon oxide films prepared by plasma enhanced chemical vapor deposition,” J. Appl. Phys. 101(11), 113510 (2007).
[CrossRef]

Jackson, H. E.

H. Xia, Y. L. He, L. C. Wang, W. Zhang, X. N. Liu, X. K. Zhang, D. Feng, and H. E. Jackson, “Phonon mode study of Si nanocrystals using micro-Raman spectroscopy,” J. Appl. Phys. 78(11), 6705–6708 (1995).
[CrossRef]

Kalkman, J.

R. J. Walters, J. Kalkman, A. Polman, H. A. Atwater, and M. J. A. de Dood, “Photoluminescence quantum efficiency of dense silicon nanocrystal ensembles in SiO_{2},” Phys. Rev. B 73(13), 132302 (2006).
[CrossRef]

Kaspar, J.

Kekatpure, R. D.

R. D. Kekatpure and M. L. Brongersma, “Quantification of free-carrier absorption in silicon nanocrystals with an optical microcavity,” Nano Lett. 8(11), 3787–3793 (2008).
[CrossRef] [PubMed]

Khriachtchev, L.

L. Khriachtchev, M. Rasanen, and S. Novikov, “Laser-controlled stress of Si nanocrystals in a free-standing Si/SiO[sub 2] superlattice,” Appl. Phys. Lett. 88(1), 013102 (2006).
[CrossRef]

Kieffer, J.

L. Huang and J. Kieffer, “Anomalous thermomechanical properties and laser-induced densification of vitreous silica,” Appl. Phys. Lett. 89(14), 141915 (2006).
[CrossRef]

Kim, K.

K. S. Cho, N. Park, T. Kim, K. Kim, G. Y. Sung, and J. H. Shin, “High efficiency visible electroluminescence from silicon nanocrystals embedded in silicon nitride using a transparent doping layer,” Appl. Phys. Lett. 86(7), 071909 (2005).
[CrossRef]

Kim, T.

K. S. Cho, N. Park, T. Kim, K. Kim, G. Y. Sung, and J. H. Shin, “High efficiency visible electroluminescence from silicon nanocrystals embedded in silicon nitride using a transparent doping layer,” Appl. Phys. Lett. 86(7), 071909 (2005).
[CrossRef]

La Rosa, S.

G. Faraci, S. Gibilisco, P. Russo, A. R. Pennisi, and S. La Rosa, “Modified Raman confinement model for Si nanocrystals,” Phys. Rev. B 73(3), 033307 (2006).
[CrossRef]

Larcheri, S.

N. Daldosso, G. Das, S. Larcheri, G. Mariotto, G. Dalba, L. Pavesi, A. Irrera, F. Priolo, F. Iacona, and F. Rocca, “Silicon nanocrystal formation in annealed silicon-rich silicon oxide films prepared by plasma enhanced chemical vapor deposition,” J. Appl. Phys. 101(11), 113510 (2007).
[CrossRef]

Ledoux, G.

G. Ledoux, J. Gong, F. Huisken, O. Guillois, and C. Reynaud, “Photoluminescence of size-separated silicon nanocrystals: Confirmation of quantum confinement,” Appl. Phys. Lett. 80(25), 4834–4836 (2002).
[CrossRef]

Lin, C. F.

C. F. Lin, W. T. Tseng, and M. S. Feng, “Formation and characteristics of silicon nanocrystals in plasma-enhanced chemical-vapor-deposited silicon-rich oxide,” J. Appl. Phys. 87(6), 2808–2815 (2000).
[CrossRef]

Liu, X. N.

H. Xia, Y. L. He, L. C. Wang, W. Zhang, X. N. Liu, X. K. Zhang, D. Feng, and H. E. Jackson, “Phonon mode study of Si nanocrystals using micro-Raman spectroscopy,” J. Appl. Phys. 78(11), 6705–6708 (1995).
[CrossRef]

Lopez, M.

B. Garrido, M. Lopez, O. Gonzalez, A. Perez-Rodriguez, J. R. Morante, and C. Bonafos, “Correlation between structural and optical properties of Si nanocrystals embedded in SiO[sub 2]: The mechanism of visible light emission,” Appl. Phys. Lett. 77(20), 3143–3145 (2000).
[CrossRef]

López, M.

B. Garrido, M. López, A. Pérez-Rodríguez, C. García, P. Pellegrino, R. Ferré, J. A. Moreno, J. R. Morante, C. Bonafos, M. Carrada, A. Claverie, J. de la Torre, and A. Souifi, “Optical and electrical properties of Si-nanocrystals ion beam synthesized in SiO2,” Nucl. Instrum. Methods Phys. Res. B 216, 213–221 (2004).
[CrossRef]

M. López, B. Garrido, C. Garcia, P. Pellegrino, A. Perez-Rodriguez, J. R. Morante, C. Bonafos, M. Carrada, and A. Claverie, “Elucidation of the surface passivation role on the photoluminescence emission yield of silicon nanocrystals embedded in SiO2,” Appl. Phys. Lett. 80(9), 1637–1639 (2002).
[CrossRef]

Loza-Alvarez, P.

F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Perez-Rodriguez, and P. Loza-Alvarez, “Mechanisms of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett. 87(2), 021109 (2005).
[CrossRef]

Mak, J.

Makarova, M.

M. Makarova, J. Vuckovic, H. Sanda, and Y. Nishi, “Silicon-based photonic crystal nanocavity light emitters,” Appl. Phys. Lett. 89(22), 221101 (2006).
[CrossRef]

Mariotto, G.

N. Daldosso, G. Das, S. Larcheri, G. Mariotto, G. Dalba, L. Pavesi, A. Irrera, F. Priolo, F. Iacona, and F. Rocca, “Silicon nanocrystal formation in annealed silicon-rich silicon oxide films prepared by plasma enhanced chemical vapor deposition,” J. Appl. Phys. 101(11), 113510 (2007).
[CrossRef]

Mazur, E.

Mazzoleni, C.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Molinari, M.

M. Molinari, H. Rinnert, and M. Vergnat, “Effects of the amorphous-crystalline transition on the luminescence of quantum confined silicon nanoclusters,” EPL 66(5), 674–679 (2004) (Europhysics Letters).
[CrossRef]

Morales, A.

A. Morales, J. Barreto, C. Domínguez, M. Riera, M. Aceves, and J. Carrillo, “Comparative study between silicon-rich oxide films obtained by LPCVD and PECVD,” Physica E 38(1-2), 54–58 (2007).
[CrossRef]

Morante, J. R.

B. Garrido, M. López, A. Pérez-Rodríguez, C. García, P. Pellegrino, R. Ferré, J. A. Moreno, J. R. Morante, C. Bonafos, M. Carrada, A. Claverie, J. de la Torre, and A. Souifi, “Optical and electrical properties of Si-nanocrystals ion beam synthesized in SiO2,” Nucl. Instrum. Methods Phys. Res. B 216, 213–221 (2004).
[CrossRef]

M. López, B. Garrido, C. Garcia, P. Pellegrino, A. Perez-Rodriguez, J. R. Morante, C. Bonafos, M. Carrada, and A. Claverie, “Elucidation of the surface passivation role on the photoluminescence emission yield of silicon nanocrystals embedded in SiO2,” Appl. Phys. Lett. 80(9), 1637–1639 (2002).
[CrossRef]

B. Garrido, M. Lopez, O. Gonzalez, A. Perez-Rodriguez, J. R. Morante, and C. Bonafos, “Correlation between structural and optical properties of Si nanocrystals embedded in SiO[sub 2]: The mechanism of visible light emission,” Appl. Phys. Lett. 77(20), 3143–3145 (2000).
[CrossRef]

Moreno, J. A.

B. Garrido, M. López, A. Pérez-Rodríguez, C. García, P. Pellegrino, R. Ferré, J. A. Moreno, J. R. Morante, C. Bonafos, M. Carrada, A. Claverie, J. de la Torre, and A. Souifi, “Optical and electrical properties of Si-nanocrystals ion beam synthesized in SiO2,” Nucl. Instrum. Methods Phys. Res. B 216, 213–221 (2004).
[CrossRef]

Nejadmalayeri, A. H.

Nishi, Y.

M. Makarova, J. Vuckovic, H. Sanda, and Y. Nishi, “Silicon-based photonic crystal nanocavity light emitters,” Appl. Phys. Lett. 89(22), 221101 (2006).
[CrossRef]

Nolte, S.

Novikov, S.

L. Khriachtchev, M. Rasanen, and S. Novikov, “Laser-controlled stress of Si nanocrystals in a free-standing Si/SiO[sub 2] superlattice,” Appl. Phys. Lett. 88(1), 013102 (2006).
[CrossRef]

Pace, M. D.

S. Guha, M. D. Pace, D. N. Dunn, and I. L. Singer, “Visible light emission from Si nanocrystals grown by ion implantation and subsequent annealing,” Appl. Phys. Lett. 70(10), 1207–1209 (1997).
[CrossRef]

Park, N.

K. S. Cho, N. Park, T. Kim, K. Kim, G. Y. Sung, and J. H. Shin, “High efficiency visible electroluminescence from silicon nanocrystals embedded in silicon nitride using a transparent doping layer,” Appl. Phys. Lett. 86(7), 071909 (2005).
[CrossRef]

Pavesi, L.

N. Daldosso, G. Das, S. Larcheri, G. Mariotto, G. Dalba, L. Pavesi, A. Irrera, F. Priolo, F. Iacona, and F. Rocca, “Silicon nanocrystal formation in annealed silicon-rich silicon oxide films prepared by plasma enhanced chemical vapor deposition,” J. Appl. Phys. 101(11), 113510 (2007).
[CrossRef]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Pellegrino, P.

B. Garrido, M. López, A. Pérez-Rodríguez, C. García, P. Pellegrino, R. Ferré, J. A. Moreno, J. R. Morante, C. Bonafos, M. Carrada, A. Claverie, J. de la Torre, and A. Souifi, “Optical and electrical properties of Si-nanocrystals ion beam synthesized in SiO2,” Nucl. Instrum. Methods Phys. Res. B 216, 213–221 (2004).
[CrossRef]

M. López, B. Garrido, C. Garcia, P. Pellegrino, A. Perez-Rodriguez, J. R. Morante, C. Bonafos, M. Carrada, and A. Claverie, “Elucidation of the surface passivation role on the photoluminescence emission yield of silicon nanocrystals embedded in SiO2,” Appl. Phys. Lett. 80(9), 1637–1639 (2002).
[CrossRef]

Pennisi, A. R.

G. Faraci, S. Gibilisco, P. Russo, A. R. Pennisi, and S. La Rosa, “Modified Raman confinement model for Si nanocrystals,” Phys. Rev. B 73(3), 033307 (2006).
[CrossRef]

Perez-Rodriguez, A.

F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Perez-Rodriguez, and P. Loza-Alvarez, “Mechanisms of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett. 87(2), 021109 (2005).
[CrossRef]

M. López, B. Garrido, C. Garcia, P. Pellegrino, A. Perez-Rodriguez, J. R. Morante, C. Bonafos, M. Carrada, and A. Claverie, “Elucidation of the surface passivation role on the photoluminescence emission yield of silicon nanocrystals embedded in SiO2,” Appl. Phys. Lett. 80(9), 1637–1639 (2002).
[CrossRef]

B. Garrido, M. Lopez, O. Gonzalez, A. Perez-Rodriguez, J. R. Morante, and C. Bonafos, “Correlation between structural and optical properties of Si nanocrystals embedded in SiO[sub 2]: The mechanism of visible light emission,” Appl. Phys. Lett. 77(20), 3143–3145 (2000).
[CrossRef]

Pérez-Rodríguez, A.

B. Garrido, M. López, A. Pérez-Rodríguez, C. García, P. Pellegrino, R. Ferré, J. A. Moreno, J. R. Morante, C. Bonafos, M. Carrada, A. Claverie, J. de la Torre, and A. Souifi, “Optical and electrical properties of Si-nanocrystals ion beam synthesized in SiO2,” Nucl. Instrum. Methods Phys. Res. B 216, 213–221 (2004).
[CrossRef]

Polman, A.

R. J. Walters, J. Kalkman, A. Polman, H. A. Atwater, and M. J. A. de Dood, “Photoluminescence quantum efficiency of dense silicon nanocrystal ensembles in SiO_{2},” Phys. Rev. B 73(13), 132302 (2006).
[CrossRef]

Priolo, F.

N. Daldosso, G. Das, S. Larcheri, G. Mariotto, G. Dalba, L. Pavesi, A. Irrera, F. Priolo, F. Iacona, and F. Rocca, “Silicon nanocrystal formation in annealed silicon-rich silicon oxide films prepared by plasma enhanced chemical vapor deposition,” J. Appl. Phys. 101(11), 113510 (2007).
[CrossRef]

F. Iacona, C. Bongiorno, C. Spinella, S. Boninelli, and F. Priolo, “Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiOx films,” J. Appl. Phys. 95(7), 3723–3732 (2004).
[CrossRef]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Rasanen, M.

L. Khriachtchev, M. Rasanen, and S. Novikov, “Laser-controlled stress of Si nanocrystals in a free-standing Si/SiO[sub 2] superlattice,” Appl. Phys. Lett. 88(1), 013102 (2006).
[CrossRef]

Reynaud, C.

G. Ledoux, J. Gong, F. Huisken, O. Guillois, and C. Reynaud, “Photoluminescence of size-separated silicon nanocrystals: Confirmation of quantum confinement,” Appl. Phys. Lett. 80(25), 4834–4836 (2002).
[CrossRef]

Riera, M.

A. Morales, J. Barreto, C. Domínguez, M. Riera, M. Aceves, and J. Carrillo, “Comparative study between silicon-rich oxide films obtained by LPCVD and PECVD,” Physica E 38(1-2), 54–58 (2007).
[CrossRef]

Rinnert, H.

M. Molinari, H. Rinnert, and M. Vergnat, “Effects of the amorphous-crystalline transition on the luminescence of quantum confined silicon nanoclusters,” EPL 66(5), 674–679 (2004) (Europhysics Letters).
[CrossRef]

H. Rinnert, M. Vergnat, and A. Burneau, “Evidence of light-emitting amorphous silicon clusters confined in a silicon oxide matrix,” J. Appl. Phys. 89(1), 237–243 (2001).
[CrossRef]

Rocca, F.

N. Daldosso, G. Das, S. Larcheri, G. Mariotto, G. Dalba, L. Pavesi, A. Irrera, F. Priolo, F. Iacona, and F. Rocca, “Silicon nanocrystal formation in annealed silicon-rich silicon oxide films prepared by plasma enhanced chemical vapor deposition,” J. Appl. Phys. 101(11), 113510 (2007).
[CrossRef]

Russo, P.

G. Faraci, S. Gibilisco, P. Russo, A. R. Pennisi, and S. La Rosa, “Modified Raman confinement model for Si nanocrystals,” Phys. Rev. B 73(3), 033307 (2006).
[CrossRef]

Sanda, H.

M. Makarova, J. Vuckovic, H. Sanda, and Y. Nishi, “Silicon-based photonic crystal nanocavity light emitters,” Appl. Phys. Lett. 89(22), 221101 (2006).
[CrossRef]

Schaffer, C. B.

Scrutton, P.

Shin, J. H.

K. S. Cho, N. Park, T. Kim, K. Kim, G. Y. Sung, and J. H. Shin, “High efficiency visible electroluminescence from silicon nanocrystals embedded in silicon nitride using a transparent doping layer,” Appl. Phys. Lett. 86(7), 071909 (2005).
[CrossRef]

Siegel, J.

F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Perez-Rodriguez, and P. Loza-Alvarez, “Mechanisms of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett. 87(2), 021109 (2005).
[CrossRef]

Singer, I. L.

S. Guha, M. D. Pace, D. N. Dunn, and I. L. Singer, “Visible light emission from Si nanocrystals grown by ion implantation and subsequent annealing,” Appl. Phys. Lett. 70(10), 1207–1209 (1997).
[CrossRef]

Solis, J.

F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Perez-Rodriguez, and P. Loza-Alvarez, “Mechanisms of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett. 87(2), 021109 (2005).
[CrossRef]

Souifi, A.

B. Garrido, M. López, A. Pérez-Rodríguez, C. García, P. Pellegrino, R. Ferré, J. A. Moreno, J. R. Morante, C. Bonafos, M. Carrada, A. Claverie, J. de la Torre, and A. Souifi, “Optical and electrical properties of Si-nanocrystals ion beam synthesized in SiO2,” Nucl. Instrum. Methods Phys. Res. B 216, 213–221 (2004).
[CrossRef]

Spinella, C.

F. Iacona, C. Bongiorno, C. Spinella, S. Boninelli, and F. Priolo, “Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiOx films,” J. Appl. Phys. 95(7), 3723–3732 (2004).
[CrossRef]

Sung, G. Y.

K. S. Cho, N. Park, T. Kim, K. Kim, G. Y. Sung, and J. H. Shin, “High efficiency visible electroluminescence from silicon nanocrystals embedded in silicon nitride using a transparent doping layer,” Appl. Phys. Lett. 86(7), 071909 (2005).
[CrossRef]

Tseng, W. T.

C. F. Lin, W. T. Tseng, and M. S. Feng, “Formation and characteristics of silicon nanocrystals in plasma-enhanced chemical-vapor-deposited silicon-rich oxide,” J. Appl. Phys. 87(6), 2808–2815 (2000).
[CrossRef]

Tünnermann, A.

Vaccaro, L.

L. Vaccaro, M. Cannas, and R. Boscaino, “Phonon coupling of non-bridging oxygen hole center with the silica environment: Temperature dependence of the 1.9 eV emission spectra,” J. Lumin. 128(7), 1132–1136 (2008).
[CrossRef]

Vega, F.

F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Perez-Rodriguez, and P. Loza-Alvarez, “Mechanisms of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett. 87(2), 021109 (2005).
[CrossRef]

Vergnat, M.

M. Molinari, H. Rinnert, and M. Vergnat, “Effects of the amorphous-crystalline transition on the luminescence of quantum confined silicon nanoclusters,” EPL 66(5), 674–679 (2004) (Europhysics Letters).
[CrossRef]

H. Rinnert, M. Vergnat, and A. Burneau, “Evidence of light-emitting amorphous silicon clusters confined in a silicon oxide matrix,” J. Appl. Phys. 89(1), 237–243 (2001).
[CrossRef]

Vuckovic, J.

M. Makarova, J. Vuckovic, H. Sanda, and Y. Nishi, “Silicon-based photonic crystal nanocavity light emitters,” Appl. Phys. Lett. 89(22), 221101 (2006).
[CrossRef]

Walters, R. J.

R. J. Walters, J. Kalkman, A. Polman, H. A. Atwater, and M. J. A. de Dood, “Photoluminescence quantum efficiency of dense silicon nanocrystal ensembles in SiO_{2},” Phys. Rev. B 73(13), 132302 (2006).
[CrossRef]

Wang, L. C.

H. Xia, Y. L. He, L. C. Wang, W. Zhang, X. N. Liu, X. K. Zhang, D. Feng, and H. E. Jackson, “Phonon mode study of Si nanocrystals using micro-Raman spectroscopy,” J. Appl. Phys. 78(11), 6705–6708 (1995).
[CrossRef]

Wolf, I. D.

I. D. Wolf, “Stress measurements in Si microelectronics devices using Raman spectroscopy,” J. Raman Spectrosc. 30(10), 877–883 (1999).
[CrossRef]

Xia, H.

H. Xia, Y. L. He, L. C. Wang, W. Zhang, X. N. Liu, X. K. Zhang, D. Feng, and H. E. Jackson, “Phonon mode study of Si nanocrystals using micro-Raman spectroscopy,” J. Appl. Phys. 78(11), 6705–6708 (1995).
[CrossRef]

Zhang, W.

H. Xia, Y. L. He, L. C. Wang, W. Zhang, X. N. Liu, X. K. Zhang, D. Feng, and H. E. Jackson, “Phonon mode study of Si nanocrystals using micro-Raman spectroscopy,” J. Appl. Phys. 78(11), 6705–6708 (1995).
[CrossRef]

Zhang, X. K.

H. Xia, Y. L. He, L. C. Wang, W. Zhang, X. N. Liu, X. K. Zhang, D. Feng, and H. E. Jackson, “Phonon mode study of Si nanocrystals using micro-Raman spectroscopy,” J. Appl. Phys. 78(11), 6705–6708 (1995).
[CrossRef]

Appl. Phys. Lett. (11)

L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57(10), 1046–1048 (1990).
[CrossRef]

S. Guha, M. D. Pace, D. N. Dunn, and I. L. Singer, “Visible light emission from Si nanocrystals grown by ion implantation and subsequent annealing,” Appl. Phys. Lett. 70(10), 1207–1209 (1997).
[CrossRef]

B. Garrido, M. Lopez, O. Gonzalez, A. Perez-Rodriguez, J. R. Morante, and C. Bonafos, “Correlation between structural and optical properties of Si nanocrystals embedded in SiO[sub 2]: The mechanism of visible light emission,” Appl. Phys. Lett. 77(20), 3143–3145 (2000).
[CrossRef]

M. Makarova, J. Vuckovic, H. Sanda, and Y. Nishi, “Silicon-based photonic crystal nanocavity light emitters,” Appl. Phys. Lett. 89(22), 221101 (2006).
[CrossRef]

K. S. Cho, N. Park, T. Kim, K. Kim, G. Y. Sung, and J. H. Shin, “High efficiency visible electroluminescence from silicon nanocrystals embedded in silicon nitride using a transparent doping layer,” Appl. Phys. Lett. 86(7), 071909 (2005).
[CrossRef]

L. Khriachtchev, M. Rasanen, and S. Novikov, “Laser-controlled stress of Si nanocrystals in a free-standing Si/SiO[sub 2] superlattice,” Appl. Phys. Lett. 88(1), 013102 (2006).
[CrossRef]

S. Cheylan and R. G. Elliman, “Effect of hydrogen on the photoluminescence of Si nanocrystals embedded in a SiO2 matrix,” Appl. Phys. Lett. 78(9), 1225–1227 (2001).
[CrossRef]

M. López, B. Garrido, C. Garcia, P. Pellegrino, A. Perez-Rodriguez, J. R. Morante, C. Bonafos, M. Carrada, and A. Claverie, “Elucidation of the surface passivation role on the photoluminescence emission yield of silicon nanocrystals embedded in SiO2,” Appl. Phys. Lett. 80(9), 1637–1639 (2002).
[CrossRef]

G. Ledoux, J. Gong, F. Huisken, O. Guillois, and C. Reynaud, “Photoluminescence of size-separated silicon nanocrystals: Confirmation of quantum confinement,” Appl. Phys. Lett. 80(25), 4834–4836 (2002).
[CrossRef]

F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Perez-Rodriguez, and P. Loza-Alvarez, “Mechanisms of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett. 87(2), 021109 (2005).
[CrossRef]

L. Huang and J. Kieffer, “Anomalous thermomechanical properties and laser-induced densification of vitreous silica,” Appl. Phys. Lett. 89(14), 141915 (2006).
[CrossRef]

EPL (1)

M. Molinari, H. Rinnert, and M. Vergnat, “Effects of the amorphous-crystalline transition on the luminescence of quantum confined silicon nanoclusters,” EPL 66(5), 674–679 (2004) (Europhysics Letters).
[CrossRef]

J. Appl. Phys. (5)

H. Rinnert, M. Vergnat, and A. Burneau, “Evidence of light-emitting amorphous silicon clusters confined in a silicon oxide matrix,” J. Appl. Phys. 89(1), 237–243 (2001).
[CrossRef]

C. F. Lin, W. T. Tseng, and M. S. Feng, “Formation and characteristics of silicon nanocrystals in plasma-enhanced chemical-vapor-deposited silicon-rich oxide,” J. Appl. Phys. 87(6), 2808–2815 (2000).
[CrossRef]

H. Xia, Y. L. He, L. C. Wang, W. Zhang, X. N. Liu, X. K. Zhang, D. Feng, and H. E. Jackson, “Phonon mode study of Si nanocrystals using micro-Raman spectroscopy,” J. Appl. Phys. 78(11), 6705–6708 (1995).
[CrossRef]

F. Iacona, C. Bongiorno, C. Spinella, S. Boninelli, and F. Priolo, “Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiOx films,” J. Appl. Phys. 95(7), 3723–3732 (2004).
[CrossRef]

N. Daldosso, G. Das, S. Larcheri, G. Mariotto, G. Dalba, L. Pavesi, A. Irrera, F. Priolo, F. Iacona, and F. Rocca, “Silicon nanocrystal formation in annealed silicon-rich silicon oxide films prepared by plasma enhanced chemical vapor deposition,” J. Appl. Phys. 101(11), 113510 (2007).
[CrossRef]

J. Lumin. (1)

L. Vaccaro, M. Cannas, and R. Boscaino, “Phonon coupling of non-bridging oxygen hole center with the silica environment: Temperature dependence of the 1.9 eV emission spectra,” J. Lumin. 128(7), 1132–1136 (2008).
[CrossRef]

J. Raman Spectrosc. (1)

I. D. Wolf, “Stress measurements in Si microelectronics devices using Raman spectroscopy,” J. Raman Spectrosc. 30(10), 877–883 (1999).
[CrossRef]

Nano Lett. (1)

R. D. Kekatpure and M. L. Brongersma, “Quantification of free-carrier absorption in silicon nanocrystals with an optical microcavity,” Nano Lett. 8(11), 3787–3793 (2008).
[CrossRef] [PubMed]

Nature (1)

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Nucl. Instrum. Methods Phys. Res. B (1)

B. Garrido, M. López, A. Pérez-Rodríguez, C. García, P. Pellegrino, R. Ferré, J. A. Moreno, J. R. Morante, C. Bonafos, M. Carrada, A. Claverie, J. de la Torre, and A. Souifi, “Optical and electrical properties of Si-nanocrystals ion beam synthesized in SiO2,” Nucl. Instrum. Methods Phys. Res. B 216, 213–221 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. B (2)

R. J. Walters, J. Kalkman, A. Polman, H. A. Atwater, and M. J. A. de Dood, “Photoluminescence quantum efficiency of dense silicon nanocrystal ensembles in SiO_{2},” Phys. Rev. B 73(13), 132302 (2006).
[CrossRef]

G. Faraci, S. Gibilisco, P. Russo, A. R. Pennisi, and S. La Rosa, “Modified Raman confinement model for Si nanocrystals,” Phys. Rev. B 73(3), 033307 (2006).
[CrossRef]

Physica E (1)

A. Morales, J. Barreto, C. Domínguez, M. Riera, M. Aceves, and J. Carrillo, “Comparative study between silicon-rich oxide films obtained by LPCVD and PECVD,” Physica E 38(1-2), 54–58 (2007).
[CrossRef]

Other (1)

D. A. B. Miller, “Optical interconnects to silicon,” Selected. Topics. In Quantum. Electronics. IEEE. Journal. Of. DOI - 10 1109/2944. 902184. 6, 1312–1317 (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Integrated PL map of sample A track 1 and 2 (a) and of sample B track 1 (b). Tracks 1 are on the left going from top to bottom, tracks 2 are on the right. Only the left edge of track 2 in sample B is visible where the PL is enhanced. The scale bar is 15µm in all images.

Fig. 2
Fig. 2

PL Spectra of different regions on sample A (a) and sample B along with a comparison of the maximum PL region from sample A (b).

Fig. 3
Fig. 3

Raman spectra of sample A track 1 and 2 (a) and sample B track 1 (b) showing the evolution of peak position across the track.

Fig. 4
Fig. 4

AFM of processed areas,sample A,track 1 at 4.7nJ/pulse (a), sample A track 2 at 5.5nJ/pulse (b), sample B track 1 at 11.3nJ /pulse (c) and sample B track 2 at 12.7nJ /pulse (d)

Tables (1)

Tables Icon

Table 1 SRO compositions and optical properties

Metrics