Abstract

Human hearing loss often occurs as a result of damage or malformations to the functional soft tissues within the cochlea, but these changes are not appreciable with current medical imaging modalities. We sought to determine whether optical coherence tomography (OCT) could assess the soft tissue structures relevant to hearing using mouse models. We imaged excised cochleae with an altered tectorial membrane and during normal development. The soft tissue structures and expected anatomical variations were visible using OCT, and quantitative measurements confirmed the ability to detect critical changes relevant to hearing.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Douraghy and A. F. Chatziioannou, “Preclinical Imaging,” in Basic Sciences of Nuclear Medicine, M. M. Khalil, ed. (Springer-Verlag Heidelberg Dordrecht, London New York, 2011), pp. 379–406.
  2. S. G. Nekolla and A. Saraste, “Part III: Concurrent Noninvasive Assessment of Coronary Anatomy, Physiology, and Myocellular Integrity,” in Cardiac CT, PET, and MR, 2nd edition, V. Dilsizian and G. M. Pohost, eds. (Wiley-Blackwell, West Sussex, 2010), pp. 301–333.
  3. H. F. Schuknecht, Pathology of the Ear, 2nd edition (Lea & Febiger, Malvern, 1993).
  4. J. W. Lin, N. Chowdhury, A. Mody, R. Tonini, C. Emery, J. Haymond, and J. S. Oghalai, “Comprehensive diagnostic battery for evaluating sensorineural hearing loss in children,” Otol. Neurotol. 32(2), 259–264 (2011).
    [CrossRef] [PubMed]
  5. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  6. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [CrossRef] [PubMed]
  7. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18(21), 1864–1866 (1993).
    [CrossRef] [PubMed]
  8. M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113(3), 325–332 (1995).
    [CrossRef] [PubMed]
  9. C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology 102(2), 217–229 (1995).
    [PubMed]
  10. I. K. Jang, G. Tearney, and B. Bouma, “Visualization of tissue prolapse between coronary stent struts by optical coherence tomography: comparison with intravascular ultrasound,” Circulation 104(22), 2754 (2001).
    [CrossRef] [PubMed]
  11. E. Grube, U. Gerckens, L. Buellesfeld, and P. J. Fitzgerald, “Images in cardiovascular medicine. Intracoronary imaging with optical coherence tomography: a new high-resolution technology providing striking visualization in the coronary artery,” Circulation 106(18), 2409–2410 (2002).
    [CrossRef] [PubMed]
  12. D. K. Meyerholz, D. A. Stoltz, E. Namati, S. Ramachandran, A. A. Pezzulo, A. R. Smith, M. V. Rector, M. J. Suter, S. Kao, G. McLennan, G. J. Tearney, J. Zabner, P. B. McCray, and M. J. Welsh, “Loss of cystic fibrosis transmembrane conductance regulator function produces abnormalities in tracheal development in neonatal pigs and young children,” Am. J. Respir. Crit. Care Med. 182(10), 1251–1261 (2010).
    [CrossRef] [PubMed]
  13. C. Zhou, D. W. Cohen, Y. Wang, H. C. Lee, A. E. Mondelblatt, T. H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues,” Cancer Res. 70(24), 10071–10079 (2010).
    [CrossRef] [PubMed]
  14. F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
    [CrossRef] [PubMed]
  15. J. Park, J. A. Jo, S. Shrestha, P. Pande, Q. Wan, and B. E. Applegate, “A dual-modality optical coherence tomography and fluorescence lifetime imaging microscopy system for simultaneous morphological and biochemical tissue characterization,” Biomed. Opt. Express 1(1), 186–200 (2010).
    [CrossRef] [PubMed]
  16. D. C. Adler, C. Zhou, T. H. Tsai, J. Schmitt, Q. Huang, H. Mashimo, and J. G. Fujimoto, “Three-dimensional endomicroscopy of the human colon using optical coherence tomography,” Opt. Express 17(2), 784–796 (2009).
    [CrossRef] [PubMed]
  17. A. D. Aguirre, Y. Chen, B. Bryan, H. Mashimo, Q. Huang, J. L. Connolly, and J. G. Fujimoto, “Cellular resolution ex vivo imaging of gastrointestinal tissues with optical coherence microscopy,” J. Biomed. Opt. 15(1), 016025 (2010).
    [CrossRef] [PubMed]
  18. J. S. Oghalai, J. R. Holt, T. Nakagawa, T. M. Jung, N. J. Coker, H. A. Jenkins, R. A. Eatock, and W. E. Brownell, “Ionic currents and electromotility in inner ear hair cells from humans,” J. Neurophysiol. 79(4), 2235–2239 (1998).
    [PubMed]
  19. A. Xia, S. S. Gao, T. Yuan, A. Osborn, A. Bress, M. Pfister, S. M. Maricich, F. A. Pereira, and J. S. Oghalai, “Deficient forward transduction and enhanced reverse transduction in the alpha tectorin C1509G human hearing loss mutation,” Dis Model Mech 3(3-4), 209–223 (2010).
    [CrossRef] [PubMed]
  20. M. Pfister, H. Thiele, G. Van Camp, E. Fransen, F. Apaydin, O. Aydin, P. Leistenschneider, M. Devoto, H. P. Zenner, N. Blin, P. Nürnberg, H. Ozkarakas, and S. Kupka, “A genotype-phenotype correlation with gender-effect for hearing impairment caused by TECTA mutations,” Cell. Physiol. Biochem. 14(4-6), 369–376 (2004).
    [CrossRef] [PubMed]
  21. R. Gueta, J. Levitt, A. Xia, O. Katz, J. S. Oghalai, and I. Rousso, “Structural and mechanical analysis of tectorial membrane Tecta mutants,” Biophys. J. 100(10), 2530–2538 (2011).
    [CrossRef] [PubMed]
  22. C. C. Liu, S. S. Gao, T. Yuan, C. Steele, S. Puria, and J. S. Oghalai, “Biophysical Mechanisms Underlying Outer Hair Cell Loss Associated with a Shortened Tectorial Membrane,” J. Assoc. Res. Otolaryngol. (2011).
    [CrossRef] [PubMed]
  23. S. S. Gao, T. Yuan, A. Xia, P. Raphael, R. L. Shelton, B. Applegate, and J. S. Oghalai, “Imaging of the intact mouse cochlea by spectral domain optical coherence tomography,” Proc. SPIE 7889 (2011).
  24. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, “Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography,” Opt. Lett. 27(22), 2010–2012 (2002).
    [CrossRef] [PubMed]
  25. H. Tu, D. L. Marks, Y. L. Koh, and S. A. Boppart, “Stabilization of continuum generation from normally dispersive nonlinear optical fibers for a tunable broad bandwidth source for optical coherence tomography,” Opt. Lett. 32(14), 2037–2039 (2007).
    [CrossRef] [PubMed]
  26. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
    [CrossRef]
  27. I. Thalmann, G. Thallinger, E. C. Crouch, T. H. Comegys, N. Barrett, and R. Thalmann, “Composition and supramolecular organization of the tectorial membrane,” Laryngoscope 97(3 Pt 1), 357–367 (1987).
    [CrossRef] [PubMed]
  28. R. M. Edge, B. N. Evans, M. Pearce, C. P. Richter, X. Hu, and P. Dallos, “Morphology of the unfixed cochlea,” Hear. Res. 124(1-2), 1–16 (1998).
    [CrossRef] [PubMed]
  29. D. M. Freeman, D. A. Cotanche, F. Ehsani, and T. F. Weiss, “The osmotic response of the isolated tectorial membrane of the chick to isosmotic solutions: effect of Na+, K+, and Ca2+ concentration,” Hear. Res. 79(1-2), 197–215 (1994).
    [CrossRef] [PubMed]
  30. J. S. Oghalai, “The cochlear amplifier: augmentation of the traveling wave within the inner ear,” Curr. Opin. Otolaryngol. Head Neck Surg. 12(5), 431–438 (2004).
    [CrossRef] [PubMed]
  31. B. J. Wong, Y. Zhao, M. Yamaguchi, N. Nassif, Z. Chen, and J. F. De Boer, “Imaging the internal structure of the rat cochlea using optical coherence tomography at 0.827 μm and 1.3 μm,” Otolaryngol. Head Neck Surg. 130(3), 334–338 (2004).
    [CrossRef] [PubMed]
  32. N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
    [CrossRef] [PubMed]
  33. S. S. Hong and D. M. Freeman, “Doppler optical coherence microscopy for studies of cochlear mechanics,” J. Biomed. Opt. 11(5), 054014 (2006).
    [CrossRef] [PubMed]
  34. F. Chen, N. Choudhury, J. Zheng, S. Matthews, A. L. Nutall, and S. L. Jacques, “In vivo imaging and low-coherence interferometry of organ of Corti vibration,” J. Biomed. Opt. 12(2), 021006 (2007).
    [CrossRef] [PubMed]
  35. A. Sepehr, H. R. Djalilian, J. E. Chang, Z. Chen, and B. J. Wong, “Optical coherence tomography of the cochlea in the porcine model,” Laryngoscope 118(8), 1449–1451 (2008).
    [CrossRef] [PubMed]
  36. H. M. Subhash, V. Davila, H. Sun, A. T. Nguyen-Huynh, A. L. Nuttall, and R. K. Wang, “Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography,” J. Biomed. Opt. 15(3), 036024 (2010).
    [CrossRef] [PubMed]
  37. R. K. Wang and A. L. Nuttall, “Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: a preliminary study,” J. Biomed. Opt. 15(5), 056005 (2010).
    [CrossRef] [PubMed]
  38. J. Lin, H. Staecker, and M. S. Jafri, “Optical coherence tomography imaging of the inner ear: a feasibility study with implications for cochlear implantation,” Ann. Otol. Rhinol. Laryngol. 117(5), 341–346 (2008).
    [PubMed]

2011 (4)

J. W. Lin, N. Chowdhury, A. Mody, R. Tonini, C. Emery, J. Haymond, and J. S. Oghalai, “Comprehensive diagnostic battery for evaluating sensorineural hearing loss in children,” Otol. Neurotol. 32(2), 259–264 (2011).
[CrossRef] [PubMed]

R. Gueta, J. Levitt, A. Xia, O. Katz, J. S. Oghalai, and I. Rousso, “Structural and mechanical analysis of tectorial membrane Tecta mutants,” Biophys. J. 100(10), 2530–2538 (2011).
[CrossRef] [PubMed]

C. C. Liu, S. S. Gao, T. Yuan, C. Steele, S. Puria, and J. S. Oghalai, “Biophysical Mechanisms Underlying Outer Hair Cell Loss Associated with a Shortened Tectorial Membrane,” J. Assoc. Res. Otolaryngol. (2011).
[CrossRef] [PubMed]

S. S. Gao, T. Yuan, A. Xia, P. Raphael, R. L. Shelton, B. Applegate, and J. S. Oghalai, “Imaging of the intact mouse cochlea by spectral domain optical coherence tomography,” Proc. SPIE 7889 (2011).

2010 (7)

H. M. Subhash, V. Davila, H. Sun, A. T. Nguyen-Huynh, A. L. Nuttall, and R. K. Wang, “Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography,” J. Biomed. Opt. 15(3), 036024 (2010).
[CrossRef] [PubMed]

R. K. Wang and A. L. Nuttall, “Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: a preliminary study,” J. Biomed. Opt. 15(5), 056005 (2010).
[CrossRef] [PubMed]

D. K. Meyerholz, D. A. Stoltz, E. Namati, S. Ramachandran, A. A. Pezzulo, A. R. Smith, M. V. Rector, M. J. Suter, S. Kao, G. McLennan, G. J. Tearney, J. Zabner, P. B. McCray, and M. J. Welsh, “Loss of cystic fibrosis transmembrane conductance regulator function produces abnormalities in tracheal development in neonatal pigs and young children,” Am. J. Respir. Crit. Care Med. 182(10), 1251–1261 (2010).
[CrossRef] [PubMed]

C. Zhou, D. W. Cohen, Y. Wang, H. C. Lee, A. E. Mondelblatt, T. H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues,” Cancer Res. 70(24), 10071–10079 (2010).
[CrossRef] [PubMed]

J. Park, J. A. Jo, S. Shrestha, P. Pande, Q. Wan, and B. E. Applegate, “A dual-modality optical coherence tomography and fluorescence lifetime imaging microscopy system for simultaneous morphological and biochemical tissue characterization,” Biomed. Opt. Express 1(1), 186–200 (2010).
[CrossRef] [PubMed]

A. D. Aguirre, Y. Chen, B. Bryan, H. Mashimo, Q. Huang, J. L. Connolly, and J. G. Fujimoto, “Cellular resolution ex vivo imaging of gastrointestinal tissues with optical coherence microscopy,” J. Biomed. Opt. 15(1), 016025 (2010).
[CrossRef] [PubMed]

A. Xia, S. S. Gao, T. Yuan, A. Osborn, A. Bress, M. Pfister, S. M. Maricich, F. A. Pereira, and J. S. Oghalai, “Deficient forward transduction and enhanced reverse transduction in the alpha tectorin C1509G human hearing loss mutation,” Dis Model Mech 3(3-4), 209–223 (2010).
[CrossRef] [PubMed]

2009 (2)

D. C. Adler, C. Zhou, T. H. Tsai, J. Schmitt, Q. Huang, H. Mashimo, and J. G. Fujimoto, “Three-dimensional endomicroscopy of the human colon using optical coherence tomography,” Opt. Express 17(2), 784–796 (2009).
[CrossRef] [PubMed]

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[CrossRef] [PubMed]

2008 (2)

J. Lin, H. Staecker, and M. S. Jafri, “Optical coherence tomography imaging of the inner ear: a feasibility study with implications for cochlear implantation,” Ann. Otol. Rhinol. Laryngol. 117(5), 341–346 (2008).
[PubMed]

A. Sepehr, H. R. Djalilian, J. E. Chang, Z. Chen, and B. J. Wong, “Optical coherence tomography of the cochlea in the porcine model,” Laryngoscope 118(8), 1449–1451 (2008).
[CrossRef] [PubMed]

2007 (2)

F. Chen, N. Choudhury, J. Zheng, S. Matthews, A. L. Nutall, and S. L. Jacques, “In vivo imaging and low-coherence interferometry of organ of Corti vibration,” J. Biomed. Opt. 12(2), 021006 (2007).
[CrossRef] [PubMed]

H. Tu, D. L. Marks, Y. L. Koh, and S. A. Boppart, “Stabilization of continuum generation from normally dispersive nonlinear optical fibers for a tunable broad bandwidth source for optical coherence tomography,” Opt. Lett. 32(14), 2037–2039 (2007).
[CrossRef] [PubMed]

2006 (2)

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[CrossRef] [PubMed]

S. S. Hong and D. M. Freeman, “Doppler optical coherence microscopy for studies of cochlear mechanics,” J. Biomed. Opt. 11(5), 054014 (2006).
[CrossRef] [PubMed]

2004 (3)

J. S. Oghalai, “The cochlear amplifier: augmentation of the traveling wave within the inner ear,” Curr. Opin. Otolaryngol. Head Neck Surg. 12(5), 431–438 (2004).
[CrossRef] [PubMed]

B. J. Wong, Y. Zhao, M. Yamaguchi, N. Nassif, Z. Chen, and J. F. De Boer, “Imaging the internal structure of the rat cochlea using optical coherence tomography at 0.827 μm and 1.3 μm,” Otolaryngol. Head Neck Surg. 130(3), 334–338 (2004).
[CrossRef] [PubMed]

M. Pfister, H. Thiele, G. Van Camp, E. Fransen, F. Apaydin, O. Aydin, P. Leistenschneider, M. Devoto, H. P. Zenner, N. Blin, P. Nürnberg, H. Ozkarakas, and S. Kupka, “A genotype-phenotype correlation with gender-effect for hearing impairment caused by TECTA mutations,” Cell. Physiol. Biochem. 14(4-6), 369–376 (2004).
[CrossRef] [PubMed]

2003 (2)

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[CrossRef] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

2002 (2)

D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, “Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography,” Opt. Lett. 27(22), 2010–2012 (2002).
[CrossRef] [PubMed]

E. Grube, U. Gerckens, L. Buellesfeld, and P. J. Fitzgerald, “Images in cardiovascular medicine. Intracoronary imaging with optical coherence tomography: a new high-resolution technology providing striking visualization in the coronary artery,” Circulation 106(18), 2409–2410 (2002).
[CrossRef] [PubMed]

2001 (1)

I. K. Jang, G. Tearney, and B. Bouma, “Visualization of tissue prolapse between coronary stent struts by optical coherence tomography: comparison with intravascular ultrasound,” Circulation 104(22), 2754 (2001).
[CrossRef] [PubMed]

1998 (2)

J. S. Oghalai, J. R. Holt, T. Nakagawa, T. M. Jung, N. J. Coker, H. A. Jenkins, R. A. Eatock, and W. E. Brownell, “Ionic currents and electromotility in inner ear hair cells from humans,” J. Neurophysiol. 79(4), 2235–2239 (1998).
[PubMed]

R. M. Edge, B. N. Evans, M. Pearce, C. P. Richter, X. Hu, and P. Dallos, “Morphology of the unfixed cochlea,” Hear. Res. 124(1-2), 1–16 (1998).
[CrossRef] [PubMed]

1995 (2)

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113(3), 325–332 (1995).
[CrossRef] [PubMed]

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology 102(2), 217–229 (1995).
[PubMed]

1994 (1)

D. M. Freeman, D. A. Cotanche, F. Ehsani, and T. F. Weiss, “The osmotic response of the isolated tectorial membrane of the chick to isosmotic solutions: effect of Na+, K+, and Ca2+ concentration,” Hear. Res. 79(1-2), 197–215 (1994).
[CrossRef] [PubMed]

1993 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1987 (1)

I. Thalmann, G. Thallinger, E. C. Crouch, T. H. Comegys, N. Barrett, and R. Thalmann, “Composition and supramolecular organization of the tectorial membrane,” Laryngoscope 97(3 Pt 1), 357–367 (1987).
[CrossRef] [PubMed]

Adler, D. C.

Aguirre, A. D.

A. D. Aguirre, Y. Chen, B. Bryan, H. Mashimo, Q. Huang, J. L. Connolly, and J. G. Fujimoto, “Cellular resolution ex vivo imaging of gastrointestinal tissues with optical coherence microscopy,” J. Biomed. Opt. 15(1), 016025 (2010).
[CrossRef] [PubMed]

C. Zhou, D. W. Cohen, Y. Wang, H. C. Lee, A. E. Mondelblatt, T. H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues,” Cancer Res. 70(24), 10071–10079 (2010).
[CrossRef] [PubMed]

Apaydin, F.

M. Pfister, H. Thiele, G. Van Camp, E. Fransen, F. Apaydin, O. Aydin, P. Leistenschneider, M. Devoto, H. P. Zenner, N. Blin, P. Nürnberg, H. Ozkarakas, and S. Kupka, “A genotype-phenotype correlation with gender-effect for hearing impairment caused by TECTA mutations,” Cell. Physiol. Biochem. 14(4-6), 369–376 (2004).
[CrossRef] [PubMed]

Applegate, B.

S. S. Gao, T. Yuan, A. Xia, P. Raphael, R. L. Shelton, B. Applegate, and J. S. Oghalai, “Imaging of the intact mouse cochlea by spectral domain optical coherence tomography,” Proc. SPIE 7889 (2011).

Applegate, B. E.

Aydin, O.

M. Pfister, H. Thiele, G. Van Camp, E. Fransen, F. Apaydin, O. Aydin, P. Leistenschneider, M. Devoto, H. P. Zenner, N. Blin, P. Nürnberg, H. Ozkarakas, and S. Kupka, “A genotype-phenotype correlation with gender-effect for hearing impairment caused by TECTA mutations,” Cell. Physiol. Biochem. 14(4-6), 369–376 (2004).
[CrossRef] [PubMed]

Barrett, N.

I. Thalmann, G. Thallinger, E. C. Crouch, T. H. Comegys, N. Barrett, and R. Thalmann, “Composition and supramolecular organization of the tectorial membrane,” Laryngoscope 97(3 Pt 1), 357–367 (1987).
[CrossRef] [PubMed]

Bellafiore, F. J.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[CrossRef] [PubMed]

Blin, N.

M. Pfister, H. Thiele, G. Van Camp, E. Fransen, F. Apaydin, O. Aydin, P. Leistenschneider, M. Devoto, H. P. Zenner, N. Blin, P. Nürnberg, H. Ozkarakas, and S. Kupka, “A genotype-phenotype correlation with gender-effect for hearing impairment caused by TECTA mutations,” Cell. Physiol. Biochem. 14(4-6), 369–376 (2004).
[CrossRef] [PubMed]

Boppart, S. A.

Bouma, B.

I. K. Jang, G. Tearney, and B. Bouma, “Visualization of tissue prolapse between coronary stent struts by optical coherence tomography: comparison with intravascular ultrasound,” Circulation 104(22), 2754 (2001).
[CrossRef] [PubMed]

Bress, A.

A. Xia, S. S. Gao, T. Yuan, A. Osborn, A. Bress, M. Pfister, S. M. Maricich, F. A. Pereira, and J. S. Oghalai, “Deficient forward transduction and enhanced reverse transduction in the alpha tectorin C1509G human hearing loss mutation,” Dis Model Mech 3(3-4), 209–223 (2010).
[CrossRef] [PubMed]

Brownell, W. E.

J. S. Oghalai, J. R. Holt, T. Nakagawa, T. M. Jung, N. J. Coker, H. A. Jenkins, R. A. Eatock, and W. E. Brownell, “Ionic currents and electromotility in inner ear hair cells from humans,” J. Neurophysiol. 79(4), 2235–2239 (1998).
[PubMed]

Bryan, B.

A. D. Aguirre, Y. Chen, B. Bryan, H. Mashimo, Q. Huang, J. L. Connolly, and J. G. Fujimoto, “Cellular resolution ex vivo imaging of gastrointestinal tissues with optical coherence microscopy,” J. Biomed. Opt. 15(1), 016025 (2010).
[CrossRef] [PubMed]

Buellesfeld, L.

E. Grube, U. Gerckens, L. Buellesfeld, and P. J. Fitzgerald, “Images in cardiovascular medicine. Intracoronary imaging with optical coherence tomography: a new high-resolution technology providing striking visualization in the coronary artery,” Circulation 106(18), 2409–2410 (2002).
[CrossRef] [PubMed]

Chaney, E. J.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[CrossRef] [PubMed]

Chang, J. E.

A. Sepehr, H. R. Djalilian, J. E. Chang, Z. Chen, and B. J. Wong, “Optical coherence tomography of the cochlea in the porcine model,” Laryngoscope 118(8), 1449–1451 (2008).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, F.

F. Chen, N. Choudhury, J. Zheng, S. Matthews, A. L. Nutall, and S. L. Jacques, “In vivo imaging and low-coherence interferometry of organ of Corti vibration,” J. Biomed. Opt. 12(2), 021006 (2007).
[CrossRef] [PubMed]

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[CrossRef] [PubMed]

Chen, Y.

A. D. Aguirre, Y. Chen, B. Bryan, H. Mashimo, Q. Huang, J. L. Connolly, and J. G. Fujimoto, “Cellular resolution ex vivo imaging of gastrointestinal tissues with optical coherence microscopy,” J. Biomed. Opt. 15(1), 016025 (2010).
[CrossRef] [PubMed]

Chen, Z.

A. Sepehr, H. R. Djalilian, J. E. Chang, Z. Chen, and B. J. Wong, “Optical coherence tomography of the cochlea in the porcine model,” Laryngoscope 118(8), 1449–1451 (2008).
[CrossRef] [PubMed]

B. J. Wong, Y. Zhao, M. Yamaguchi, N. Nassif, Z. Chen, and J. F. De Boer, “Imaging the internal structure of the rat cochlea using optical coherence tomography at 0.827 μm and 1.3 μm,” Otolaryngol. Head Neck Surg. 130(3), 334–338 (2004).
[CrossRef] [PubMed]

Choudhury, N.

F. Chen, N. Choudhury, J. Zheng, S. Matthews, A. L. Nutall, and S. L. Jacques, “In vivo imaging and low-coherence interferometry of organ of Corti vibration,” J. Biomed. Opt. 12(2), 021006 (2007).
[CrossRef] [PubMed]

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[CrossRef] [PubMed]

Chowdhury, N.

J. W. Lin, N. Chowdhury, A. Mody, R. Tonini, C. Emery, J. Haymond, and J. S. Oghalai, “Comprehensive diagnostic battery for evaluating sensorineural hearing loss in children,” Otol. Neurotol. 32(2), 259–264 (2011).
[CrossRef] [PubMed]

Cohen, D. W.

C. Zhou, D. W. Cohen, Y. Wang, H. C. Lee, A. E. Mondelblatt, T. H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues,” Cancer Res. 70(24), 10071–10079 (2010).
[CrossRef] [PubMed]

Coker, N. J.

J. S. Oghalai, J. R. Holt, T. Nakagawa, T. M. Jung, N. J. Coker, H. A. Jenkins, R. A. Eatock, and W. E. Brownell, “Ionic currents and electromotility in inner ear hair cells from humans,” J. Neurophysiol. 79(4), 2235–2239 (1998).
[PubMed]

Comegys, T. H.

I. Thalmann, G. Thallinger, E. C. Crouch, T. H. Comegys, N. Barrett, and R. Thalmann, “Composition and supramolecular organization of the tectorial membrane,” Laryngoscope 97(3 Pt 1), 357–367 (1987).
[CrossRef] [PubMed]

Connolly, J. L.

A. D. Aguirre, Y. Chen, B. Bryan, H. Mashimo, Q. Huang, J. L. Connolly, and J. G. Fujimoto, “Cellular resolution ex vivo imaging of gastrointestinal tissues with optical coherence microscopy,” J. Biomed. Opt. 15(1), 016025 (2010).
[CrossRef] [PubMed]

C. Zhou, D. W. Cohen, Y. Wang, H. C. Lee, A. E. Mondelblatt, T. H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues,” Cancer Res. 70(24), 10071–10079 (2010).
[CrossRef] [PubMed]

Cotanche, D. A.

D. M. Freeman, D. A. Cotanche, F. Ehsani, and T. F. Weiss, “The osmotic response of the isolated tectorial membrane of the chick to isosmotic solutions: effect of Na+, K+, and Ca2+ concentration,” Hear. Res. 79(1-2), 197–215 (1994).
[CrossRef] [PubMed]

Crouch, E. C.

I. Thalmann, G. Thallinger, E. C. Crouch, T. H. Comegys, N. Barrett, and R. Thalmann, “Composition and supramolecular organization of the tectorial membrane,” Laryngoscope 97(3 Pt 1), 357–367 (1987).
[CrossRef] [PubMed]

Dallos, P.

R. M. Edge, B. N. Evans, M. Pearce, C. P. Richter, X. Hu, and P. Dallos, “Morphology of the unfixed cochlea,” Hear. Res. 124(1-2), 1–16 (1998).
[CrossRef] [PubMed]

Davila, V.

H. M. Subhash, V. Davila, H. Sun, A. T. Nguyen-Huynh, A. L. Nuttall, and R. K. Wang, “Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography,” J. Biomed. Opt. 15(3), 036024 (2010).
[CrossRef] [PubMed]

De Boer, J. F.

B. J. Wong, Y. Zhao, M. Yamaguchi, N. Nassif, Z. Chen, and J. F. De Boer, “Imaging the internal structure of the rat cochlea using optical coherence tomography at 0.827 μm and 1.3 μm,” Otolaryngol. Head Neck Surg. 130(3), 334–338 (2004).
[CrossRef] [PubMed]

Devoto, M.

M. Pfister, H. Thiele, G. Van Camp, E. Fransen, F. Apaydin, O. Aydin, P. Leistenschneider, M. Devoto, H. P. Zenner, N. Blin, P. Nürnberg, H. Ozkarakas, and S. Kupka, “A genotype-phenotype correlation with gender-effect for hearing impairment caused by TECTA mutations,” Cell. Physiol. Biochem. 14(4-6), 369–376 (2004).
[CrossRef] [PubMed]

Djalilian, H. R.

A. Sepehr, H. R. Djalilian, J. E. Chang, Z. Chen, and B. J. Wong, “Optical coherence tomography of the cochlea in the porcine model,” Laryngoscope 118(8), 1449–1451 (2008).
[CrossRef] [PubMed]

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Duker, J. S.

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology 102(2), 217–229 (1995).
[PubMed]

Eatock, R. A.

J. S. Oghalai, J. R. Holt, T. Nakagawa, T. M. Jung, N. J. Coker, H. A. Jenkins, R. A. Eatock, and W. E. Brownell, “Ionic currents and electromotility in inner ear hair cells from humans,” J. Neurophysiol. 79(4), 2235–2239 (1998).
[PubMed]

Edge, R. M.

R. M. Edge, B. N. Evans, M. Pearce, C. P. Richter, X. Hu, and P. Dallos, “Morphology of the unfixed cochlea,” Hear. Res. 124(1-2), 1–16 (1998).
[CrossRef] [PubMed]

Ehsani, F.

D. M. Freeman, D. A. Cotanche, F. Ehsani, and T. F. Weiss, “The osmotic response of the isolated tectorial membrane of the chick to isosmotic solutions: effect of Na+, K+, and Ca2+ concentration,” Hear. Res. 79(1-2), 197–215 (1994).
[CrossRef] [PubMed]

Emery, C.

J. W. Lin, N. Chowdhury, A. Mody, R. Tonini, C. Emery, J. Haymond, and J. S. Oghalai, “Comprehensive diagnostic battery for evaluating sensorineural hearing loss in children,” Otol. Neurotol. 32(2), 259–264 (2011).
[CrossRef] [PubMed]

Evans, B. N.

R. M. Edge, B. N. Evans, M. Pearce, C. P. Richter, X. Hu, and P. Dallos, “Morphology of the unfixed cochlea,” Hear. Res. 124(1-2), 1–16 (1998).
[CrossRef] [PubMed]

Fercher, A.

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Fitzgerald, P. J.

E. Grube, U. Gerckens, L. Buellesfeld, and P. J. Fitzgerald, “Images in cardiovascular medicine. Intracoronary imaging with optical coherence tomography: a new high-resolution technology providing striking visualization in the coronary artery,” Circulation 106(18), 2409–2410 (2002).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fransen, E.

M. Pfister, H. Thiele, G. Van Camp, E. Fransen, F. Apaydin, O. Aydin, P. Leistenschneider, M. Devoto, H. P. Zenner, N. Blin, P. Nürnberg, H. Ozkarakas, and S. Kupka, “A genotype-phenotype correlation with gender-effect for hearing impairment caused by TECTA mutations,” Cell. Physiol. Biochem. 14(4-6), 369–376 (2004).
[CrossRef] [PubMed]

Freeman, D. M.

S. S. Hong and D. M. Freeman, “Doppler optical coherence microscopy for studies of cochlear mechanics,” J. Biomed. Opt. 11(5), 054014 (2006).
[CrossRef] [PubMed]

D. M. Freeman, D. A. Cotanche, F. Ehsani, and T. F. Weiss, “The osmotic response of the isolated tectorial membrane of the chick to isosmotic solutions: effect of Na+, K+, and Ca2+ concentration,” Hear. Res. 79(1-2), 197–215 (1994).
[CrossRef] [PubMed]

Fujimoto, J. G.

C. Zhou, D. W. Cohen, Y. Wang, H. C. Lee, A. E. Mondelblatt, T. H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues,” Cancer Res. 70(24), 10071–10079 (2010).
[CrossRef] [PubMed]

A. D. Aguirre, Y. Chen, B. Bryan, H. Mashimo, Q. Huang, J. L. Connolly, and J. G. Fujimoto, “Cellular resolution ex vivo imaging of gastrointestinal tissues with optical coherence microscopy,” J. Biomed. Opt. 15(1), 016025 (2010).
[CrossRef] [PubMed]

D. C. Adler, C. Zhou, T. H. Tsai, J. Schmitt, Q. Huang, H. Mashimo, and J. G. Fujimoto, “Three-dimensional endomicroscopy of the human colon using optical coherence tomography,” Opt. Express 17(2), 784–796 (2009).
[CrossRef] [PubMed]

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology 102(2), 217–229 (1995).
[PubMed]

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113(3), 325–332 (1995).
[CrossRef] [PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18(21), 1864–1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gao, S. S.

C. C. Liu, S. S. Gao, T. Yuan, C. Steele, S. Puria, and J. S. Oghalai, “Biophysical Mechanisms Underlying Outer Hair Cell Loss Associated with a Shortened Tectorial Membrane,” J. Assoc. Res. Otolaryngol. (2011).
[CrossRef] [PubMed]

S. S. Gao, T. Yuan, A. Xia, P. Raphael, R. L. Shelton, B. Applegate, and J. S. Oghalai, “Imaging of the intact mouse cochlea by spectral domain optical coherence tomography,” Proc. SPIE 7889 (2011).

A. Xia, S. S. Gao, T. Yuan, A. Osborn, A. Bress, M. Pfister, S. M. Maricich, F. A. Pereira, and J. S. Oghalai, “Deficient forward transduction and enhanced reverse transduction in the alpha tectorin C1509G human hearing loss mutation,” Dis Model Mech 3(3-4), 209–223 (2010).
[CrossRef] [PubMed]

Gerckens, U.

E. Grube, U. Gerckens, L. Buellesfeld, and P. J. Fitzgerald, “Images in cardiovascular medicine. Intracoronary imaging with optical coherence tomography: a new high-resolution technology providing striking visualization in the coronary artery,” Circulation 106(18), 2409–2410 (2002).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Grube, E.

E. Grube, U. Gerckens, L. Buellesfeld, and P. J. Fitzgerald, “Images in cardiovascular medicine. Intracoronary imaging with optical coherence tomography: a new high-resolution technology providing striking visualization in the coronary artery,” Circulation 106(18), 2409–2410 (2002).
[CrossRef] [PubMed]

Gueta, R.

R. Gueta, J. Levitt, A. Xia, O. Katz, J. S. Oghalai, and I. Rousso, “Structural and mechanical analysis of tectorial membrane Tecta mutants,” Biophys. J. 100(10), 2530–2538 (2011).
[CrossRef] [PubMed]

Haymond, J.

J. W. Lin, N. Chowdhury, A. Mody, R. Tonini, C. Emery, J. Haymond, and J. S. Oghalai, “Comprehensive diagnostic battery for evaluating sensorineural hearing loss in children,” Otol. Neurotol. 32(2), 259–264 (2011).
[CrossRef] [PubMed]

Hee, M. R.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113(3), 325–332 (1995).
[CrossRef] [PubMed]

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology 102(2), 217–229 (1995).
[PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18(21), 1864–1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C.

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Holt, J. R.

J. S. Oghalai, J. R. Holt, T. Nakagawa, T. M. Jung, N. J. Coker, H. A. Jenkins, R. A. Eatock, and W. E. Brownell, “Ionic currents and electromotility in inner ear hair cells from humans,” J. Neurophysiol. 79(4), 2235–2239 (1998).
[PubMed]

Hong, S. S.

S. S. Hong and D. M. Freeman, “Doppler optical coherence microscopy for studies of cochlear mechanics,” J. Biomed. Opt. 11(5), 054014 (2006).
[CrossRef] [PubMed]

Hu, X.

R. M. Edge, B. N. Evans, M. Pearce, C. P. Richter, X. Hu, and P. Dallos, “Morphology of the unfixed cochlea,” Hear. Res. 124(1-2), 1–16 (1998).
[CrossRef] [PubMed]

Huang, D.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113(3), 325–332 (1995).
[CrossRef] [PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18(21), 1864–1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huang, Q.

A. D. Aguirre, Y. Chen, B. Bryan, H. Mashimo, Q. Huang, J. L. Connolly, and J. G. Fujimoto, “Cellular resolution ex vivo imaging of gastrointestinal tissues with optical coherence microscopy,” J. Biomed. Opt. 15(1), 016025 (2010).
[CrossRef] [PubMed]

D. C. Adler, C. Zhou, T. H. Tsai, J. Schmitt, Q. Huang, H. Mashimo, and J. G. Fujimoto, “Three-dimensional endomicroscopy of the human colon using optical coherence tomography,” Opt. Express 17(2), 784–796 (2009).
[CrossRef] [PubMed]

Izatt, J. A.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113(3), 325–332 (1995).
[CrossRef] [PubMed]

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology 102(2), 217–229 (1995).
[PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18(21), 1864–1866 (1993).
[CrossRef] [PubMed]

Jacques, S. L.

F. Chen, N. Choudhury, J. Zheng, S. Matthews, A. L. Nutall, and S. L. Jacques, “In vivo imaging and low-coherence interferometry of organ of Corti vibration,” J. Biomed. Opt. 12(2), 021006 (2007).
[CrossRef] [PubMed]

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[CrossRef] [PubMed]

Jafri, M. S.

J. Lin, H. Staecker, and M. S. Jafri, “Optical coherence tomography imaging of the inner ear: a feasibility study with implications for cochlear implantation,” Ann. Otol. Rhinol. Laryngol. 117(5), 341–346 (2008).
[PubMed]

Jang, I. K.

I. K. Jang, G. Tearney, and B. Bouma, “Visualization of tissue prolapse between coronary stent struts by optical coherence tomography: comparison with intravascular ultrasound,” Circulation 104(22), 2754 (2001).
[CrossRef] [PubMed]

Jenkins, H. A.

J. S. Oghalai, J. R. Holt, T. Nakagawa, T. M. Jung, N. J. Coker, H. A. Jenkins, R. A. Eatock, and W. E. Brownell, “Ionic currents and electromotility in inner ear hair cells from humans,” J. Neurophysiol. 79(4), 2235–2239 (1998).
[PubMed]

Jo, J. A.

Johnson, P. A.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[CrossRef] [PubMed]

Jung, T. M.

J. S. Oghalai, J. R. Holt, T. Nakagawa, T. M. Jung, N. J. Coker, H. A. Jenkins, R. A. Eatock, and W. E. Brownell, “Ionic currents and electromotility in inner ear hair cells from humans,” J. Neurophysiol. 79(4), 2235–2239 (1998).
[PubMed]

Kao, S.

D. K. Meyerholz, D. A. Stoltz, E. Namati, S. Ramachandran, A. A. Pezzulo, A. R. Smith, M. V. Rector, M. J. Suter, S. Kao, G. McLennan, G. J. Tearney, J. Zabner, P. B. McCray, and M. J. Welsh, “Loss of cystic fibrosis transmembrane conductance regulator function produces abnormalities in tracheal development in neonatal pigs and young children,” Am. J. Respir. Crit. Care Med. 182(10), 1251–1261 (2010).
[CrossRef] [PubMed]

Katz, O.

R. Gueta, J. Levitt, A. Xia, O. Katz, J. S. Oghalai, and I. Rousso, “Structural and mechanical analysis of tectorial membrane Tecta mutants,” Biophys. J. 100(10), 2530–2538 (2011).
[CrossRef] [PubMed]

Koh, Y. L.

Kotynek, J. G.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[CrossRef] [PubMed]

Kupka, S.

M. Pfister, H. Thiele, G. Van Camp, E. Fransen, F. Apaydin, O. Aydin, P. Leistenschneider, M. Devoto, H. P. Zenner, N. Blin, P. Nürnberg, H. Ozkarakas, and S. Kupka, “A genotype-phenotype correlation with gender-effect for hearing impairment caused by TECTA mutations,” Cell. Physiol. Biochem. 14(4-6), 369–376 (2004).
[CrossRef] [PubMed]

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Lee, H. C.

C. Zhou, D. W. Cohen, Y. Wang, H. C. Lee, A. E. Mondelblatt, T. H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues,” Cancer Res. 70(24), 10071–10079 (2010).
[CrossRef] [PubMed]

Leistenschneider, P.

M. Pfister, H. Thiele, G. Van Camp, E. Fransen, F. Apaydin, O. Aydin, P. Leistenschneider, M. Devoto, H. P. Zenner, N. Blin, P. Nürnberg, H. Ozkarakas, and S. Kupka, “A genotype-phenotype correlation with gender-effect for hearing impairment caused by TECTA mutations,” Cell. Physiol. Biochem. 14(4-6), 369–376 (2004).
[CrossRef] [PubMed]

Leitgeb, R.

Levitt, J.

R. Gueta, J. Levitt, A. Xia, O. Katz, J. S. Oghalai, and I. Rousso, “Structural and mechanical analysis of tectorial membrane Tecta mutants,” Biophys. J. 100(10), 2530–2538 (2011).
[CrossRef] [PubMed]

Lin, C. P.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113(3), 325–332 (1995).
[CrossRef] [PubMed]

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology 102(2), 217–229 (1995).
[PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18(21), 1864–1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Lin, J.

J. Lin, H. Staecker, and M. S. Jafri, “Optical coherence tomography imaging of the inner ear: a feasibility study with implications for cochlear implantation,” Ann. Otol. Rhinol. Laryngol. 117(5), 341–346 (2008).
[PubMed]

Lin, J. W.

J. W. Lin, N. Chowdhury, A. Mody, R. Tonini, C. Emery, J. Haymond, and J. S. Oghalai, “Comprehensive diagnostic battery for evaluating sensorineural hearing loss in children,” Otol. Neurotol. 32(2), 259–264 (2011).
[CrossRef] [PubMed]

Liu, C. C.

C. C. Liu, S. S. Gao, T. Yuan, C. Steele, S. Puria, and J. S. Oghalai, “Biophysical Mechanisms Underlying Outer Hair Cell Loss Associated with a Shortened Tectorial Membrane,” J. Assoc. Res. Otolaryngol. (2011).
[CrossRef] [PubMed]

Maricich, S. M.

A. Xia, S. S. Gao, T. Yuan, A. Osborn, A. Bress, M. Pfister, S. M. Maricich, F. A. Pereira, and J. S. Oghalai, “Deficient forward transduction and enhanced reverse transduction in the alpha tectorin C1509G human hearing loss mutation,” Dis Model Mech 3(3-4), 209–223 (2010).
[CrossRef] [PubMed]

Marks, D. L.

Mashimo, H.

A. D. Aguirre, Y. Chen, B. Bryan, H. Mashimo, Q. Huang, J. L. Connolly, and J. G. Fujimoto, “Cellular resolution ex vivo imaging of gastrointestinal tissues with optical coherence microscopy,” J. Biomed. Opt. 15(1), 016025 (2010).
[CrossRef] [PubMed]

D. C. Adler, C. Zhou, T. H. Tsai, J. Schmitt, Q. Huang, H. Mashimo, and J. G. Fujimoto, “Three-dimensional endomicroscopy of the human colon using optical coherence tomography,” Opt. Express 17(2), 784–796 (2009).
[CrossRef] [PubMed]

Matthews, S.

F. Chen, N. Choudhury, J. Zheng, S. Matthews, A. L. Nutall, and S. L. Jacques, “In vivo imaging and low-coherence interferometry of organ of Corti vibration,” J. Biomed. Opt. 12(2), 021006 (2007).
[CrossRef] [PubMed]

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[CrossRef] [PubMed]

McCray, P. B.

D. K. Meyerholz, D. A. Stoltz, E. Namati, S. Ramachandran, A. A. Pezzulo, A. R. Smith, M. V. Rector, M. J. Suter, S. Kao, G. McLennan, G. J. Tearney, J. Zabner, P. B. McCray, and M. J. Welsh, “Loss of cystic fibrosis transmembrane conductance regulator function produces abnormalities in tracheal development in neonatal pigs and young children,” Am. J. Respir. Crit. Care Med. 182(10), 1251–1261 (2010).
[CrossRef] [PubMed]

McLennan, G.

D. K. Meyerholz, D. A. Stoltz, E. Namati, S. Ramachandran, A. A. Pezzulo, A. R. Smith, M. V. Rector, M. J. Suter, S. Kao, G. McLennan, G. J. Tearney, J. Zabner, P. B. McCray, and M. J. Welsh, “Loss of cystic fibrosis transmembrane conductance regulator function produces abnormalities in tracheal development in neonatal pigs and young children,” Am. J. Respir. Crit. Care Med. 182(10), 1251–1261 (2010).
[CrossRef] [PubMed]

Meyerholz, D. K.

D. K. Meyerholz, D. A. Stoltz, E. Namati, S. Ramachandran, A. A. Pezzulo, A. R. Smith, M. V. Rector, M. J. Suter, S. Kao, G. McLennan, G. J. Tearney, J. Zabner, P. B. McCray, and M. J. Welsh, “Loss of cystic fibrosis transmembrane conductance regulator function produces abnormalities in tracheal development in neonatal pigs and young children,” Am. J. Respir. Crit. Care Med. 182(10), 1251–1261 (2010).
[CrossRef] [PubMed]

Mody, A.

J. W. Lin, N. Chowdhury, A. Mody, R. Tonini, C. Emery, J. Haymond, and J. S. Oghalai, “Comprehensive diagnostic battery for evaluating sensorineural hearing loss in children,” Otol. Neurotol. 32(2), 259–264 (2011).
[CrossRef] [PubMed]

Mondelblatt, A. E.

C. Zhou, D. W. Cohen, Y. Wang, H. C. Lee, A. E. Mondelblatt, T. H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues,” Cancer Res. 70(24), 10071–10079 (2010).
[CrossRef] [PubMed]

Nakagawa, T.

J. S. Oghalai, J. R. Holt, T. Nakagawa, T. M. Jung, N. J. Coker, H. A. Jenkins, R. A. Eatock, and W. E. Brownell, “Ionic currents and electromotility in inner ear hair cells from humans,” J. Neurophysiol. 79(4), 2235–2239 (1998).
[PubMed]

Namati, E.

D. K. Meyerholz, D. A. Stoltz, E. Namati, S. Ramachandran, A. A. Pezzulo, A. R. Smith, M. V. Rector, M. J. Suter, S. Kao, G. McLennan, G. J. Tearney, J. Zabner, P. B. McCray, and M. J. Welsh, “Loss of cystic fibrosis transmembrane conductance regulator function produces abnormalities in tracheal development in neonatal pigs and young children,” Am. J. Respir. Crit. Care Med. 182(10), 1251–1261 (2010).
[CrossRef] [PubMed]

Nassif, N.

B. J. Wong, Y. Zhao, M. Yamaguchi, N. Nassif, Z. Chen, and J. F. De Boer, “Imaging the internal structure of the rat cochlea using optical coherence tomography at 0.827 μm and 1.3 μm,” Otolaryngol. Head Neck Surg. 130(3), 334–338 (2004).
[CrossRef] [PubMed]

Nguyen, F. T.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[CrossRef] [PubMed]

Nguyen-Huynh, A. T.

H. M. Subhash, V. Davila, H. Sun, A. T. Nguyen-Huynh, A. L. Nuttall, and R. K. Wang, “Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography,” J. Biomed. Opt. 15(3), 036024 (2010).
[CrossRef] [PubMed]

Nürnberg, P.

M. Pfister, H. Thiele, G. Van Camp, E. Fransen, F. Apaydin, O. Aydin, P. Leistenschneider, M. Devoto, H. P. Zenner, N. Blin, P. Nürnberg, H. Ozkarakas, and S. Kupka, “A genotype-phenotype correlation with gender-effect for hearing impairment caused by TECTA mutations,” Cell. Physiol. Biochem. 14(4-6), 369–376 (2004).
[CrossRef] [PubMed]

Nutall, A. L.

F. Chen, N. Choudhury, J. Zheng, S. Matthews, A. L. Nutall, and S. L. Jacques, “In vivo imaging and low-coherence interferometry of organ of Corti vibration,” J. Biomed. Opt. 12(2), 021006 (2007).
[CrossRef] [PubMed]

Nuttall, A. L.

H. M. Subhash, V. Davila, H. Sun, A. T. Nguyen-Huynh, A. L. Nuttall, and R. K. Wang, “Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography,” J. Biomed. Opt. 15(3), 036024 (2010).
[CrossRef] [PubMed]

R. K. Wang and A. L. Nuttall, “Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: a preliminary study,” J. Biomed. Opt. 15(5), 056005 (2010).
[CrossRef] [PubMed]

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[CrossRef] [PubMed]

Oghalai, J. S.

S. S. Gao, T. Yuan, A. Xia, P. Raphael, R. L. Shelton, B. Applegate, and J. S. Oghalai, “Imaging of the intact mouse cochlea by spectral domain optical coherence tomography,” Proc. SPIE 7889 (2011).

C. C. Liu, S. S. Gao, T. Yuan, C. Steele, S. Puria, and J. S. Oghalai, “Biophysical Mechanisms Underlying Outer Hair Cell Loss Associated with a Shortened Tectorial Membrane,” J. Assoc. Res. Otolaryngol. (2011).
[CrossRef] [PubMed]

R. Gueta, J. Levitt, A. Xia, O. Katz, J. S. Oghalai, and I. Rousso, “Structural and mechanical analysis of tectorial membrane Tecta mutants,” Biophys. J. 100(10), 2530–2538 (2011).
[CrossRef] [PubMed]

J. W. Lin, N. Chowdhury, A. Mody, R. Tonini, C. Emery, J. Haymond, and J. S. Oghalai, “Comprehensive diagnostic battery for evaluating sensorineural hearing loss in children,” Otol. Neurotol. 32(2), 259–264 (2011).
[CrossRef] [PubMed]

A. Xia, S. S. Gao, T. Yuan, A. Osborn, A. Bress, M. Pfister, S. M. Maricich, F. A. Pereira, and J. S. Oghalai, “Deficient forward transduction and enhanced reverse transduction in the alpha tectorin C1509G human hearing loss mutation,” Dis Model Mech 3(3-4), 209–223 (2010).
[CrossRef] [PubMed]

J. S. Oghalai, “The cochlear amplifier: augmentation of the traveling wave within the inner ear,” Curr. Opin. Otolaryngol. Head Neck Surg. 12(5), 431–438 (2004).
[CrossRef] [PubMed]

J. S. Oghalai, J. R. Holt, T. Nakagawa, T. M. Jung, N. J. Coker, H. A. Jenkins, R. A. Eatock, and W. E. Brownell, “Ionic currents and electromotility in inner ear hair cells from humans,” J. Neurophysiol. 79(4), 2235–2239 (1998).
[PubMed]

Oldenburg, A. L.

Oliphant, U. J.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[CrossRef] [PubMed]

Osborn, A.

A. Xia, S. S. Gao, T. Yuan, A. Osborn, A. Bress, M. Pfister, S. M. Maricich, F. A. Pereira, and J. S. Oghalai, “Deficient forward transduction and enhanced reverse transduction in the alpha tectorin C1509G human hearing loss mutation,” Dis Model Mech 3(3-4), 209–223 (2010).
[CrossRef] [PubMed]

Ozkarakas, H.

M. Pfister, H. Thiele, G. Van Camp, E. Fransen, F. Apaydin, O. Aydin, P. Leistenschneider, M. Devoto, H. P. Zenner, N. Blin, P. Nürnberg, H. Ozkarakas, and S. Kupka, “A genotype-phenotype correlation with gender-effect for hearing impairment caused by TECTA mutations,” Cell. Physiol. Biochem. 14(4-6), 369–376 (2004).
[CrossRef] [PubMed]

Pande, P.

Park, J.

Pearce, M.

R. M. Edge, B. N. Evans, M. Pearce, C. P. Richter, X. Hu, and P. Dallos, “Morphology of the unfixed cochlea,” Hear. Res. 124(1-2), 1–16 (1998).
[CrossRef] [PubMed]

Pereira, F. A.

A. Xia, S. S. Gao, T. Yuan, A. Osborn, A. Bress, M. Pfister, S. M. Maricich, F. A. Pereira, and J. S. Oghalai, “Deficient forward transduction and enhanced reverse transduction in the alpha tectorin C1509G human hearing loss mutation,” Dis Model Mech 3(3-4), 209–223 (2010).
[CrossRef] [PubMed]

Pezzulo, A. A.

D. K. Meyerholz, D. A. Stoltz, E. Namati, S. Ramachandran, A. A. Pezzulo, A. R. Smith, M. V. Rector, M. J. Suter, S. Kao, G. McLennan, G. J. Tearney, J. Zabner, P. B. McCray, and M. J. Welsh, “Loss of cystic fibrosis transmembrane conductance regulator function produces abnormalities in tracheal development in neonatal pigs and young children,” Am. J. Respir. Crit. Care Med. 182(10), 1251–1261 (2010).
[CrossRef] [PubMed]

Pfister, M.

A. Xia, S. S. Gao, T. Yuan, A. Osborn, A. Bress, M. Pfister, S. M. Maricich, F. A. Pereira, and J. S. Oghalai, “Deficient forward transduction and enhanced reverse transduction in the alpha tectorin C1509G human hearing loss mutation,” Dis Model Mech 3(3-4), 209–223 (2010).
[CrossRef] [PubMed]

M. Pfister, H. Thiele, G. Van Camp, E. Fransen, F. Apaydin, O. Aydin, P. Leistenschneider, M. Devoto, H. P. Zenner, N. Blin, P. Nürnberg, H. Ozkarakas, and S. Kupka, “A genotype-phenotype correlation with gender-effect for hearing impairment caused by TECTA mutations,” Cell. Physiol. Biochem. 14(4-6), 369–376 (2004).
[CrossRef] [PubMed]

Puliafito, C. A.

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology 102(2), 217–229 (1995).
[PubMed]

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113(3), 325–332 (1995).
[CrossRef] [PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18(21), 1864–1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Puria, S.

C. C. Liu, S. S. Gao, T. Yuan, C. Steele, S. Puria, and J. S. Oghalai, “Biophysical Mechanisms Underlying Outer Hair Cell Loss Associated with a Shortened Tectorial Membrane,” J. Assoc. Res. Otolaryngol. (2011).
[CrossRef] [PubMed]

Ramachandran, S.

D. K. Meyerholz, D. A. Stoltz, E. Namati, S. Ramachandran, A. A. Pezzulo, A. R. Smith, M. V. Rector, M. J. Suter, S. Kao, G. McLennan, G. J. Tearney, J. Zabner, P. B. McCray, and M. J. Welsh, “Loss of cystic fibrosis transmembrane conductance regulator function produces abnormalities in tracheal development in neonatal pigs and young children,” Am. J. Respir. Crit. Care Med. 182(10), 1251–1261 (2010).
[CrossRef] [PubMed]

Raphael, P.

S. S. Gao, T. Yuan, A. Xia, P. Raphael, R. L. Shelton, B. Applegate, and J. S. Oghalai, “Imaging of the intact mouse cochlea by spectral domain optical coherence tomography,” Proc. SPIE 7889 (2011).

Rector, M. V.

D. K. Meyerholz, D. A. Stoltz, E. Namati, S. Ramachandran, A. A. Pezzulo, A. R. Smith, M. V. Rector, M. J. Suter, S. Kao, G. McLennan, G. J. Tearney, J. Zabner, P. B. McCray, and M. J. Welsh, “Loss of cystic fibrosis transmembrane conductance regulator function produces abnormalities in tracheal development in neonatal pigs and young children,” Am. J. Respir. Crit. Care Med. 182(10), 1251–1261 (2010).
[CrossRef] [PubMed]

Reichel, E.

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology 102(2), 217–229 (1995).
[PubMed]

Reynolds, J. J.

Richter, C. P.

R. M. Edge, B. N. Evans, M. Pearce, C. P. Richter, X. Hu, and P. Dallos, “Morphology of the unfixed cochlea,” Hear. Res. 124(1-2), 1–16 (1998).
[CrossRef] [PubMed]

Rousso, I.

R. Gueta, J. Levitt, A. Xia, O. Katz, J. S. Oghalai, and I. Rousso, “Structural and mechanical analysis of tectorial membrane Tecta mutants,” Biophys. J. 100(10), 2530–2538 (2011).
[CrossRef] [PubMed]

Rowland, K. M.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[CrossRef] [PubMed]

Schmitt, J.

Schuman, J. S.

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology 102(2), 217–229 (1995).
[PubMed]

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113(3), 325–332 (1995).
[CrossRef] [PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18(21), 1864–1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Sepehr, A.

A. Sepehr, H. R. Djalilian, J. E. Chang, Z. Chen, and B. J. Wong, “Optical coherence tomography of the cochlea in the porcine model,” Laryngoscope 118(8), 1449–1451 (2008).
[CrossRef] [PubMed]

Shelton, R. L.

S. S. Gao, T. Yuan, A. Xia, P. Raphael, R. L. Shelton, B. Applegate, and J. S. Oghalai, “Imaging of the intact mouse cochlea by spectral domain optical coherence tomography,” Proc. SPIE 7889 (2011).

Shrestha, S.

Smith, A. R.

D. K. Meyerholz, D. A. Stoltz, E. Namati, S. Ramachandran, A. A. Pezzulo, A. R. Smith, M. V. Rector, M. J. Suter, S. Kao, G. McLennan, G. J. Tearney, J. Zabner, P. B. McCray, and M. J. Welsh, “Loss of cystic fibrosis transmembrane conductance regulator function produces abnormalities in tracheal development in neonatal pigs and young children,” Am. J. Respir. Crit. Care Med. 182(10), 1251–1261 (2010).
[CrossRef] [PubMed]

Song, G.

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[CrossRef] [PubMed]

Staecker, H.

J. Lin, H. Staecker, and M. S. Jafri, “Optical coherence tomography imaging of the inner ear: a feasibility study with implications for cochlear implantation,” Ann. Otol. Rhinol. Laryngol. 117(5), 341–346 (2008).
[PubMed]

Steele, C.

C. C. Liu, S. S. Gao, T. Yuan, C. Steele, S. Puria, and J. S. Oghalai, “Biophysical Mechanisms Underlying Outer Hair Cell Loss Associated with a Shortened Tectorial Membrane,” J. Assoc. Res. Otolaryngol. (2011).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Stoltz, D. A.

D. K. Meyerholz, D. A. Stoltz, E. Namati, S. Ramachandran, A. A. Pezzulo, A. R. Smith, M. V. Rector, M. J. Suter, S. Kao, G. McLennan, G. J. Tearney, J. Zabner, P. B. McCray, and M. J. Welsh, “Loss of cystic fibrosis transmembrane conductance regulator function produces abnormalities in tracheal development in neonatal pigs and young children,” Am. J. Respir. Crit. Care Med. 182(10), 1251–1261 (2010).
[CrossRef] [PubMed]

Subhash, H. M.

H. M. Subhash, V. Davila, H. Sun, A. T. Nguyen-Huynh, A. L. Nuttall, and R. K. Wang, “Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography,” J. Biomed. Opt. 15(3), 036024 (2010).
[CrossRef] [PubMed]

Sun, H.

H. M. Subhash, V. Davila, H. Sun, A. T. Nguyen-Huynh, A. L. Nuttall, and R. K. Wang, “Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography,” J. Biomed. Opt. 15(3), 036024 (2010).
[CrossRef] [PubMed]

Suter, M. J.

D. K. Meyerholz, D. A. Stoltz, E. Namati, S. Ramachandran, A. A. Pezzulo, A. R. Smith, M. V. Rector, M. J. Suter, S. Kao, G. McLennan, G. J. Tearney, J. Zabner, P. B. McCray, and M. J. Welsh, “Loss of cystic fibrosis transmembrane conductance regulator function produces abnormalities in tracheal development in neonatal pigs and young children,” Am. J. Respir. Crit. Care Med. 182(10), 1251–1261 (2010).
[CrossRef] [PubMed]

Swanson, E. A.

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology 102(2), 217–229 (1995).
[PubMed]

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113(3), 325–332 (1995).
[CrossRef] [PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18(21), 1864–1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Tearney, G.

I. K. Jang, G. Tearney, and B. Bouma, “Visualization of tissue prolapse between coronary stent struts by optical coherence tomography: comparison with intravascular ultrasound,” Circulation 104(22), 2754 (2001).
[CrossRef] [PubMed]

Tearney, G. J.

D. K. Meyerholz, D. A. Stoltz, E. Namati, S. Ramachandran, A. A. Pezzulo, A. R. Smith, M. V. Rector, M. J. Suter, S. Kao, G. McLennan, G. J. Tearney, J. Zabner, P. B. McCray, and M. J. Welsh, “Loss of cystic fibrosis transmembrane conductance regulator function produces abnormalities in tracheal development in neonatal pigs and young children,” Am. J. Respir. Crit. Care Med. 182(10), 1251–1261 (2010).
[CrossRef] [PubMed]

Thallinger, G.

I. Thalmann, G. Thallinger, E. C. Crouch, T. H. Comegys, N. Barrett, and R. Thalmann, “Composition and supramolecular organization of the tectorial membrane,” Laryngoscope 97(3 Pt 1), 357–367 (1987).
[CrossRef] [PubMed]

Thalmann, I.

I. Thalmann, G. Thallinger, E. C. Crouch, T. H. Comegys, N. Barrett, and R. Thalmann, “Composition and supramolecular organization of the tectorial membrane,” Laryngoscope 97(3 Pt 1), 357–367 (1987).
[CrossRef] [PubMed]

Thalmann, R.

I. Thalmann, G. Thallinger, E. C. Crouch, T. H. Comegys, N. Barrett, and R. Thalmann, “Composition and supramolecular organization of the tectorial membrane,” Laryngoscope 97(3 Pt 1), 357–367 (1987).
[CrossRef] [PubMed]

Thiele, H.

M. Pfister, H. Thiele, G. Van Camp, E. Fransen, F. Apaydin, O. Aydin, P. Leistenschneider, M. Devoto, H. P. Zenner, N. Blin, P. Nürnberg, H. Ozkarakas, and S. Kupka, “A genotype-phenotype correlation with gender-effect for hearing impairment caused by TECTA mutations,” Cell. Physiol. Biochem. 14(4-6), 369–376 (2004).
[CrossRef] [PubMed]

Tonini, R.

J. W. Lin, N. Chowdhury, A. Mody, R. Tonini, C. Emery, J. Haymond, and J. S. Oghalai, “Comprehensive diagnostic battery for evaluating sensorineural hearing loss in children,” Otol. Neurotol. 32(2), 259–264 (2011).
[CrossRef] [PubMed]

Tsai, T. H.

C. Zhou, D. W. Cohen, Y. Wang, H. C. Lee, A. E. Mondelblatt, T. H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues,” Cancer Res. 70(24), 10071–10079 (2010).
[CrossRef] [PubMed]

D. C. Adler, C. Zhou, T. H. Tsai, J. Schmitt, Q. Huang, H. Mashimo, and J. G. Fujimoto, “Three-dimensional endomicroscopy of the human colon using optical coherence tomography,” Opt. Express 17(2), 784–796 (2009).
[CrossRef] [PubMed]

Tschinkel, T.

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[CrossRef] [PubMed]

Tu, H.

Van Camp, G.

M. Pfister, H. Thiele, G. Van Camp, E. Fransen, F. Apaydin, O. Aydin, P. Leistenschneider, M. Devoto, H. P. Zenner, N. Blin, P. Nürnberg, H. Ozkarakas, and S. Kupka, “A genotype-phenotype correlation with gender-effect for hearing impairment caused by TECTA mutations,” Cell. Physiol. Biochem. 14(4-6), 369–376 (2004).
[CrossRef] [PubMed]

Wan, Q.

Wang, R. K.

H. M. Subhash, V. Davila, H. Sun, A. T. Nguyen-Huynh, A. L. Nuttall, and R. K. Wang, “Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography,” J. Biomed. Opt. 15(3), 036024 (2010).
[CrossRef] [PubMed]

R. K. Wang and A. L. Nuttall, “Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: a preliminary study,” J. Biomed. Opt. 15(5), 056005 (2010).
[CrossRef] [PubMed]

Wang, Y.

C. Zhou, D. W. Cohen, Y. Wang, H. C. Lee, A. E. Mondelblatt, T. H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues,” Cancer Res. 70(24), 10071–10079 (2010).
[CrossRef] [PubMed]

Weiss, T. F.

D. M. Freeman, D. A. Cotanche, F. Ehsani, and T. F. Weiss, “The osmotic response of the isolated tectorial membrane of the chick to isosmotic solutions: effect of Na+, K+, and Ca2+ concentration,” Hear. Res. 79(1-2), 197–215 (1994).
[CrossRef] [PubMed]

Welsh, M. J.

D. K. Meyerholz, D. A. Stoltz, E. Namati, S. Ramachandran, A. A. Pezzulo, A. R. Smith, M. V. Rector, M. J. Suter, S. Kao, G. McLennan, G. J. Tearney, J. Zabner, P. B. McCray, and M. J. Welsh, “Loss of cystic fibrosis transmembrane conductance regulator function produces abnormalities in tracheal development in neonatal pigs and young children,” Am. J. Respir. Crit. Care Med. 182(10), 1251–1261 (2010).
[CrossRef] [PubMed]

Wong, B. J.

A. Sepehr, H. R. Djalilian, J. E. Chang, Z. Chen, and B. J. Wong, “Optical coherence tomography of the cochlea in the porcine model,” Laryngoscope 118(8), 1449–1451 (2008).
[CrossRef] [PubMed]

B. J. Wong, Y. Zhao, M. Yamaguchi, N. Nassif, Z. Chen, and J. F. De Boer, “Imaging the internal structure of the rat cochlea using optical coherence tomography at 0.827 μm and 1.3 μm,” Otolaryngol. Head Neck Surg. 130(3), 334–338 (2004).
[CrossRef] [PubMed]

Xia, A.

S. S. Gao, T. Yuan, A. Xia, P. Raphael, R. L. Shelton, B. Applegate, and J. S. Oghalai, “Imaging of the intact mouse cochlea by spectral domain optical coherence tomography,” Proc. SPIE 7889 (2011).

R. Gueta, J. Levitt, A. Xia, O. Katz, J. S. Oghalai, and I. Rousso, “Structural and mechanical analysis of tectorial membrane Tecta mutants,” Biophys. J. 100(10), 2530–2538 (2011).
[CrossRef] [PubMed]

A. Xia, S. S. Gao, T. Yuan, A. Osborn, A. Bress, M. Pfister, S. M. Maricich, F. A. Pereira, and J. S. Oghalai, “Deficient forward transduction and enhanced reverse transduction in the alpha tectorin C1509G human hearing loss mutation,” Dis Model Mech 3(3-4), 209–223 (2010).
[CrossRef] [PubMed]

Yamaguchi, M.

B. J. Wong, Y. Zhao, M. Yamaguchi, N. Nassif, Z. Chen, and J. F. De Boer, “Imaging the internal structure of the rat cochlea using optical coherence tomography at 0.827 μm and 1.3 μm,” Otolaryngol. Head Neck Surg. 130(3), 334–338 (2004).
[CrossRef] [PubMed]

Yuan, T.

S. S. Gao, T. Yuan, A. Xia, P. Raphael, R. L. Shelton, B. Applegate, and J. S. Oghalai, “Imaging of the intact mouse cochlea by spectral domain optical coherence tomography,” Proc. SPIE 7889 (2011).

C. C. Liu, S. S. Gao, T. Yuan, C. Steele, S. Puria, and J. S. Oghalai, “Biophysical Mechanisms Underlying Outer Hair Cell Loss Associated with a Shortened Tectorial Membrane,” J. Assoc. Res. Otolaryngol. (2011).
[CrossRef] [PubMed]

A. Xia, S. S. Gao, T. Yuan, A. Osborn, A. Bress, M. Pfister, S. M. Maricich, F. A. Pereira, and J. S. Oghalai, “Deficient forward transduction and enhanced reverse transduction in the alpha tectorin C1509G human hearing loss mutation,” Dis Model Mech 3(3-4), 209–223 (2010).
[CrossRef] [PubMed]

Zabner, J.

D. K. Meyerholz, D. A. Stoltz, E. Namati, S. Ramachandran, A. A. Pezzulo, A. R. Smith, M. V. Rector, M. J. Suter, S. Kao, G. McLennan, G. J. Tearney, J. Zabner, P. B. McCray, and M. J. Welsh, “Loss of cystic fibrosis transmembrane conductance regulator function produces abnormalities in tracheal development in neonatal pigs and young children,” Am. J. Respir. Crit. Care Med. 182(10), 1251–1261 (2010).
[CrossRef] [PubMed]

Zenner, H. P.

M. Pfister, H. Thiele, G. Van Camp, E. Fransen, F. Apaydin, O. Aydin, P. Leistenschneider, M. Devoto, H. P. Zenner, N. Blin, P. Nürnberg, H. Ozkarakas, and S. Kupka, “A genotype-phenotype correlation with gender-effect for hearing impairment caused by TECTA mutations,” Cell. Physiol. Biochem. 14(4-6), 369–376 (2004).
[CrossRef] [PubMed]

Zhao, Y.

B. J. Wong, Y. Zhao, M. Yamaguchi, N. Nassif, Z. Chen, and J. F. De Boer, “Imaging the internal structure of the rat cochlea using optical coherence tomography at 0.827 μm and 1.3 μm,” Otolaryngol. Head Neck Surg. 130(3), 334–338 (2004).
[CrossRef] [PubMed]

Zheng, J.

F. Chen, N. Choudhury, J. Zheng, S. Matthews, A. L. Nutall, and S. L. Jacques, “In vivo imaging and low-coherence interferometry of organ of Corti vibration,” J. Biomed. Opt. 12(2), 021006 (2007).
[CrossRef] [PubMed]

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[CrossRef] [PubMed]

Zhou, C.

C. Zhou, D. W. Cohen, Y. Wang, H. C. Lee, A. E. Mondelblatt, T. H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues,” Cancer Res. 70(24), 10071–10079 (2010).
[CrossRef] [PubMed]

D. C. Adler, C. Zhou, T. H. Tsai, J. Schmitt, Q. Huang, H. Mashimo, and J. G. Fujimoto, “Three-dimensional endomicroscopy of the human colon using optical coherence tomography,” Opt. Express 17(2), 784–796 (2009).
[CrossRef] [PubMed]

Zysk, A. M.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[CrossRef] [PubMed]

,” J. Assoc. Res. Otolaryngol. (1)

C. C. Liu, S. S. Gao, T. Yuan, C. Steele, S. Puria, and J. S. Oghalai, “Biophysical Mechanisms Underlying Outer Hair Cell Loss Associated with a Shortened Tectorial Membrane,” J. Assoc. Res. Otolaryngol. (2011).
[CrossRef] [PubMed]

Am. J. Respir. Crit. Care Med. (1)

D. K. Meyerholz, D. A. Stoltz, E. Namati, S. Ramachandran, A. A. Pezzulo, A. R. Smith, M. V. Rector, M. J. Suter, S. Kao, G. McLennan, G. J. Tearney, J. Zabner, P. B. McCray, and M. J. Welsh, “Loss of cystic fibrosis transmembrane conductance regulator function produces abnormalities in tracheal development in neonatal pigs and young children,” Am. J. Respir. Crit. Care Med. 182(10), 1251–1261 (2010).
[CrossRef] [PubMed]

Ann. Otol. Rhinol. Laryngol. (1)

J. Lin, H. Staecker, and M. S. Jafri, “Optical coherence tomography imaging of the inner ear: a feasibility study with implications for cochlear implantation,” Ann. Otol. Rhinol. Laryngol. 117(5), 341–346 (2008).
[PubMed]

Arch. Ophthalmol. (1)

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113(3), 325–332 (1995).
[CrossRef] [PubMed]

Biomed. Opt. Express (1)

Biophys. J. (1)

R. Gueta, J. Levitt, A. Xia, O. Katz, J. S. Oghalai, and I. Rousso, “Structural and mechanical analysis of tectorial membrane Tecta mutants,” Biophys. J. 100(10), 2530–2538 (2011).
[CrossRef] [PubMed]

Cancer Res. (2)

C. Zhou, D. W. Cohen, Y. Wang, H. C. Lee, A. E. Mondelblatt, T. H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues,” Cancer Res. 70(24), 10071–10079 (2010).
[CrossRef] [PubMed]

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[CrossRef] [PubMed]

Cell. Physiol. Biochem. (1)

M. Pfister, H. Thiele, G. Van Camp, E. Fransen, F. Apaydin, O. Aydin, P. Leistenschneider, M. Devoto, H. P. Zenner, N. Blin, P. Nürnberg, H. Ozkarakas, and S. Kupka, “A genotype-phenotype correlation with gender-effect for hearing impairment caused by TECTA mutations,” Cell. Physiol. Biochem. 14(4-6), 369–376 (2004).
[CrossRef] [PubMed]

Circulation (2)

I. K. Jang, G. Tearney, and B. Bouma, “Visualization of tissue prolapse between coronary stent struts by optical coherence tomography: comparison with intravascular ultrasound,” Circulation 104(22), 2754 (2001).
[CrossRef] [PubMed]

E. Grube, U. Gerckens, L. Buellesfeld, and P. J. Fitzgerald, “Images in cardiovascular medicine. Intracoronary imaging with optical coherence tomography: a new high-resolution technology providing striking visualization in the coronary artery,” Circulation 106(18), 2409–2410 (2002).
[CrossRef] [PubMed]

Curr. Opin. Otolaryngol. Head Neck Surg. (1)

J. S. Oghalai, “The cochlear amplifier: augmentation of the traveling wave within the inner ear,” Curr. Opin. Otolaryngol. Head Neck Surg. 12(5), 431–438 (2004).
[CrossRef] [PubMed]

Dis Model Mech (1)

A. Xia, S. S. Gao, T. Yuan, A. Osborn, A. Bress, M. Pfister, S. M. Maricich, F. A. Pereira, and J. S. Oghalai, “Deficient forward transduction and enhanced reverse transduction in the alpha tectorin C1509G human hearing loss mutation,” Dis Model Mech 3(3-4), 209–223 (2010).
[CrossRef] [PubMed]

Hear. Res. (3)

R. M. Edge, B. N. Evans, M. Pearce, C. P. Richter, X. Hu, and P. Dallos, “Morphology of the unfixed cochlea,” Hear. Res. 124(1-2), 1–16 (1998).
[CrossRef] [PubMed]

D. M. Freeman, D. A. Cotanche, F. Ehsani, and T. F. Weiss, “The osmotic response of the isolated tectorial membrane of the chick to isosmotic solutions: effect of Na+, K+, and Ca2+ concentration,” Hear. Res. 79(1-2), 197–215 (1994).
[CrossRef] [PubMed]

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[CrossRef] [PubMed]

J. Biomed. Opt. (5)

S. S. Hong and D. M. Freeman, “Doppler optical coherence microscopy for studies of cochlear mechanics,” J. Biomed. Opt. 11(5), 054014 (2006).
[CrossRef] [PubMed]

F. Chen, N. Choudhury, J. Zheng, S. Matthews, A. L. Nutall, and S. L. Jacques, “In vivo imaging and low-coherence interferometry of organ of Corti vibration,” J. Biomed. Opt. 12(2), 021006 (2007).
[CrossRef] [PubMed]

A. D. Aguirre, Y. Chen, B. Bryan, H. Mashimo, Q. Huang, J. L. Connolly, and J. G. Fujimoto, “Cellular resolution ex vivo imaging of gastrointestinal tissues with optical coherence microscopy,” J. Biomed. Opt. 15(1), 016025 (2010).
[CrossRef] [PubMed]

H. M. Subhash, V. Davila, H. Sun, A. T. Nguyen-Huynh, A. L. Nuttall, and R. K. Wang, “Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography,” J. Biomed. Opt. 15(3), 036024 (2010).
[CrossRef] [PubMed]

R. K. Wang and A. L. Nuttall, “Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: a preliminary study,” J. Biomed. Opt. 15(5), 056005 (2010).
[CrossRef] [PubMed]

J. Neurophysiol. (1)

J. S. Oghalai, J. R. Holt, T. Nakagawa, T. M. Jung, N. J. Coker, H. A. Jenkins, R. A. Eatock, and W. E. Brownell, “Ionic currents and electromotility in inner ear hair cells from humans,” J. Neurophysiol. 79(4), 2235–2239 (1998).
[PubMed]

Laryngoscope (2)

A. Sepehr, H. R. Djalilian, J. E. Chang, Z. Chen, and B. J. Wong, “Optical coherence tomography of the cochlea in the porcine model,” Laryngoscope 118(8), 1449–1451 (2008).
[CrossRef] [PubMed]

I. Thalmann, G. Thallinger, E. C. Crouch, T. H. Comegys, N. Barrett, and R. Thalmann, “Composition and supramolecular organization of the tectorial membrane,” Laryngoscope 97(3 Pt 1), 357–367 (1987).
[CrossRef] [PubMed]

Ophthalmology (1)

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology 102(2), 217–229 (1995).
[PubMed]

Opt. Express (2)

Opt. Lett. (3)

Otol. Neurotol. (1)

J. W. Lin, N. Chowdhury, A. Mody, R. Tonini, C. Emery, J. Haymond, and J. S. Oghalai, “Comprehensive diagnostic battery for evaluating sensorineural hearing loss in children,” Otol. Neurotol. 32(2), 259–264 (2011).
[CrossRef] [PubMed]

Otolaryngol. Head Neck Surg. (1)

B. J. Wong, Y. Zhao, M. Yamaguchi, N. Nassif, Z. Chen, and J. F. De Boer, “Imaging the internal structure of the rat cochlea using optical coherence tomography at 0.827 μm and 1.3 μm,” Otolaryngol. Head Neck Surg. 130(3), 334–338 (2004).
[CrossRef] [PubMed]

Proc. SPIE (1)

S. S. Gao, T. Yuan, A. Xia, P. Raphael, R. L. Shelton, B. Applegate, and J. S. Oghalai, “Imaging of the intact mouse cochlea by spectral domain optical coherence tomography,” Proc. SPIE 7889 (2011).

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Other (3)

A. Douraghy and A. F. Chatziioannou, “Preclinical Imaging,” in Basic Sciences of Nuclear Medicine, M. M. Khalil, ed. (Springer-Verlag Heidelberg Dordrecht, London New York, 2011), pp. 379–406.

S. G. Nekolla and A. Saraste, “Part III: Concurrent Noninvasive Assessment of Coronary Anatomy, Physiology, and Myocellular Integrity,” in Cardiac CT, PET, and MR, 2nd edition, V. Dilsizian and G. M. Pohost, eds. (Wiley-Blackwell, West Sussex, 2010), pp. 301–333.

H. F. Schuknecht, Pathology of the Ear, 2nd edition (Lea & Febiger, Malvern, 1993).

Supplementary Material (3)

» Media 1: AVI (1903 KB)     
» Media 2: AVI (3094 KB)     
» Media 3: AVI (3248 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(A) The cochlear has three chambers, scala vestibuli (SV), scala media (SM), and scala tympani (ST). The auditory neurons (AN) sit within the central core, the modiolus. The structure within the box is expanded in (B). (B) The organ of Corti contains three rows of outer hair cells (OHCs) and one row of inner hair cells (IHCs). The hair cells sit along with supporting cells on the basilar membrane (BM), which is fixed at the spiral limbus and osseous spiral lamina (OSL) medially and the spiral ligament (SL) laterally. Hair cell stereocilia are deflected when shearing forces develop between the apical surface of the hair cells and the tectorial membrane (TM) during sound transduction. Auditory nerve fibers (AN) connect the hair cells with the brainstem.

Fig. 2
Fig. 2

(A) CT and (B) MRI images of four different deaf patients. On the left are cochleae (arrows) that appear normal, but are likely to have important anatomic changes if post-mortem histopathologic studies were performed. On the right are examples of the types of gross malformations that can be detected with the latest imaging techniques (arrows).

Fig. 3
Fig. 3

Schematic of the spectral domain OCT system.

Fig. 4
Fig. 4

(A) OCT image from a P15 mouse cochlea. The bone and soft tissue structures scatter light and produce a signal that is visible with OCT. In contrast, the surrounding fluid does not produce a visible signal. (B) Magnitude and depth plot of the A-line highlighted in yellow in (A).

Fig. 5
Fig. 5

(A) Spectral domain OCT image of an adult mouse organ of Corti (unaveraged) as viewed with the apical otic capsule removed. (B) Paraffin-embedded histological section from a P15 mouse cochlea shown for comparison. The box encompasses what is not present in (A). In both cases, the basilar membrane (BM), inner hair cells (IHCs), internal spiral sulcus, outer hair cells (OHCs), modiolus, Reissner's membrane (RM), tectorial membrane (TM), and tunnel of Corti are visible.

Fig. 6
Fig. 6

OCT (left) and paraffin-embedded histological sections (right) of cochleae from (A) Tecta +/+ (Media 1), (B) Tecta +/C1509G (Media 2), and (C) Tecta C1509G/C1509G (Media 3). The videos show the image stacks which have been cropped but remain unadjusted. The OCT image of the Tecta +/+ gives the locations of where we made the measurements for (1) the area of the tectorial membrane (TM), (2) thickness of the hair cell epithelium, (3) the distance between the TM and hair cell epithelium, (4) the thickness of the spiral limbus and OSL, (5) the thickness of the RM, and (6) the thickness of the bone and SL at its junction with Reissner's membrane (RM). Since the bone was opened in the OCT images, the actual measurement of the bone and SL thickness was made at another slice of the image stack. Depicted is the approximation of that thickness in the current slice.

Fig. 7
Fig. 7

Unaltered, cross-sectional spectral domain OCT images of the cochlea from (A) P3, (B) P15, and (C) adult mice. In all cases, the Reissner's membrane (RM), basilar membrane (BM), and modiolus are visible. An example of the vertical line chosen for measuring the amount of tissue imaged is shown in yellow. Examples of the 10 by 10 pixel boxes used to calculate the signal intensity in a given region are also in yellow. Graphs showing (D) the amount of tissue imaged, (E) the average signal intensity in different regions, and (F) the contrast percentage of regions 1, 2, and 3. Number of samples is noted in (D), and statistical significance is noted in each of the graphs by a paired * or ¥.

Fig. 8
Fig. 8

Average intensity OCT images from five slices from the cochlea of the P3 (n = 7), P15 (n = 8), and adult mouse (n = 6). The pixel intensity across the internal spiral sulcus, depicted by the yellow line (100 µm), is graphed. The zero position is closer to the basilar membrane (BM). Statistical significance is noted in each of the graphs by a paired * or ¥.

Tables (1)

Tables Icon

Table 1 Measurements of the Soft Tissue Structures Within the Cochlea.

Metrics