Abstract

We try to obtain stable supercontinuum (SC) generation with broad bandwidth under relative simple pump conditions. We use a 1.3-m-long highly nonlinear tellurite microstructured fiber and pump it by a 15 ps 1064 nm fiber laser. One segment of the fiber is tapered from a core diameter of 3.4 μm to 1.3 μm. For the first time five-order stimulated Raman scatterings (SRSs) are observed for soft glass fibers. SC covering 730-1700 nm is demonstrated with the pump-pulse-energy of several nJ. The mechanisms of SC broadening are mainly SRS, self-phase modulation (SPM) and cross phase modulation (XPM). The tapered segment has two advantages. Firstly it increases the nonlinearity of fiber by several times. Secondly, it acts as a compensation for the dispersion of the untapered segment, and mitigates the walk-off between pump pulse and SRS peaks.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. S. Kivshar, “Nonlinear optics: the next decade,” Opt. Express 16(26), 22126–22128 (2008).
    [CrossRef] [PubMed]
  2. A. F. Fercher and E. Roth, “Ophthalmic laser interferometry,” Proc. SPIE 658, 48–51 (1986).
  3. H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
    [CrossRef]
  4. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
    [CrossRef] [PubMed]
  5. M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
    [CrossRef]
  6. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
    [CrossRef] [PubMed]
  7. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
    [CrossRef] [PubMed]
  8. X. Gu, M. Kimmel, A. Shreenath, R. Trebino, J. Dudley, S. Coen, and R. Windeler, “Experimental studies of the coherence of microstructure-fiber supercontinuum,” Opt. Express 11(21), 2697–2703 (2003).
    [CrossRef] [PubMed]
  9. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [CrossRef]
  10. K. K. Y. Cheung, C. Zhang, Y. Zhou, K. K. Y. Wong, and K. K. Tsia, “Manipulating supercontinuum generation by minute continuous wave,” Opt. Lett. 36(2), 160–162 (2011).
    [CrossRef] [PubMed]
  11. J. J. Miret, E. Silvestre, and P. Andrés, “Octave-spanning ultraflat supercontinuum with soft-glass photonic crystal fibers,” Opt. Express 17(11), 9197–9203 (2009).
    [CrossRef] [PubMed]
  12. A. M. Heidt, “Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers,” J. Opt. Soc. Am. B 27(3), 550–559 (2010).
    [CrossRef]
  13. L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight, “Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion,” Opt. Express 19(6), 4902–4907 (2011).
    [CrossRef] [PubMed]
  14. A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19(4), 3775–3787 (2011).
    [CrossRef] [PubMed]
  15. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photoniccrystal fibers,” J. Opt. Soc. Am. B 19(4), 753–764 (2002).
    [CrossRef]
  16. V. V. Kumar, A. K. George, W. H. Reeves, J. C. Knight, P. Russell, F. Omenetto, and A. Taylor, “Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation,” Opt. Express 10(25), 1520–1525 (2002).
    [PubMed]
  17. F. G. Omenetto, N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russell, “Spectrally smooth supercontinuum from 350 nm to 3 mum in sub-centimeter lengths of soft-glass photonic crystal fibers,” Opt. Express 14(11), 4928–4934 (2006).
    [CrossRef] [PubMed]
  18. M. Liao, C. Chaudhari, G. Qin, X. Yan, C. Kito, T. Suzuki, Y. Ohishi, M. Matsumoto, and T. Misumi, “Fabrication and characterization of a chalcogenide-tellurite composite microstructure fiber with high nonlinearity,” Opt. Express 17(24), 21608–21614 (2009).
    [CrossRef] [PubMed]
  19. M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express 17(18), 15481–15490 (2009).
    [CrossRef] [PubMed]
  20. D. Anderson, M. Desaix, M. Lisak, and M. L. Quiroga-Teixeiro, “Wave breaking in nonlinear-optical fibers,” J. Opt. Soc. Am. B 9(8), 1358–1361 (1992).
    [CrossRef]
  21. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [CrossRef]
  22. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2006).

2011 (3)

2010 (2)

2009 (3)

2008 (1)

2006 (2)

2003 (2)

X. Gu, M. Kimmel, A. Shreenath, R. Trebino, J. Dudley, S. Coen, and R. Windeler, “Experimental studies of the coherence of microstructure-fiber supercontinuum,” Opt. Express 11(21), 2697–2703 (2003).
[CrossRef] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[CrossRef] [PubMed]

2002 (3)

2000 (2)

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

1996 (1)

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[CrossRef]

1992 (1)

1986 (1)

A. F. Fercher and E. Roth, “Ophthalmic laser interferometry,” Proc. SPIE 658, 48–51 (1986).

Abe, M.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[CrossRef]

Anderson, D.

Andrés, P.

Bartelt, H.

Bosman, G. W.

Chau, A. H. L.

Chaudhari, C.

Cheung, K. K. Y.

Clarkson, W. A.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

X. Gu, M. Kimmel, A. Shreenath, R. Trebino, J. Dudley, S. Coen, and R. Windeler, “Experimental studies of the coherence of microstructure-fiber supercontinuum,” Opt. Express 11(21), 2697–2703 (2003).
[CrossRef] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[CrossRef] [PubMed]

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photoniccrystal fibers,” J. Opt. Soc. Am. B 19(4), 753–764 (2002).
[CrossRef]

Corwin, K. L.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[CrossRef] [PubMed]

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

De Silvestri, S.

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[CrossRef]

Desaix, M.

Diddams, S. A.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Dudley, J.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[CrossRef] [PubMed]

Efimov, A.

Fercher, A. F.

A. F. Fercher and E. Roth, “Ophthalmic laser interferometry,” Proc. SPIE 658, 48–51 (1986).

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

George, A. K.

Griebner, U.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[CrossRef] [PubMed]

Gu, X.

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Hartung, A.

Harvey, J. D.

Heidt, A. M.

Herrmann, J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[CrossRef] [PubMed]

Hooper, L. E.

Husakou, A.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[CrossRef] [PubMed]

Inoue, Y.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[CrossRef]

Joly, N. Y.

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Kimmel, M.

Kito, C.

Kivshar, Y. S.

Knight, J. C.

Korn, G.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[CrossRef] [PubMed]

Krok, P.

Kumar, V. V.

Kumar, V. V. R. K.

Leonhardt, R.

Liao, M.

Lisak, M.

Matsumoto, M.

Miret, J. J.

Misumi, T.

Mori, K.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[CrossRef]

Morioka, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[CrossRef]

Mosley, P. J.

Muir, A. C.

Newbury, N. R.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[CrossRef] [PubMed]

Nickel, D.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[CrossRef] [PubMed]

Nilsson, J.

Nisoli, M.

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[CrossRef]

Ohara, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[CrossRef]

Ohishi, Y.

Omenetto, F.

Omenetto, F. G.

Qin, G.

Quiroga-Teixeiro, M. L.

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Reeves, W. H.

Richardson, D. J.

Rohwer, E. G.

Ross, M.

Roth, E.

A. F. Fercher and E. Roth, “Ophthalmic laser interferometry,” Proc. SPIE 658, 48–51 (1986).

Russell, P.

Russell, P. S. J.

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photoniccrystal fibers,” J. Opt. Soc. Am. B 19(4), 753–764 (2002).
[CrossRef]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[CrossRef] [PubMed]

Russell, P. St. J.

Sato, K.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[CrossRef]

Sato, K. I.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[CrossRef]

Schwoerer, H.

Shibata, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[CrossRef]

Shreenath, A.

Silvestre, E.

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Suzuki, T.

Svelto, O.

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[CrossRef]

Takara, H.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[CrossRef]

Taylor, A.

Taylor, A. J.

Trebino, R.

Tsia, K. K.

Wadsworth, W. J.

Weber, K.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[CrossRef] [PubMed]

Wehner, M. R.

Windeler, R.

Windeler, R. S.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Wolchover, N. A.

Wong, K. K. Y.

Yamada, E.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[CrossRef]

Yan, X.

Zhang, C.

Zhavoronkov, N.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[CrossRef] [PubMed]

Zhou, Y.

Appl. Phys. Lett. (1)

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[CrossRef]

Electron. Lett. (1)

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[CrossRef]

J. Opt. Soc. Am. B (4)

Opt. Express (9)

V. V. Kumar, A. K. George, W. H. Reeves, J. C. Knight, P. Russell, F. Omenetto, and A. Taylor, “Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation,” Opt. Express 10(25), 1520–1525 (2002).
[PubMed]

F. G. Omenetto, N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russell, “Spectrally smooth supercontinuum from 350 nm to 3 mum in sub-centimeter lengths of soft-glass photonic crystal fibers,” Opt. Express 14(11), 4928–4934 (2006).
[CrossRef] [PubMed]

M. Liao, C. Chaudhari, G. Qin, X. Yan, C. Kito, T. Suzuki, Y. Ohishi, M. Matsumoto, and T. Misumi, “Fabrication and characterization of a chalcogenide-tellurite composite microstructure fiber with high nonlinearity,” Opt. Express 17(24), 21608–21614 (2009).
[CrossRef] [PubMed]

M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express 17(18), 15481–15490 (2009).
[CrossRef] [PubMed]

L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight, “Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion,” Opt. Express 19(6), 4902–4907 (2011).
[CrossRef] [PubMed]

A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19(4), 3775–3787 (2011).
[CrossRef] [PubMed]

J. J. Miret, E. Silvestre, and P. Andrés, “Octave-spanning ultraflat supercontinuum with soft-glass photonic crystal fibers,” Opt. Express 17(11), 9197–9203 (2009).
[CrossRef] [PubMed]

Y. S. Kivshar, “Nonlinear optics: the next decade,” Opt. Express 16(26), 22126–22128 (2008).
[CrossRef] [PubMed]

X. Gu, M. Kimmel, A. Shreenath, R. Trebino, J. Dudley, S. Coen, and R. Windeler, “Experimental studies of the coherence of microstructure-fiber supercontinuum,” Opt. Express 11(21), 2697–2703 (2003).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. Lett. (2)

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[CrossRef] [PubMed]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[CrossRef] [PubMed]

Proc. SPIE (1)

A. F. Fercher and E. Roth, “Ophthalmic laser interferometry,” Proc. SPIE 658, 48–51 (1986).

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Science (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The core diameters along the fiber length of the tapered tellurite microstructured fiber. The core diameters of the tapered section are predicted from the outside diameters. Inset shows the cross section of the microstructured fiber before tapering. It was taken by an optical microscope.

Fig. 2
Fig. 2

Calculated chromatic dispersions of the fundamental mode of the tapered tellurite microstructured fiber.

Fig. 3
Fig. 3

Measured pump-pulse-energy-dependent SC spectra by the tapered fiber. The curve is displaced by 10 dB.

Fig. 4
Fig. 4

Various order SRS peaks observed from the tapered fiber.

Fig. 5
Fig. 5

Measured pump-pulse-energy-dependent SC spectra by the untapered fiber. The curve is displaced by 10 dB.

Fig. 6
Fig. 6

Pump-pulse-energy-dependent SPM spectra observed from the tapered fiber. The curve is displaced by 4 dB.

Tables (1)

Tables Icon

Table 1 Walk-off lengths of the pump pulse and SRS peaks. R1, R2, R3, R4, and R5 denote the first, second, third, fourth, and fifth order SRS peak. a

Metrics